Views
3 years ago

# Math modelling of simple mass transfer problems – Illustrations

Math modelling of simple mass transfer problems – Illustrations

## Abbreviated solution. 1)

Abbreviated solution. 1) Rate of dissolution ~ k( c c). d2 sat , c sat is the solubility of solute in stomach fluids at body temperature; c is the concentration of solute at time t. 2) Rate of accumulation of solute in stomach fluid = stomach fluids which is constant. dc V dt where V is the volume of Equating the terms in (1) and (2) and integration by subjecting the equation to the initial condition C=0 at t=0 , gives, V k ln c sat d2 t ( c sat c) If we can estimate k then we can estimate t ! Now, k can be obtained from a suitable empirical correlation for mass transfer from a sphere. 1/2 1/3 kd dv Sherwood number, Sh 2 0.6 , where D D dv Re,Reynolds number and Sc, Schmidt number D Hence the unknown velocity “v” of stomach fluids is the given by 25 v 9 1/3D2/3 V c sat d dtD c sat c 2 This is at best an estimate! Note solution is only as good as the assumptions! Question: Is I possible to use a diffusion model to solve the problem posed? Explain briefly your response.

2) Biomedical application Illustration 2 Write a math model for dissolution of a pill (assume diffusion-controlled; stagnant surroundings) in the stomach fluids so as to estimate the rate at which the drug permeates the body. Estimate the time required to reduce the transient contribution to the dissolution rate to less than 10% of the steady state term (in the solution). Assume the solution is dilute and the drug is sparingly soluble in the surrounding fluids. Abbreviated Solution: Assumptions: 1) Mass transfer flux Concentration gradient of solute 2) Uniform drug release (within 10%) 3) Diffusion within the pill is negligible. 4) Diffusion in the surroundings is negligible. 5) Pill is spherical and remains so without change of diameter. One dimensional diffusion equation in spherical coordinates is given by: (justify!) c 1 D 2 c r 1 t r2 r r subject to the following IC and BC's 1) IC t 0, r r, c 0 1 2) BC t 0 r R ; c c ( sat) 0 1 1 r ; c 0 (Assumes drug is quickly removed by interstitial wall; 1 rate limiting step is dissolution rate. k ) (For solution to the pde refer to any book on conduction/diffusion e.g. by Crank, Ozisik etc.,). If we define a new variable u such that c u 1 ; converts to cartesian problem r

Simple Models of Zero-Net Mass-Flux Jets for Flow ... - Dynaflow, Inc.
Modelling of intensified transfer processes in thin liquid films - Omar ...
Convective Mass Transfer
A Simple Model Illustrating the Role of Turbulence - Sandip Ghosal ...
Modelling mass transfer in a rotating disk reaction vessel
Enhanced Mass Transfer of CO2 into Water: Experiment and Modeling
A mathematical model of multicomponent mass transfer in ...
Mass Transfer Coefficients
Mass transfer model for humic acid removal by ultrafiltration
Computational Modeling of Mass Transfer and ... - Yale University
Modelling of mass transfer in combination with radical reactions - ITM
Experimental and numerical modeling of the mass transfer between ...
ON MODELING OF HEAT AND MASS TRANSFER AND OTHER ...
Agile modelling of cellular signalling a simple illustration of ... - PPS
LES modeling of heat and mass transfer in turbulent recirculated ...
Asymptotic transport models for heat and mass transfer in ... - bckiln.ir
Environmental Fluid Mechanics Part I: Mass Transfer and ... - IfH
Modeling Non-Equilibrium Mass Transfer Effects for a Gas ...
Enhanced Mass Transfer of CO2 into Water - Geo-Engineering
Miscellaneous notes on mass transfer coefficient models
critical comparison of mass transfer models for internally ... - ISASF
Unsteady flow and mass transfer in models of ... - ablemax.co.kr
Analytical modeling for heat transfer in sheared flows of nanofluids
VOF-based simulation of conjugate mass transfer from freely ... - CSI
Heat and Mass Transfer Modeling of Part-Baked Sangak Bread ...
New Mass-Transfer Model for Simulating Industrial Nylon-6 ...
MATH 581 Problem Set #1 Solutions 1. Let G be a simple graph with ...