(PHH98 2d-Slide#15 \(8 of 8\)) - Atmospheric Dynamics Group
(PHH98 2d-Slide#15 \(8 of 8\)) - Atmospheric Dynamics Group
(PHH98 2d-Slide#15 \(8 of 8\)) - Atmospheric Dynamics Group
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
BALANCED FLOW:<br />
A PROGNOSTIC EQUATION<br />
(PHH lecture 2)<br />
3-D rotating stratified flow<br />
Consider 3-D fluid with density stratification.<br />
Make hydrostatic approximation:<br />
DOMINANT BALANCE IN VERTICAL MOMENTUM<br />
EQUATION IS BETWEEN<br />
VERTICAL PRESSURE GRADIENT<br />
GRAVITATIONAL FORCE<br />
(Can be argued from<br />
vertical length scales
Thermal wind relation<br />
Geostrophic balance: f × u = − 1 ρ0<br />
∇p<br />
Hydrostatic balance: − ∂p<br />
∂z − ρg = 0<br />
[Note: Boussinesq system with geometric height used<br />
as a vertical co-ordinate unless otherwise stated]<br />
Thermal wind balance:<br />
f × ∂u<br />
∂z = g<br />
ρ0<br />
∇ρ<br />
f<br />
u<br />
heavy (cold)<br />
light (warm)<br />
N.B. Meteorology: maps <strong>of</strong> ‘thickness’ may be used to<br />
infer the change in wind with height across a finite<br />
layer. Satellite observations <strong>of</strong> temperature are<br />
used to infer stratospheric winds.<br />
Oceanography: observations <strong>of</strong> ρ are sometimes<br />
used to infer velocities – requires ‘level <strong>of</strong> no motion’<br />
Quasi-geostrophic flow<br />
PHH 2 / 3<br />
We seek a predictive equation for the time evolution <strong>of</strong> a<br />
flow that is always close to geostrophic balance<br />
Scale analysis <strong>of</strong> (hydrostatic) equations<br />
∂u<br />
∂t<br />
+ u.∇u + f × u = − ∇p<br />
ρ0<br />
U<br />
T<br />
1<br />
f T<br />
U 2<br />
L<br />
U<br />
f L<br />
fU<br />
1 relative sizes<br />
‘ Rossby number’ Ro<br />
1<br />
f T or U f L<br />
Small Rossby number requires<br />
time scale > ≈ few days (at midlatitudes) and<br />
U
• Geostrophic balance gives us no predictive equation<br />
for the motion (at least if f is constant) because mass<br />
continuity follows identically from the geostrophic<br />
flow<br />
• Need to consider the small departures from<br />
geostrophic balance<br />
Effects <strong>of</strong> spherical geometry:<br />
• For large scale motion in the atmosphere and the<br />
ocean we need to take account <strong>of</strong> some <strong>of</strong> the effects <strong>of</strong><br />
sphericity<br />
• Rossby’s great insight was that the most important<br />
effect is the latitudinal variation <strong>of</strong> the Coriolis<br />
parameter:<br />
y latitude co-ordinate<br />
f = f0 + βy f0 , β constants PHH 2 / 5<br />
[β-plane approximation]<br />
f0 = 2Ωsin φ 0<br />
β = 2Ω a cos φ 0<br />
⎫<br />
⎪<br />
⎬<br />
⎪<br />
⎭<br />
where φ0<br />
is latitude<br />
Derivation <strong>of</strong> quasi-geostrophic equations<br />
[For careful mathematical derivation see Pedlosky<br />
(Chapter 6)]<br />
Consider primitive equations on a β-plane, and write<br />
ρ = ρ ′ + ρb( z), p = p ′ + pb(z), where ρb is a ‘ basic state’<br />
stratification and pb is the associated pressure field in<br />
hydrostatic balance<br />
∂<br />
∂t u h + u.∇u h + (f 0 + βy)k × u h = − 1 ρ0<br />
∇h p ′<br />
∇.u = 0<br />
⎛<br />
⎜<br />
⎝<br />
u h = (u,v,0)<br />
u = (u,v, w)<br />
⎞<br />
⎟<br />
⎠<br />
− ∂ p ′<br />
∂z − ρ ′ g = 0<br />
∂ ρ ′<br />
∂t + (u.∇) ρ ′ + w ∂ρ b<br />
∂z = 0<br />
Divide velocity into geostrophic and ageostrophic parts<br />
u = u g + u a<br />
f0 k × u g = − 1<br />
ρ0<br />
∇ p ′<br />
(defines geostrophic velocity)<br />
w = wg + w a , but ∇.u = 0 ⇒ ∂w g<br />
∂z = 0 ⇒ w g = 0<br />
PHH 2 / 6
Ageostrophic part <strong>of</strong> equations<br />
∂<br />
∂t (u g + u a ) h + (u g + u a ).∇(u g + u a ) h<br />
+ f0k × ua + βyk × (u g + u a) = 0<br />
∇.u a = 0<br />
∂ ρ ′<br />
∂t + (u g + u a ).∇ ρ ′ + w a<br />
dρb<br />
dz = 0<br />
− ∂ p ′<br />
∂z − ′<br />
This term retained – implicit<br />
assumption that basic state vertical<br />
density gradient is strong<br />
From vorticity equation<br />
ρ g = 0<br />
using continuity equation for u a,<br />
∂<br />
∂t ζ g + u g .∇ζ g + βv g = − f 0<br />
⎧<br />
⎨<br />
⎩<br />
∂ua<br />
∂x + ∂v a<br />
∂y<br />
⎫<br />
⎬<br />
⎭<br />
= − f0<br />
∂<br />
∂z<br />
⎧<br />
⎪<br />
⎨<br />
⎩ ⎪<br />
1<br />
g ∂ρ b<br />
∂z<br />
⎡<br />
⎢<br />
⎣<br />
∂<br />
∂t<br />
⎛<br />
⎜<br />
⎝<br />
∂ p ′<br />
∂z<br />
⎞<br />
⎟ + u g<br />
⎠<br />
.∇ ⎛<br />
⎜<br />
∂ p ′<br />
⎝ ∂z<br />
⎞<br />
⎟<br />
⎠<br />
⎤<br />
⎥<br />
⎦<br />
⎫<br />
⎪<br />
⎬<br />
⎭ ⎪<br />
then density equation<br />
PHH 2 / 7<br />
Define ψ = p ′/ f0 ρ0<br />
(streamfunction for<br />
quasi-geostrophic motion)<br />
so ug = − ∂ψ<br />
∂y , v g = ∂ψ<br />
∂x , ρ ′ = − f 0ρ0<br />
g<br />
∂ψ<br />
∂z<br />
It follows that<br />
⎧<br />
⎨<br />
⎩<br />
∂<br />
∂t + u g.∇<br />
⎫<br />
⎬<br />
⎭ q g = 0<br />
where<br />
N 2 ( z) = − g<br />
ρ0<br />
dρb<br />
dz<br />
qg = ∂2 ψ<br />
∂x 2 + ∂2 ψ<br />
∂y 2 + ∂ ∂z<br />
⎛<br />
⎜<br />
⎝<br />
2<br />
f0<br />
N 2 ( z)<br />
∂ψ<br />
∂z<br />
⎞<br />
⎟<br />
⎠<br />
+ βy<br />
quasi-geostrophic potential vorticity<br />
Quasi-geostrophic p.v. is conserved following the<br />
geostrophic motion (which is horizontal)<br />
[Rossby–Ertel PV is conserved following the exact motion<br />
– can be shown quite independently <strong>of</strong> any small Ro<br />
assumption (see later).]<br />
PHH 2 / 8
Boundary conditions for<br />
quasi-geostrophic flow<br />
Side boundaries: no normal flow<br />
Top and bottom boundaries: vertical velocity zero (or set<br />
by topography or ‘Ekman pumping’) – deduce from<br />
density equation<br />
⎧<br />
⎨<br />
⎩<br />
∂<br />
∂t + u g . ∇<br />
⎫<br />
⎬<br />
⎭ ρ ′ = −w dρ b<br />
dz<br />
hence<br />
known<br />
⎧<br />
⎨<br />
⎩<br />
∂<br />
∂t + u g . ∇<br />
⎫<br />
⎬<br />
⎭<br />
∂ψ<br />
∂z = − N 2 w<br />
f0<br />
on top or<br />
bottom<br />
boundaries<br />
Top and bottom boundary conditions take the form <strong>of</strong><br />
prognostic equations for surface density or temperature<br />
Similarity to two-dimensional flow:<br />
In 2-D incompressible flow the component <strong>of</strong> vorticity<br />
perpendicular to the plane <strong>of</strong> motion, q, is conserved<br />
and, in terms <strong>of</strong> a streamfunction ψ, the vorticity<br />
equation takes the form<br />
PHH 2 / 9<br />
⎧<br />
⎨<br />
⎩<br />
∂<br />
∂t + u.∇<br />
⎫<br />
⎬<br />
⎭ q = 0<br />
where q = ∂2 ψ<br />
∂x 2 + ∂2 ψ<br />
∂y 2 + βy<br />
⎛<br />
and u = (u, v) = ⎜ ⎝ − ∂ψ<br />
∂y , ∂ψ<br />
∂x<br />
⎞<br />
⎟ .<br />
⎠<br />
[Note that in non-GEFD applications, e.g. aerodynamics,<br />
β would be taken to be zero]<br />
A good deal <strong>of</strong> insight into the behaviour <strong>of</strong> solutions <strong>of</strong><br />
the q.-g. p.v. equation may therefore be gained from the<br />
theory <strong>of</strong> 2-D vortex dynamics (MEM lectures and<br />
various computer demonstrations).<br />
PHH 2 / 10
Different contributions to q g<br />
(and its horizontal gradients)<br />
3-D flow:<br />
qg = ∂2 ψ<br />
∂x 2 + ∂2 ψ<br />
∂y 2 + ∂ ∂z<br />
⎛<br />
⎜<br />
⎝<br />
f0 2<br />
N 2 ( z)<br />
∂ψ<br />
∂z<br />
⎞<br />
⎟<br />
⎠<br />
+ βy<br />
1 2 3<br />
1 Relative vorticity<br />
2 Vortex stretching term (associated with<br />
vertical density gradient)<br />
3 Planetary vorticity<br />
1 and 2 are comparable if f0 L ≈ ND<br />
(Prandtl’s ratio <strong>of</strong> scales)<br />
D<br />
L<br />
( f0 / N < ≈<br />
10−2 for both<br />
atmosphere and ocean,<br />
i.e. thermocline)<br />
1 and 3 are comparable if U ≈ βL2<br />
βL 2 ≈ 10 −1 ms −1 if L ≈ 100 km<br />
10 ms −1 if L ≈ 1000 km<br />
PHH 2 / 11<br />
Numerical simulations <strong>of</strong> geostrophic turbulence<br />
(McWilliams, JFM 1989)<br />
t = 10<br />
t = 20<br />
PHH 2 / 12
Numerical simulations <strong>of</strong> geostrophic turbulence<br />
(McWilliams, JFM 1989)<br />
Isovorticity surfaces cyclones light<br />
anticyclones dark<br />
f/N isotropy with small deviations (e.g. due to fact that<br />
small vertical scales have little relative vorticity)<br />
PHH 2 / 13<br />
Understanding evolution <strong>of</strong> QG turbulence is an ongoing<br />
research problem<br />
(McWilliams et al 1994) find 'columns'as long-time state<br />
A is initial condition, time increases through B,C,D<br />
but see Dritchel & Ambaum (1997) PHH 2 / 14
Summary<br />
The quasi-geostrophic equations are a convenient set<br />
to describe motion at small Rossby number which<br />
remains close to geostrophic balance. [But they are<br />
not quantitatively accurate for modelling realistic<br />
atmosphere or oceanic flow.]<br />
Evolution equation Invertibility principle<br />
qg (quasi - geostrophic<br />
p.v.)<br />
qg and ∂ψ<br />
∂z<br />
(boundaries)<br />
(non-local<br />
operator)<br />
∂ψ<br />
∂z<br />
(temperature at<br />
boundaries)<br />
flow, temperature etc.<br />
in geostrophic balance<br />
GENERALIZATION (see Hoskins et al. 1985)<br />
P (Rossby–Ertel p.v.)<br />
P and θ (boundary)<br />
or σθ (boundary)<br />
θ or σθ (potential temperature<br />
or potential density<br />
at boundaries)<br />
flow, temperature etc.<br />
in balance<br />
(non-local<br />
operator)<br />
PHH 2 / 15