27.11.2014 Views

Sink limitation of wheat crops in the high rainfall zone of southern ...

Sink limitation of wheat crops in the high rainfall zone of southern ...

Sink limitation of wheat crops in the high rainfall zone of southern ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>S<strong>in</strong>k</strong> <strong>limitation</strong> <strong>of</strong> <strong>wheat</strong> <strong>crops</strong> <strong>in</strong> <strong>the</strong> <strong>high</strong><br />

ra<strong>in</strong>fall <strong>zone</strong> <strong>of</strong> sou<strong>the</strong>rn Australia<br />

Hep<strong>in</strong>g Zhang, Neil C Turner and Mick Poole<br />

CSIRO Plant Industry


Australian <strong>wheat</strong>belt and <strong>the</strong> <strong>high</strong> ra<strong>in</strong>fall <strong>zone</strong><br />

Wheat production<br />

23 million tonnes per annum<br />

Average yield:1.5-2 t/ha<br />

Wheat belt<br />

High ra<strong>in</strong>fall <strong>zone</strong><br />

High ra<strong>in</strong>fall <strong>zone</strong> (HRZ)<br />

• Grow<strong>in</strong>g season >7-8 mths<br />

• Ra<strong>in</strong>fall: 550mm/year<br />

• Total area 32Mha<br />

• Arable area 2-6 Mha


The problem and hypo<strong>the</strong>sis<br />

• High yield potential (6-8 t/ha), but low<br />

gra<strong>in</strong> yield (50% <strong>of</strong> <strong>the</strong> potential)<br />

achieved.<br />

Wheat belt<br />

High ra<strong>in</strong>fall <strong>zone</strong><br />

• Lack <strong>of</strong> adapted cultivars – <strong>the</strong> cultivars<br />

bred for <strong>the</strong> low and medium ra<strong>in</strong>fall<br />

<strong>zone</strong> <strong>wheat</strong>belt are grown <strong>in</strong> <strong>the</strong> HRZ.<br />

• Hypo<strong>the</strong>sis: yield potential <strong>of</strong> <strong>wheat</strong> <strong>in</strong><br />

<strong>the</strong> HRZ is limited by s<strong>in</strong>k size <strong>of</strong> <strong>the</strong><br />

current cultivars.


Methods and materials<br />

• <strong>S<strong>in</strong>k</strong>-source balance experiment (2005-2007)<br />

• A range <strong>of</strong> genotypes<br />

• Measurement <strong>of</strong> s<strong>in</strong>k size and source<br />

• <strong>S<strong>in</strong>k</strong> size: <strong>the</strong> number <strong>of</strong> gra<strong>in</strong>s & kernel weight<br />

• Source: Post-an<strong>the</strong>sis dry matter & WSC at<br />

an<strong>the</strong>sis<br />

• Comparison <strong>of</strong> balance <strong>of</strong> s<strong>in</strong>k and source


<strong>S<strong>in</strong>k</strong> and source balance analysis<br />

500<br />

400<br />

2005<br />

(a) (b) (c)<br />

2006<br />

2007<br />

WSC (g/m 2 )<br />

300<br />

200<br />

100<br />

0<br />

Actual yield or potential source (g/m 2 )<br />

800<br />

600<br />

400<br />

200<br />

0<br />

2005<br />

Cal<strong>in</strong>giri Chara<br />

Wyalk. HRZ216<br />

(d)<br />

2006<br />

(e) 2007<br />

(f)<br />

Cal<strong>in</strong>giri Chara Wyalk. HRZ216 Cal<strong>in</strong>giri Chara Wyalk. HRZ203


Gra<strong>in</strong> yield, gra<strong>in</strong> number and kernel weight<br />

700<br />

50<br />

600<br />

45<br />

Gra<strong>in</strong> yield (g/m 2 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Cal<strong>in</strong>giri<br />

Wyalkatchem<br />

Kernel weight (mg)<br />

40<br />

35<br />

30<br />

25<br />

0<br />

4 6 8 10 12 14 16 18<br />

20<br />

4 6 8 10 12 14 16 18<br />

Gra<strong>in</strong> number (10 3 /m 2 )<br />

Gra<strong>in</strong> number (10 3 /m 2 )


Methods and materials<br />

• Manipulation <strong>of</strong> s<strong>in</strong>k and source to evaluate its<br />

impact on yield and WSC<br />

• 4 contrast<strong>in</strong>g genotypes:<br />

• 2 commercial cultivars (Cal<strong>in</strong>giri & Wyalkatchem)<br />

• 2 large s<strong>in</strong>k size genotypes (Chara & HRZ203)<br />

• Shad<strong>in</strong>g after an<strong>the</strong>sis<br />

• Supplemental irrigation dur<strong>in</strong>g gra<strong>in</strong> fill<strong>in</strong>g


Shad<strong>in</strong>g experiment<br />

Shad<strong>in</strong>g applied just after flower<strong>in</strong>g<br />

Reduce <strong>the</strong> <strong>in</strong>com<strong>in</strong>g solar radiation by 40%


Shad<strong>in</strong>g - gra<strong>in</strong> yield & DM


Shad<strong>in</strong>g – WSC left at maturity<br />

60<br />

50<br />

l.s.d. (P < 0.05) = 15<br />

No difference<br />

WSC (g/m2)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Control<br />

Shaded<br />

Shad<strong>in</strong>g treatment


Irrigation dur<strong>in</strong>g gra<strong>in</strong> fill<strong>in</strong>g<br />

33 mm water applied 10 days after an<strong>the</strong>sis


Irrigation – dry matter and gra<strong>in</strong> yield


Irrigation – WSC left at maturity


Conclusion from <strong>the</strong> three experiments<br />

• No yield reduction responses to shad<strong>in</strong>g <strong>of</strong> current cultivars<br />

suggest that <strong>the</strong>re were enough source (assimilates) to fill <strong>the</strong><br />

exist<strong>in</strong>g s<strong>in</strong>k.<br />

• No yield responses to irrigation but <strong>in</strong>creases <strong>in</strong> WSC<br />

rema<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> stem at maturity <strong>in</strong>dicates that <strong>the</strong> s<strong>in</strong>k size <strong>of</strong><br />

<strong>the</strong> current cultivars are not large enough to accommodate <strong>the</strong><br />

available assimilates.<br />

• <strong>S<strong>in</strong>k</strong> size <strong>of</strong> <strong>the</strong> current cultivars are limited.<br />

• The rema<strong>in</strong><strong>in</strong>g question: do we have enough water to support a<br />

large s<strong>in</strong>k size crop?<br />

CSIRO. Insert presentation title, do not remove CSIRO from start <strong>of</strong> footer


Is <strong>the</strong>re enough water to support a large s<strong>in</strong>k?<br />

Year ETa (mm) ETpa<br />

(mm)<br />

ETa/ETpa<br />

DMa<br />

(t/ha)<br />

Yield<br />

(t/ha)<br />

2001 255 126 2 10.8 5.5<br />

2002 166 193 0.9 8.0 3.4<br />

2003 184 219 0.9 11.8 5.9<br />

Zhang et al. (2005) AJAR 56, 743-752


Water use pattern by six <strong>wheat</strong> cultivars<br />

4<br />

3<br />

30/4/2005<br />

ETa/ETpa<br />

2<br />

1<br />

0<br />

4<br />

216 2185 W yalk cal<strong>in</strong>giri Chara W ylah<br />

3 0 /5 /2 0 0 5<br />

3<br />

ETa/ETpa<br />

2<br />

1<br />

0<br />

216 2185 W yalk cal<strong>in</strong>giri Chara W ylah


Conclusion<br />

• Current <strong>wheat</strong> cultivars grown <strong>in</strong> <strong>the</strong> HRZ are<br />

more s<strong>in</strong>k-limited than source limited.<br />

• Increas<strong>in</strong>g s<strong>in</strong>k size <strong>of</strong> <strong>the</strong> current <strong>wheat</strong> cultivars<br />

can provide opportunities to <strong>in</strong>crease yield<br />

potential <strong>of</strong> <strong>wheat</strong> <strong>in</strong> <strong>the</strong> HRZ.<br />

• Our next step is to look at how to <strong>in</strong>crease <strong>the</strong><br />

s<strong>in</strong>k size and realise <strong>the</strong> water limited yield.


This work is funded by CSIRO and <strong>the</strong> Gra<strong>in</strong>s<br />

Research and Development Corporation (GRDC) <strong>of</strong><br />

Australian Government.<br />

CSIRO Plant Industry<br />

Hep<strong>in</strong>g Zhang<br />

Phone: 61 8 9333 6497<br />

Email: hep<strong>in</strong>g.zhang@csiro.au<br />

Web: www.csiro.au/cpi<br />

Thank you

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!