FERNANDEZ-John

leksis

FERNANDEZ-John

John%Fernandez%Keynote'


Urban Metabolism and Sustainability Transitions

Prof. John E. Fernández

Design and Technology Principal, Metabolic Design Office

Director, Building Technology Program

Urban Metabolism Group


Socio-metabolic regime change*: urban growth**

60 Gt

7.4 Gt

1997-2007

(OECD)

C. Kennedy, Yale Industrial

Ecology Symposium, 2012

Materials use (DMC = DE) by material types, 1990-2005

* Krausmann, 2008 and 2009 ** Fernandez 2007


Urban Metabolism

Urban metabolism is the study of the physical flows required to serve

the urban economy.

From Kennedy (2007) From Krausmann (2009)


Urban metabolism is the study of the physical flows required to serve

the urban economy.

10

From Ferrao and Fernandez (2014)


Caral, Peru


Total neolithic* human material

consumption

Breath

5.1

6

0.8

Excreta

+0

Solid waste 0.1

Unit: tonnes/cap-yr


Total modern* human material

consumption

Offgas

19

89

61

Sewage

+6

Solid waste 3

Unit: tonnes/cap-yr


Caracas

Caral

Lima

Ica

Urban

metabolism

projects

Santiago

Talca


agrarian urban economy (pre-fossil fuel): 1 ton per capita/annum

fossil fuel urban economy : 20 – 50 tons per capita/annum

19


Lisbon, Portugal


Lisbon, Portugal


Singapore, Republic of Singapore


Urban Metabolism of FM

1960 1975 1990 2005

1960 1975 1990 2005


Urban Metabolism of Singapore

DMC mobility

DMC built environment

DMC goods and services

DMC total

24


Singapore city-wide data

60

50

DMC

(MT/cap.)

10

9

8

Electricity

(kWh/cap.)

140

120

Water

(m 3 /cap.)

40

7

100

6

80

30

5

4

60

20

3

40

10

2

1

20

0

0 20 40 60

0

0 20 40 60

0

0 20 40 60

GNI ('000 S$/cap.)

GNI ('000 S$/cap.)

GNI ('000 S$/cap.)


Boston, Back Bay


Urban metabolism of the Back Bay


1868 1881

1826

1852 1868 1881 1920

Back Bay Filling

Progression

Image Source: Seasholes, Gaining Ground


Overall Building Weight Per Floor Area

Brownstones / Brick Structures Only

N

0’ 500’ 1000’


Building Weights Over Time

Including Demolished Houses


Cumulative Building Weights Over Time

Houses of the Back Bay


Urban information query record


City Typology


Global City Typology: Purpose

1. Appropriate and effective ‘green’ city

policies

2. Regional and international cooperation

3. Reasoned transition pathways to green

infrastructure and consumption

4. Scientific consideration of socioeconomic

constraints and opportunities (HDI,

population density)


Global City Typology

• Consumption

• Statistical analysis

• Case study affirmation

A typology based on urban resource

consumption is partly discovered and

partly constructed from available data

and recent findings.


Typology of Urban Resource Consumption

Kolkata, Islamabad,

Phnom Penh, Dhaka

Lagos, Mumbai,

Nairobi, Quito

Manila, San Salvador,

Panama City, Cali

Casablanca, Tunis,

Lima, Rabat

Bogota, Asuncion,

Vilnius, Amman,

Ulaanbaatar

Delhi, Cairo, Ho Chi

Minh, Hyderabad,

Bangalore

Japanese Cities:

Nagoya, Osaka,

Yokohama, Tokyo

Beijing, Shenzhen,

Bangkok, Istanbul,

Mexico City

Belgrade, Tripoli,

Sarajevo, Tehran,

Budapest, Lisbon,

Buenos Aires

London, Milan,

Caracas, Barcelona,

Madrid, Kuala

Lumpur, Rome

Kiev, Vladivostok,

Santiago, Warsaw,

Dublin, Athens,

Prague, Berlin

Johannesburg, Cape

Town, Guangzhou,

Shanghai, Tashkent,

Tel Aviv

Jerusalem, Hamburg,

Copenhagen,

Moscow, Seattle,

Singapore

Abu Dhabi, Kuwait,

Doha, Riyadh

Boston, Phoenix,

Denver, Detroit,

Vancouver,

Melbourne, Sydney


Transitions thought experiment

Kolkata, Islamabad,

Phnom Penh, Dhaka

Lagos, Mumbai,

Nairobi, Quito

Manila, San Salvador,

Panama City, Cali

Casablanca, Tunis,

Lima, Rabat

Bogota, Asuncion,

Vilnius, Amman,

Ulaanbaatar

Delhi, Cairo, Ho Chi

Minh, Hyderabad,

Bangalore

Japanese Cities:

Nagoya, Osaka,

Yokohama, Tokyo

Beijing, Shenzhen,

Bangkok, Istanbul,

Mexico City

Belgrade, Tripoli,

Sarajevo, Tehran,

Budapest, Lisbon,

Buenos Aires

London, Milan,

Caracas, Barcelona,

Madrid, Kuala

Lumpur, Rome

Kiev, Vladivostok,

Santiago, Warsaw,

Dublin, Athens,

Prague, Berlin

Johannesburg, Cape

Town, Guangzhou,

Shanghai, Tashkent,

Tel Aviv

Jerusalem, Hamburg,

Copenhagen,

Moscow, Seattle,

Singapore

Abu Dhabi, Kuwait,

Doha, Riyadh

Boston, Phoenix,

Denver, Detroit,

Vancouver,

Melbourne, Sydney


Figure 4-5: Map of Chinese provinces

(Wikimedia Commons)


H2O_PC_SC

CO2_PC_SC

CH4_PC_SC

Pop_Dens_SC

Rur_Pop_Pct

Urb_Pop_Pct

GDP_SC

IndCon_PC_SC

GNI_PC_SC

Exports_PC_SC

GINI

Imports_PC_SC

RPov_Pct

Bio_PC_SC

UPov_Pct

TM_PC_SC

FF_Pct_Tot

EL_SC

TE_SC

Elec_Pct


CO2_PC_SC

CH4_PC_SC

Pop_Dens_SC

Rur_Pop_Pct

Urb_Pop_Pct

H2O_PC_SC

GDP_SC

IndCon_PC_S

C

GNI_PC_SC

Exports_PC_S

C

GINI

Imports_PC_S

C

RPov_Pct

Bio_PC_SC

UPov_Pct

TM_PC_SC

FF_Pct_Tot

EL_SC

TE_SC

Elec_Pct


Recent Publications


Professor John E. Fernández

fernande@mit.edu

Metabolic Design Office

Urban Metabolism Group, MIT

urbmet.org

Research Team:

Jonathan Krones, David Quinn, Karen Noiva, Zak Accuardi, Antonio

Barbalace, Cinzia Fragomeni, Artessa Nicola Saldivar-Sali, Noel Robert

Davis, Daniel Wiesmann, To Kien, Ana Goncalves, Alan Lu, Tamas Abou-

Abdo, Daniel Sheehan, J. Phil Thompson, among others.

Discussion…