25.11.2014 Views

1) Basics on mechanical ventilation.pdf - Vula

1) Basics on mechanical ventilation.pdf - Vula

1) Basics on mechanical ventilation.pdf - Vula

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Basic respiratory mechanics<br />

relevant for <strong>mechanical</strong> vnetilati<strong>on</strong><br />

<str<strong>on</strong>g>Basics</str<strong>on</strong>g> of respiratory mechanics<br />

important to <strong>mechanical</strong> ventilati<strong>on</strong><br />

Pressure Difference<br />

Gas Gas Flow<br />

Time<br />

Peter C. Rimensberger<br />

Pediatric and Ne<strong>on</strong>atal ICU<br />

Department of Pediatrics<br />

University Hospital of Geneva<br />

Geneva, Switzerland<br />

Volume Change<br />

Volume<br />

∆ V<br />

∆ P<br />

Compliance<br />

Pressure<br />

C = ∆ V<br />

∆ P<br />

“The Feature of the Tube”<br />

Airway Resistance<br />

Resistance is the amount of pressure required to deliver a given<br />

flow of gas and is expressed in terms of a change in pressure<br />

divided by flow.<br />

R = ∆ P<br />

Flow<br />

P1<br />

P2<br />

Pressure Difference = Flow Rate x Resistance of the Tube<br />

Mechanical resp<strong>on</strong>se to<br />

positive pressure applicati<strong>on</strong><br />

Mechanical resp<strong>on</strong>se to<br />

positive pressure applicati<strong>on</strong><br />

Active inspirati<strong>on</strong><br />

Passive exhalati<strong>on</strong><br />

Compliance:<br />

Resistance:<br />

pressure - volume<br />

C = V / P (L/cmH2O)<br />

R = ∆P / V (cmH2O/L/s)<br />

Equati<strong>on</strong> of moti<strong>on</strong>: P = ( 1 / C rs ) V + R rs V .<br />

.<br />

pressure - flow<br />

1


Pressure – Flow – Time - Volume<br />

P = ( 1 / Crs ) x V + Rrs x V .<br />

Pressure – Flow – Time - Volume<br />

Time c<strong>on</strong>stant: T = Crs x Rrs<br />

Volume change requires time to take place.<br />

When a step change in pressure is applied, the instantaneous change in<br />

volume follows an exp<strong>on</strong>ential curve, which means that, formerly faster, it<br />

slows down progressively while it approaches the new equilibrium.<br />

Time c<strong>on</strong>stant: T = Crs x Rrs<br />

Will pressure equilibrium<br />

be reached in the lungs?<br />

Effect of varying time c<strong>on</strong>stants <strong>on</strong> the change<br />

in lung volume over time<br />

(with c<strong>on</strong>stant inflating pressure at the airway opening)<br />

A: Crs = 1, R = 1<br />

B: Crs = 2<br />

(T = R x 2C)<br />

C: Crs = 0.5<br />

(T = R x 1/2C)<br />

(reduced inspiratory<br />

capacity to 0.5)<br />

D: R = 0.5<br />

(T = 1/2R x C)<br />

E: R = 2<br />

(T = 2R x C)<br />

Pressure Difference<br />

Gas Gas Flow<br />

Time<br />

Volume Change<br />

Ventilators deliver gas to<br />

the lungs using positive<br />

pressure at a certain rate.<br />

The amount of gas<br />

delivered can be limited<br />

by time, pressure or<br />

volume.<br />

The durati<strong>on</strong> can be cycled<br />

by time, pressure or flow.<br />

Expiratory flow waveform:<br />

normal vs pathologic<br />

flow<br />

insufflati<strong>on</strong><br />

0<br />

time<br />

exhalati<strong>on</strong><br />

auto-PEEP<br />

Nunn JF Applied respiratory physiology 1987:397<br />

Premature flow terminati<strong>on</strong> during<br />

expirati<strong>on</strong> = “gas trapping” =<br />

deadspace (Vd/Vt) will increase<br />

2


Flow terminati<strong>on</strong> and<br />

auto-PEEP detecti<strong>on</strong><br />

Correcti<strong>on</strong> for Auto-PEEP<br />

- Br<strong>on</strong>chodilator<br />

PEEPi<br />

Trapped<br />

volume<br />

Dhand, Respir Care 2005; 50:246<br />

Analysing time settings of the respiratory cycle<br />

Appropriate inspiratory time<br />

1) Too short Te intrinsic PEEP 1) Correct Te<br />

2) Unnecessary l<strong>on</strong>g Ti 2) Too short Ti<br />

Optimizing tidal volume delivery at set ∆−pressure<br />

Vt 120 ml<br />

Lucangelo U, Bernabe F, and Blanch L Respir Care 2005;50(1):55– 65<br />

3


Vt 160 ml<br />

Vt 137 ml<br />

Progressive increase in inspiratory time<br />

Too short Ti will<br />

reduce delivered Vt<br />

unneccessary high<br />

PIP will be applied<br />

unnecessary high<br />

intrathoracic pressures<br />

Too short Te will not<br />

allow to deliver max.<br />

possible Vt at given P<br />

will induce PEEPi<br />

increases the risk for<br />

hemodynamic instability<br />

Lucangelo U, Bernabe F, and Blanch L Respir Care 2005;50(1):55– 65<br />

CAVE: you have to set Frequency and Ti (C<strong>on</strong>trol) or Ti and Te (TCPL)<br />

The patient respiratory mechanics dictate the maximal respiratory frequency<br />

4


Look at the flow – time curve !<br />

.<br />

V<br />

Leak<br />

Time<br />

Cave! Ti settings in presence of an<br />

endotracheal tube leak<br />

Flow<br />

Proximal Airway Pressure<br />

The <strong>on</strong>ly soluti<strong>on</strong> in presence<br />

P<br />

of an important leak:<br />

Alveolar Pressure<br />

Look how the thorax moves<br />

Volume<br />

Leak<br />

Vex < Vinsp<br />

Time<br />

Who’s Watching the Patient?<br />

Compliance ↓<br />

Compliance<br />

↓<br />

Pressure Ventilati<strong>on</strong><br />

Decreased Tidal Volume<br />

Increased Tidal Volume<br />

Volume Ventilati<strong>on</strong><br />

Increased Pressure<br />

Decreased Pressure<br />

Volume<br />

Volume<br />

Pressure<br />

Pressure<br />

Piers<strong>on</strong>, IN: Tobin, Principles and Practice of Critical Care M<strong>on</strong>itoring<br />

and do not forget, the time c<strong>on</strong>stant (T = Crs x Rrs) will change too!<br />

Compliance decrease<br />

Change in compliance after surfactant =<br />

change in time c<strong>on</strong>stant after surfactant<br />

pre<br />

post<br />

33 cmH2O<br />

52 cmH2O<br />

Volume<br />

0.4 (s) 0.65 (s) 0.35 (s) 0.5 (s)<br />

Lucangelo U, Bernabe F, and Blanch L Respir Care 2005;50(1):55– 65<br />

PEEP PIP PEEP PIP<br />

Pressure<br />

Kelly E Pediatr Pulm<strong>on</strong>ol 1993;15:225-30<br />

5


To measure compliance and<br />

resistance - is it in the clinical<br />

setting important ?<br />

Time c<strong>on</strong>stant: Τ = Crs x Rrs<br />

Use the flow curve for decisi<strong>on</strong> making<br />

about the settings for respiratory rate and<br />

duty cycle in the <strong>mechanical</strong> ventilator<br />

Volume Guarantee: New Approaches in Volume C<strong>on</strong>trolled Ventilati<strong>on</strong> for Ne<strong>on</strong>ates.<br />

Ahluwalia J, Morley C, Wahle G. Dräger Medizintechnik GmbH. ISBN 3-926762-42-X<br />

The saying “we ventilate at 40/min” or “with a Ti of 0.3”<br />

is a testim<strong>on</strong>y of no understanding !<br />

Pressure C<strong>on</strong>trol versus Pressure Support<br />

Pressure-Support and flow terminati<strong>on</strong> criteria<br />

Pressure Inspiratory Ventilati<strong>on</strong> time or cycle - Waveforms off criteria<br />

The n<strong>on</strong> synchr<strong>on</strong>ized patient during Pressure-Support<br />

(inappropriate end-inspiratory flow terminati<strong>on</strong> criteria)<br />

Peak<br />

Flow<br />

25%<br />

Flow<br />

PIP<br />

Ti Tinsp. set<br />

Ti given by the<br />

cycle off criteria<br />

Pressure<br />

Pressure C<strong>on</strong>trol<br />

Pressure Support<br />

Nilsestuen J Respir Care 2005;50:202–232.<br />

Pressure-Support and flow terminati<strong>on</strong> criteria<br />

Terminati<strong>on</strong> Sensitivity = Cycle-off Criteria<br />

Flow<br />

Peak Flow (100%)<br />

TS 30%<br />

TS 5%<br />

Leak<br />

Time<br />

Tinsp. (eff.)<br />

Set (max)<br />

Tinsp.<br />

Increase in RR, reducti<strong>on</strong> in VT, increase in WOB<br />

Nilsestuen J<br />

Respir Care 2005<br />

6


What do airway pressures mean?<br />

Palv = PPl + Ptp<br />

Etot = EL + Ecw<br />

when airway resistance is nil (static c<strong>on</strong>diti<strong>on</strong>)<br />

P airways (cmH2O)<br />

P pleural (cmH2O)<br />

Palv = Ppl + Ptp<br />

P transpulm<strong>on</strong>ary (cmH2O)<br />

Ptp = Palv - Ppl<br />

Where Ptp is transpulm<strong>on</strong>ary pressure, Palv is alveolar pressure, and Ppl is pleural pressure<br />

PPl = Paw x [E CW / (E L + E cw)]<br />

Ptp = Paw x [E L / (E L + E cw)]<br />

7


Paw = PPl + Ptp<br />

when airway resistance is nil (static c<strong>on</strong>diti<strong>on</strong>)<br />

soft<br />

stiff<br />

Ptp = Paw x [E L / (E L + E cw)]<br />

In normal c<strong>on</strong>diti<strong>on</strong>: EL = Ecw<br />

Ecw/ Etot = 0.5 and EL/ Etot = 0.5<br />

PTP ~ 50% of Paw applied<br />

Etot = EL + Ecw<br />

Ptp = Paw x [E L / (E L + E cw)]<br />

PPl = Paw x [E CW / (E L + E cw)]<br />

Gattin<strong>on</strong>i L<br />

Critical Care 2004,<br />

8:350-355<br />

In ARDS:<br />

PTP ~ 20 to 80% of Paw applied<br />

In primary ARDS: EL > Ecw (EL / Etot > 0.5)<br />

Stiff lung, soft thorax PTP > 50 % of Paw applied<br />

In sec<strong>on</strong>dary ARDS: EL < Ecw (EL / Etot < 0.5)<br />

Soft lung, stiff thorax PTP < 50 % of Paw applied<br />

Respiratory mechanics influence the efficiency of RM<br />

22 ARDS-patients: Vt 6 ml/kg, PEEP and FiO2 to obtain SO2 90–95%<br />

RM: CPAP to 40 cm H2O for 40 s<br />

Elastic properties, compliance and FRC in ne<strong>on</strong>ates<br />

Ne<strong>on</strong>ate chest wall compliance, C W = 3-6 x C L , lung compliance<br />

tending to decrease FRC, functi<strong>on</strong>al residual capacity<br />

By 9-12 m<strong>on</strong>ths C W = C L<br />

In infant RDS (HMD): EL >>> Ecw (EL / Etot >>> 0.5)<br />

Stiff lung, very soft thorax PTP >>> 50 % of Paw applied<br />

transpulm<strong>on</strong>ary pressure<br />

Grasso S Anesthesiology 2002; 96:795–802<br />

Elastic properties, compliance and FRC in ne<strong>on</strong>ates<br />

Ne<strong>on</strong>ate chest wall compliance, C W = 3-6 x C L , lung compliance<br />

tending to decrease FRC, functi<strong>on</strong>al residual capacity<br />

By 9-12 m<strong>on</strong>ths C W = C L<br />

Pplat = Palv;<br />

Pplat = Transpulm<strong>on</strong>ary Pressure ?<br />

transpulm<strong>on</strong>ary<br />

pressure = 15 cm H 2 O<br />

+15 cm H 2 O<br />

Dynamic FRC in awake, sp<strong>on</strong>taneously ventilating infants is maintained<br />

near values seen in older children and adults because of<br />

1. c<strong>on</strong>tinued diaphragmatic activity in early expiratory phase<br />

2. intrinsic PEEP (relative tachypnea with start of inspirati<strong>on</strong><br />

before end of preceding expirati<strong>on</strong>)<br />

3. sustained t<strong>on</strong>ic activity of inspiratory muscles (incl. diaphragma)<br />

(probably most important)<br />

By 1 year of age, relaxed end-expiratory volume predominates<br />

Pplat 30 cm H 2 O<br />

Stiff chest wall<br />

8


Pplat = Palv;<br />

Pplat = Transpulm<strong>on</strong>ary Pressure ?<br />

transpulm<strong>on</strong>ary<br />

pressure = 45 cm H 2 O<br />

PCV 20 cm H 2 O,<br />

PEEP 10 cm<br />

H 2 O; Pplat 30<br />

cm H 2 O<br />

-15 cm H 2 O<br />

Pplat 30 cm H 2 O,<br />

PCV<br />

Pplat = Palv;<br />

Pplat = Transpulm<strong>on</strong>ary Pressure?<br />

Pplat 30 cm H 2 O,<br />

PCV<br />

Pplat 30 cm H 2 O,<br />

PCV (PSV)<br />

Active inspiratory effort<br />

Active inspiratory effort<br />

Risk of VILI may be different with the same Pplat<br />

Pressure – Flow – Time - Volume<br />

Avoid ventilati<strong>on</strong> out of c<strong>on</strong>trol !<br />

V / P / V<br />

.<br />

t<br />

Curves<br />

.V or V<br />

P or V<br />

Loops<br />

Alveolar<br />

Pressure<br />

Airway<br />

Pressure<br />

The ventilator display can help us….<br />

but we still have to decide about respiratory rate, tidal<br />

volumes, pressure settings …<br />

Residual Flows<br />

… that have to be adapted to the patients respiratory<br />

mechanics<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!