19.11.2014 Views

Taylor Series are Limits of Legendre Expansions - Gvsu - Grand ...

Taylor Series are Limits of Legendre Expansions - Gvsu - Grand ...

Taylor Series are Limits of Legendre Expansions - Gvsu - Grand ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><br />

<strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong><br />

Paul Fishback<br />

<strong>Grand</strong> Valley State University<br />

Allendale, MI 49401<br />

fishbacp@gvsu.edu<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.1/15


A Common Question in Calculus<br />

Can we determine the interval <strong>of</strong> convergence <strong>of</strong> a <strong>Taylor</strong><br />

series corresponding to a function f simply by looking at f<br />

itself?<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.2/15


A Common Question in Calculus<br />

Can we determine the interval <strong>of</strong> convergence <strong>of</strong> a <strong>Taylor</strong><br />

series corresponding to a function f simply by looking at f<br />

itself?<br />

0.8<br />

0.7<br />

0.6<br />

f(x) = 1<br />

x 2 + 4<br />

y<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

–2 –1 0<br />

1 2<br />

x<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.2/15


<strong>Taylor</strong>’s Theorem<br />

If f is analytic in the open disk <strong>of</strong> radius R > 0 , then we<br />

may write for z in this disk,<br />

f(z) =<br />

∞∑<br />

n=0<br />

a n z n ,<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.3/15


<strong>Taylor</strong>’s Theorem<br />

If f is analytic in the open disk <strong>of</strong> radius R > 0 , then we<br />

may write for z in this disk,<br />

f(z) =<br />

∞∑<br />

n=0<br />

a n z n ,<br />

2<br />

where<br />

y<br />

–2 –1 0 1 2<br />

x<br />

–1<br />

–2<br />

1<br />

a n = f(n) (0)<br />

n!<br />

and<br />

1<br />

R = lim<br />

n→∞ |a n| 1 n .<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.3/15


<strong>Legendre</strong> Polynomials<br />

P 0 (x) = 1,<br />

P 1 (x) = x<br />

P 2 (x) = 1 2 (3x2 − 1), P 3 (x) = 1 2 (5x3 − 3x)<br />

In general, P n (x) = 2n − 1 xP n−1 (x) − n − 1<br />

n<br />

n P n−2(x).<br />

<strong>Legendre</strong> polynomials satisfy the important orthogonality<br />

relation,<br />

∫ x=1<br />

x=−1<br />

P k (x)P j (x)dx =<br />

{<br />

2<br />

2k+1<br />

if k = j;<br />

0 otherwise.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.4/15


Neumann’s Theorem (1862)<br />

If f is analytic in an ellipse containing the closed unit disk<br />

and having foci at (±1, 0), then for z contained in this ellipse,<br />

we may write<br />

f(z) =<br />

∞∑<br />

n=0<br />

a n P n (z), where a n = 2n + 1<br />

2<br />

∫ t=1<br />

t=−1<br />

f(t)P n (t)dt.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.5/15


Neumann’s Theorem (1862)<br />

If f is analytic in an ellipse containing the closed unit disk<br />

and having foci at (±1, 0), then for z contained in this ellipse,<br />

we may write<br />

(x, y) =<br />

“<br />

1<br />

2<br />

f(z) =<br />

“<br />

ρ + 1 ρ<br />

∞∑<br />

n=0<br />

a n P n (z), where a n = 2n + 1<br />

2<br />

”<br />

cos(θ), 1 2<br />

“ ” ”<br />

ρ − 1 sin(θ)<br />

ρ<br />

∫ t=1<br />

t=−1<br />

f(t)P n (t)dt.<br />

If ρ denotes the semiaxes<br />

y<br />

2<br />

1<br />

<strong>of</strong> this ellipse, then<br />

–2 –1 0<br />

1 2<br />

x<br />

–1<br />

1<br />

ρ = lim<br />

n→∞ |a n| 1 n ≤<br />

1<br />

R + √ R 2 − 1 .<br />

–2<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.5/15


<strong>Legendre</strong> <strong>Expansions</strong> on [−h, h]<br />

If f is analytic in a disk <strong>of</strong> radius R > 0 about the origin,<br />

then for h sufficiently small and positive, one may write<br />

(<br />

∞∑<br />

∫ )<br />

2n + 1 t=h<br />

f(z) =<br />

f(t)P n (t/h)dt P n (z/h).<br />

2h<br />

n=0<br />

t=−h<br />

y<br />

(–h,0) (h,0)<br />

x<br />

Moreover,<br />

2n + 1<br />

lim<br />

n→∞ ∣ 2h<br />

≤<br />

∫ t=h<br />

R<br />

h<br />

+<br />

f(t)P n (t/h)dt<br />

∣<br />

1<br />

√ (Rh )<br />

.<br />

2<br />

− 1<br />

t=−h<br />

1<br />

n<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.6/15


The Limit <strong>of</strong> the <strong>Legendre</strong> Expansion<br />

What happens to the first few terms <strong>of</strong><br />

(<br />

∞∑<br />

∫ )<br />

2n + 1 t=h<br />

f(z) =<br />

f(t)P n (t/h)dt<br />

2h<br />

n=0<br />

t=−h<br />

P n (z/h) as h → 0?<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.7/15


The Limit <strong>of</strong> the <strong>Legendre</strong> Expansion<br />

What happens to the first few terms <strong>of</strong><br />

(<br />

∞∑<br />

∫ )<br />

2n + 1 t=h<br />

f(z) =<br />

f(t)P n (t/h)dt<br />

2h<br />

n=0<br />

t=−h<br />

P n (z/h) as h → 0?<br />

• n = 0:<br />

1<br />

2h<br />

∫ t=h<br />

t=−h<br />

f(t)dt · 1 → f(0) as h → 0;<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.7/15


The Limit <strong>of</strong> the <strong>Legendre</strong> Expansion<br />

What happens to the first few terms <strong>of</strong><br />

(<br />

∞∑<br />

∫ )<br />

2n + 1 t=h<br />

f(z) =<br />

f(t)P n (t/h)dt<br />

2h<br />

n=0<br />

t=−h<br />

P n (z/h) as h → 0?<br />

• n = 0:<br />

• n = 1:<br />

(<br />

1<br />

2h<br />

(<br />

3<br />

2h<br />

∫<br />

3 t=h<br />

2h 3 t=−h<br />

∫ t=h<br />

t=−h<br />

∫ t=h<br />

t=−h<br />

tf(t)dt<br />

f(t)dt · 1 → f(0) as h → 0;<br />

f(t)P 1 (t/h)dt<br />

)<br />

· z ...<br />

)<br />

P 1 (z/h) simplifies to<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.7/15


The Limit <strong>of</strong> the <strong>Legendre</strong> Expansion<br />

What happens to the first few terms <strong>of</strong><br />

(<br />

∞∑<br />

∫ )<br />

2n + 1 t=h<br />

f(z) =<br />

f(t)P n (t/h)dt<br />

2h<br />

n=0<br />

t=−h<br />

P n (z/h) as h → 0?<br />

• n = 0:<br />

• n = 1:<br />

(<br />

1<br />

2h<br />

(<br />

3<br />

2h<br />

∫<br />

3 t=h<br />

2h 3 t=−h<br />

∫ t=h<br />

t=−h<br />

∫ t=h<br />

t=−h<br />

tf(t)dt<br />

f(t)dt · 1 → f(0) as h → 0;<br />

f(t)P 1 (t/h)dt<br />

)<br />

· z ...<br />

)<br />

P 1 (z/h) simplifies to<br />

... which → LGD(f)(0)z = f ′ (0)z as h → 0.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.7/15


A Limit Theorem<br />

Theorem: For f analytic in the open disk <strong>of</strong> radius R > 0 at<br />

the origin and for z interior to this disk,<br />

(<br />

n=∞<br />

∑<br />

∫ )<br />

2n + 1 t=h<br />

n=∞<br />

∑ f (n) (0)<br />

lim<br />

f(t)P n (t/h)dt P n (z/h) = z n .<br />

h→0 + 2h<br />

n!<br />

n=0<br />

t=−h<br />

n=0<br />

In other words, the limiting value <strong>of</strong> the <strong>Legendre</strong> series expansion<br />

at z is merely the <strong>Taylor</strong> series expansion.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.8/15


The Pro<strong>of</strong><br />

Assume first that we may pass the limit as h → 0 inside the<br />

series. We obtain the desired result by noting that<br />

(<br />

2n + 1<br />

lim<br />

h→0 + 2h<br />

∫ t=h<br />

t=−h<br />

f(t)P n (t/h)dt<br />

( 2n + 1<br />

lim<br />

h→0 + 2<br />

∫ t=1<br />

t=−1<br />

and combining the following ideas.<br />

)<br />

P n (z/h) =<br />

)<br />

f(th)P n (t)dt P n (z/h)<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.9/15


The Pro<strong>of</strong><br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.10/15


The Pro<strong>of</strong><br />

• By <strong>Taylor</strong>’s Theorem,<br />

f(th) = f(0)+f ′ (0)th+...+ f(n) (0)<br />

n!<br />

(th) n +O ( h n+1) as h → 0.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.10/15


The Pro<strong>of</strong><br />

• By <strong>Taylor</strong>’s Theorem,<br />

f(th) = f(0)+f ′ (0)th+...+ f(n) (0)<br />

n!<br />

(th) n +O ( h n+1) as h → 0.<br />

• For each 0 ≤ m ≤ n − 1, t m is orthogonal to P n .<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.10/15


The Pro<strong>of</strong><br />

• By <strong>Taylor</strong>’s Theorem,<br />

f(th) = f(0)+f ′ (0)th+...+ f(n) (0)<br />

n!<br />

(th) n +O ( h n+1) as h → 0.<br />

• For each 0 ≤ m ≤ n − 1, t m is orthogonal to P n .<br />

• 2n+1<br />

2<br />

∫ t=1<br />

t=−1<br />

t n P n (t)dt = 2n (n!) 2<br />

(2n)!<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.10/15


The Pro<strong>of</strong><br />

• By <strong>Taylor</strong>’s Theorem,<br />

f(th) = f(0)+f ′ (0)th+...+ f(n) (0)<br />

n!<br />

(th) n +O ( h n+1) as h → 0.<br />

• For each 0 ≤ m ≤ n − 1, t m is orthogonal to P n .<br />

• 2n+1<br />

2<br />

∫ t=1<br />

t=−1<br />

t n P n (t)dt = 2n (n!) 2<br />

(2n)!<br />

• P n (z/h) = 1 ( )<br />

(2n)!<br />

h n 2 n (n!) 2 · zn + O(h)<br />

as h → 0.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.10/15


The Pro<strong>of</strong><br />

Combining all these ideas in just the right way yields<br />

( ∫ )<br />

2n + 1 t=h<br />

lim<br />

f(t)P n (t/h)dt P n (z/h) = f(n) (0)<br />

h→0 + 2h<br />

n!<br />

for each n ≥ 0.<br />

t=−h<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.11/15


The Pro<strong>of</strong><br />

Combining all these ideas in just the right way yields<br />

( ∫ )<br />

2n + 1 t=h<br />

lim<br />

f(t)P n (t/h)dt P n (z/h) = f(n) (0)<br />

h→0 + 2h<br />

n!<br />

for each n ≥ 0.<br />

t=−h<br />

So now the question becomes, how do we justify passing<br />

the limit as h → 0 inside the series in the first place?<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.11/15


Bounding the <strong>Series</strong> Terms<br />

The key is to establish the existence <strong>of</strong> a fixed positive<br />

quantity r strictly less than 1 such that for all h sufficiently<br />

small,<br />

lim<br />

n→∞<br />

(<br />

∣<br />

2n + 1<br />

2h<br />

∫ t=h<br />

t=−h<br />

)<br />

f(t)P n (t/h)dt P n (z/h)<br />

∣<br />

1<br />

n<br />

≤ r < 1.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.12/15


Bounding the <strong>Series</strong> Terms<br />

The key is to establish the existence <strong>of</strong> a fixed positive<br />

quantity r strictly less than 1 such that for all h sufficiently<br />

small,<br />

lim<br />

n→∞<br />

(<br />

∣<br />

2n + 1<br />

2h<br />

∫ t=h<br />

t=−h<br />

)<br />

f(t)P n (t/h)dt P n (z/h)<br />

∣<br />

1<br />

n<br />

≤ r < 1.<br />

Recall from earlier that<br />

lim<br />

n→∞<br />

∣<br />

2n + 1<br />

2h<br />

∫ t=h<br />

t=−h<br />

f(t)P n (t/h)dt<br />

∣<br />

1<br />

n<br />

≤<br />

1<br />

R<br />

h<br />

+<br />

√ (Rh ) 2<br />

− 1<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.12/15


Bounding P n (z/h)<br />

To estimate |P n (z/h)|, we use a result <strong>of</strong> Mauro Picone:<br />

M. Picone, Maggiorazione di un polinomio di <strong>Legendre</strong> e<br />

delle derivate in un’ellisse a quello confocale, Bollettino<br />

dell’Unione Matematica Italiana (3), 8, 1953, 237-242.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.13/15


Bounding P n (z/h)<br />

To estimate |P n (z/h)|, we use a result <strong>of</strong> Mauro Picone:<br />

M. Picone, Maggiorazione di un polinomio di <strong>Legendre</strong> e<br />

delle derivate in un’ellisse a quello confocale, Bollettino<br />

dell’Unione Matematica Italiana (3), 8, 1953, 237-242.<br />

Picone’s result allows us to assert that<br />

|P n (z/h)| ≤<br />

(2n − 1)!!<br />

n!<br />

( |z|<br />

h + 1 ) n<br />

.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.13/15


Bounding the <strong>Series</strong> Terms<br />

Applying Picone’s result, our previous estimate on the<br />

<strong>Legendre</strong> coefficients, and Stirling’s approximation, we<br />

arrive at<br />

lim<br />

n→∞<br />

(<br />

∣<br />

2n + 1<br />

2h<br />

∫ t=h<br />

t=−h<br />

)<br />

f(t)P n (t/h)dt P n (z/h)<br />

∣<br />

1<br />

n<br />

≤<br />

2|z| + 2h<br />

R + √ R 2 − h 2.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.14/15


Bounding the <strong>Series</strong> Terms<br />

Applying Picone’s result, our previous estimate on the<br />

<strong>Legendre</strong> coefficients, and Stirling’s approximation, we<br />

arrive at<br />

lim<br />

n→∞<br />

(<br />

∣<br />

2n + 1<br />

2h<br />

∫ t=h<br />

t=−h<br />

)<br />

f(t)P n (t/h)dt P n (z/h)<br />

∣<br />

1<br />

n<br />

≤<br />

2|z| + 2h<br />

R + √ R 2 − h 2.<br />

Since |z| < R, this latter quantity is strictly less than 1 for all<br />

h sufficiently small, and the pro<strong>of</strong> is complete.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.14/15


Acknowledgements<br />

• Nathanial Burch, GVSU;<br />

• Gisella Licari, GVSU;<br />

• Mario Martelli, Cl<strong>are</strong>mont McKenna College;<br />

• Paul Nevai, Ohio State University;<br />

• GVSU Research and Development Center.<br />

<strong>Taylor</strong> <strong>Series</strong> <strong>are</strong><strong>Limits</strong> <strong>of</strong> <strong>Legendre</strong> <strong>Expansions</strong> – p.15/15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!