Views
4 years ago

Preface - kmutt

Preface - kmutt

KMUTT Annual Research

KMUTT Annual Research Abstracts 2005 IC-048 THE PERFORMANCE OF H 2 /O 3 PROTON EXCHANGE MEMBRANE FUEL CELL Narissara Bussayajarn, Supaporn Therdthianwong, Apichai Therdthianwong The 55 th Canadian Chemical Engineering Conference, October 16-19, 2005, Metro Toronto Convention Centre, Toronto, Ontario, Canada Improvement of the cathodic polarization of proton exchange membrane fuel cell (PEMFC) requires development of highly active electrodes of low cost to facilitate its widespread use. In the present study, the possibility of applying the powerful oxidant gas was tested instead of the catalyst development because of its higher standard potential value. The research was aimed to investigate PEMFC performance by using ozone oxidizing agent in order to improve the cathodic polarization. The low-temperature and pressure conditions were carried out in the 5 cm 2 of single fuel cell with the conventional Pt/C catalyst, it was found that the open circuit voltage (OCV) of H 2 /O 3 fuel cell was better than oxygen fuel cell. H 2 /O 3 fuel cell shows better performance at the low current density region because of its activation polarization improvement whereas in the high current density region, the mass transport polarization hinders the ozone to catalyst surface. The irreversibility combination model of H 2 /O 3 fuel cell was also studied to determine the major polarization of H 2 /O 3 and H 2 /O 2 fuel cell by empirical model in terms of the irreversibility parameters. The effect of ozoneoxygen gas mixture on PEMFC performance was taken into account in the model and it showed the reasonable fuel cell performance prediction. IC-049 THERMODYNAMIC ANALYSIS OF HYDROGEN PRODUCTION FROM ETHANOL IN THREE DIFFERENT FUEL PROCESSING UNITS Navadee Srisiriwat, Supaporn Therdthianwong, Apichai Therdthianwong The 55 th Canadian Chemical Engineering Conference, October 16-19, 2005, Metro Toronto Convention Centre, Toronto, Ontario, Canada A thermodynamic analysis of hydrogen production from ethanol has been performed in AspenPius program where both material and energy balances are solved simultaneously. The effect of operating parameters, temperature, steam to carbon ratio and oxygen to ethanol ratio, on thermodynamic equilibrium of product distribution was investigated in three different fuel processing systems, namely steam reforming (SR), partial oxidation (POX), and oxidative reforming (OR), connected to water gas shift (WGS) reactor. The optimum operating conditions giving maximum hydrogen yield and the lowest carbon monoxide for each case were obtained. At those conditions, the total net energy, defined as the energy balances of energy consumed and energy utilized by all units, the SR system has the highest total net energy whereas the POX system has the lowest value. However, the SR system gave the maximum hydrogen yield while the POX system required the lowest ethanol feed rate to generate 1 kmol s -1 of hydrogen and the OR system gave the highest H 2 :CO ratio. IC-050 SHARING LEARNING EXPERIENCE OF CONSTRUCTIONISM-CHEMICAL ENGINEERING PRACTICE SCHOOL (C- CHEPS) PROGRAM IN INDUSTRY Pariyaporn Rattanauthaikul, Torpong Thongtipvilas, Thitiwan Vijitranuch, Apichai Therdthianwong The 19 th International Conference, “Learning Organization in a Learning World” (ICLORD 2005), April 18-22, 2005, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand, pp. 904-905 93 In 2000, Suksapattana Foundation and King Mongkut's University of Technology Thonburi (KMUTT) cooperated to setup The Constructionism-Chemical Engineering Practice School (C-ChEPS) with the support of Cementhai Chemical Co. Ltd (CCC). C-ChEPS was established and based at the Petrochemical plant, Maptaput, Rayong Province, Thailand. C-ChEPS is a program which aims to increase the ability of the technicians, who hold a higher vocational diploma and have more than 10 years of experience in petrochemical industry. This program applies the concept of constructionism into the learning process to develop learners in learning skill, petrochemical knowledge, analytical thinking, and the International Conference

94 application of these skills in their work. The learning structure of C-ChEPS exposes the learners every year to all the following 5 components: project-based learning, background knowledge (Chemical Engineering), learning tools, mindfulness and learning support. Thus, the key performance indicators (KPI) for learners' development are: 1) Learning skill, 2) Chemical Engineering Knowledge, and 3) General Skill. Four classes (a total of 45 people) have graduated from the C-ChEPS program. The learning results have shown significant development in the learners' self-confidence at work, information seeking, communication, and presentation skills. Moreover, they can apply chemical knowledge to make reasonable decisions in problem solving. The company benefits from productivity improvement, energy and cost savings a total value of about 108 MBaht from a 4-year operation of C-ChEPS program. The effectiveness of C-ChEPS can be seen from an increase in the participating companies which now includes the following four: Thai Plastic and Chemical Public Co. Ltd., Bangkok Synthetic Co. Ltd, The Aromatics (Thailand) Public Co. Ltd, and National Petrochemical Public Co. Ltd. as well as CCC. Clearly, these companies appreciate the development their employees get from the C- ChEPS program. The indirect result of the C-ChEPS program has led the KMUTT and the Petrochemical Industry into establishing a University of Learning and learning being applied in the workplace. IC-051 ADSORPTION OF METALLIC IONS FROM A METAL PLATING PROCESS ON ACTIVATED CARBON Suwassa Pongamphai, Supaporn Douglas, Wittaya Teppaitoon, Peter L. Douglas The 55 th Canadian Chemical Engineering Conference, October 16-19, 2005, Metro Toronto Convention Centre, Toronto, Ontario, Canada A shrinking core model was applied to metallic ion adsorption on compacted particles of coconut shell activated carbon. The model is based on the shrinking core formulation for catalytic reactions. The analysis of the external liquid film mass transfer and intraparticle KMUTT Annual Research Abstracts 2005 diffusion on the adsorption kinetics with nonlinear adsorption and diffusion in a single particle is presented. The model was solved numerically and optimized using nonlinear parameter estimation to determine the film mass transfer coefficient and internal effective diffusivity. Using the estimated parameters, a parametric study was carried out to study the effects of initial mass and concentration of the adsorbate and adsorbate particle size on the system kinetics. The accuracy of the model will be demonstrated by comparison with experimental data on the adsorption of heavy metals from the effluent stream from a metal plating process. IC-052 EXTRACTION OF NIMBIN FROM NEEM SEEDS USING SUPERCRITICAL CARBON DIOXIDE WITH MODIFIER Pathumthip Tonthubthimthong, Supaporn Douglas, Suwassa Pongamphai, Peter L. Douglas The 55 th Canadian Chemical Engineering Conference, October 16-19, 2005, Metro Toronto Convention Centre, Toronto, Ontario, Canada The objective of this research was to study the extraction of nimbin from neem seeds (Azadirachta indica var siamensis valeton) using supercritical carbon dioxide and modifier. Our previous work, which focused on the extraction of nimbin from neem seeds using pure supercritical carbon dioxide, indicated that the optimum extraction pressure was about 20 MPa. In this paper, the effect of extraction pressure, temperature, and the type of modifier on extraction yield were studied using the Latin Square technique to plan the experiments. Extraction pressures were 10, 15, 20, 25 MPa; extraction temperatures were 30, 35, 40, 45 °C and methanol, ethanol, ethyl acetate and dichloromethane modifiers were investigated. The nimbin extraction experiments were performed using 2 g of neem seed kernels with an average size of 850 nm and 10% modifier for an extraction time of 1 hour. The results indicated that the extraction yield depends significantly on the extraction modifier. The maximum extraction yield was 0.099 mg/g neem seeds kernel, (fractional yield of 97.17 %), obtained at P = 25 MPa, T = 45°C using methanol. The maximum extraction yield using methanol and a soxhlet was 0.1004 mg/g International Conference

  • Page 2:

    ISBN 974-456-652-3

  • Page 6:

    CONTENTS Page Preface International

  • Page 10 and 11:

    KMUTT Annual Research Abstracts 200

  • Page 12 and 13:

    KMUTT Annual Research Abstracts 200

  • Page 14 and 15:

    KMUTT Annual Research Abstracts 200

  • Page 16 and 17:

    KMUTT Annual Research Abstracts 200

  • Page 18 and 19:

    KMUTT Annual Research Abstracts 200

  • Page 20 and 21:

    KMUTT Annual Research Abstracts 200

  • Page 22 and 23:

    KMUTT Annual Research Abstracts 200

  • Page 24 and 25:

    KMUTT Annual Research Abstracts 200

  • Page 26 and 27:

    KMUTT Annual Research Abstracts 200

  • Page 28 and 29:

    KMUTT Annual Research Abstracts 200

  • Page 30 and 31:

    KMUTT Annual Research Abstracts 200

  • Page 32 and 33:

    KMUTT Annual Research Abstracts 200

  • Page 34 and 35:

    KMUTT Annual Research Abstracts 200

  • Page 36 and 37:

    KMUTT Annual Research Abstracts 200

  • Page 38 and 39:

    KMUTT Annual Research Abstracts 200

  • Page 40 and 41:

    KMUTT Annual Research Abstracts 200

  • Page 42 and 43:

    KMUTT Annual Research Abstracts 200

  • Page 44 and 45:

    KMUTT Annual Research Abstracts 200

  • Page 46 and 47:

    KMUTT Annual Research Abstracts 200

  • Page 48 and 49:

    KMUTT Annual Research Abstracts 200

  • Page 50 and 51: KMUTT Annual Research Abstracts 200
  • Page 52 and 53: KMUTT Annual Research Abstracts 200
  • Page 54 and 55: KMUTT Annual Research Abstracts 200
  • Page 56 and 57: KMUTT Annual Research Abstracts 200
  • Page 58: National Journals
  • Page 61 and 62: 54 นอยกวาแบบต
  • Page 63 and 64: 56 (Least Square Matching Method)
  • Page 65 and 66: 58 อุณหภูมิ 30 แ
  • Page 67 and 68: 60 สเปกตรัม จา
  • Page 69 and 70: 62 ขอมูลดานทร
  • Page 71 and 72: 64 22.8 มาตรฐานเป
  • Page 73 and 74: 66 2545 NJ-033 EFFECTS OF ELEVATED
  • Page 75 and 76: 68 เปลือกที่ม
  • Page 77 and 78: 70 ของการดูดซ
  • Page 79 and 80: 72 การสกัดดวย
  • Page 81 and 82: 74 collection of authentic texts th
  • Page 83 and 84: 76 รอยละ 32 มีสา
  • Page 86 and 87: KMUTT Annual Research Abstracts 200
  • Page 88 and 89: KMUTT Annual Research Abstracts 200
  • Page 90 and 91: KMUTT Annual Research Abstracts 200
  • Page 92 and 93: KMUTT Annual Research Abstracts 200
  • Page 94 and 95: KMUTT Annual Research Abstracts 200
  • Page 96 and 97: KMUTT Annual Research Abstracts 200
  • Page 98 and 99: KMUTT Annual Research Abstracts 200
  • Page 102 and 103: KMUTT Annual Research Abstracts 200
  • Page 104 and 105: KMUTT Annual Research Abstracts 200
  • Page 106 and 107: KMUTT Annual Research Abstracts 200
  • Page 108 and 109: KMUTT Annual Research Abstracts 200
  • Page 110 and 111: KMUTT Annual Research Abstracts 200
  • Page 112 and 113: KMUTT Annual Research Abstracts 200
  • Page 114 and 115: KMUTT Annual Research Abstracts 200
  • Page 116 and 117: KMUTT Annual Research Abstracts 200
  • Page 118 and 119: KMUTT Annual Research Abstracts 200
  • Page 120 and 121: KMUTT Annual Research Abstracts 200
  • Page 122 and 123: KMUTT Annual Research Abstracts 200
  • Page 124 and 125: KMUTT Annual Research Abstracts 200
  • Page 126 and 127: KMUTT Annual Research Abstracts 200
  • Page 128 and 129: KMUTT Annual Research Abstracts 200
  • Page 130 and 131: KMUTT Annual Research Abstracts 200
  • Page 132 and 133: KMUTT Annual Research Abstracts 200
  • Page 134 and 135: KMUTT Annual Research Abstracts 200
  • Page 136 and 137: KMUTT Annual Research Abstracts 200
  • Page 138 and 139: KMUTT Annual Research Abstracts 200
  • Page 140 and 141: KMUTT Annual Research Abstracts 200
  • Page 142 and 143: KMUTT Annual Research Abstracts 200
  • Page 144 and 145: KMUTT Annual Research Abstracts 200
  • Page 146 and 147: KMUTT Annual Research Abstracts 200
  • Page 148 and 149: KMUTT Annual Research Abstracts 200
  • Page 150 and 151:

    KMUTT Annual Research Abstracts 200

  • Page 152 and 153:

    KMUTT Annual Research Abstracts 200

  • Page 154 and 155:

    KMUTT Annual Research Abstracts 200

  • Page 156 and 157:

    KMUTT Annual Research Abstracts 200

  • Page 158 and 159:

    KMUTT Annual Research Abstracts 200

  • Page 160 and 161:

    KMUTT Annual Research Abstracts 200

  • Page 162 and 163:

    KMUTT Annual Research Abstracts 200

  • Page 164 and 165:

    KMUTT Annual Research Abstracts 200

  • Page 166 and 167:

    KMUTT Annual Research Abstracts 200

  • Page 168 and 169:

    KMUTT Annual Research Abstracts 200

  • Page 170 and 171:

    KMUTT Annual Research Abstracts 200

  • Page 172 and 173:

    KMUTT Annual Research Abstracts 200

  • Page 174 and 175:

    KMUTT Annual Research Abstracts 200

  • Page 176 and 177:

    KMUTT Annual Research Abstracts 200

  • Page 178 and 179:

    KMUTT Annual Research Abstracts 200

  • Page 180 and 181:

    KMUTT Annual Research Abstracts 200

  • Page 182 and 183:

    KMUTT Annual Research Abstracts 200

  • Page 184 and 185:

    KMUTT Annual Research Abstracts 200

  • Page 186 and 187:

    KMUTT Annual Research Abstracts 200

  • Page 188 and 189:

    KMUTT Annual Research Abstracts 200

  • Page 190 and 191:

    KMUTT Annual Research Abstracts 200

  • Page 192 and 193:

    KMUTT Annual Research Abstracts 200

  • Page 194 and 195:

    KMUTT Annual Research Abstracts 200

  • Page 196 and 197:

    KMUTT Annual Research Abstracts 200

  • Page 198 and 199:

    KMUTT Annual Research Abstracts 200

  • Page 200 and 201:

    KMUTT Annual Research Abstracts 200

  • Page 202 and 203:

    KMUTT Annual Research Abstracts 200

  • Page 204 and 205:

    KMUTT Annual Research Abstracts 200

  • Page 206 and 207:

    KMUTT Annual Research Abstracts 200

  • Page 208 and 209:

    KMUTT Annual Research Abstracts 200

  • Page 210 and 211:

    KMUTT Annual Research Abstracts 200

  • Page 212 and 213:

    KMUTT Annual Research Abstracts 200

  • Page 214:

    National Conferences

  • Page 217 and 218:

    210 จอมเทียนปา

  • Page 219 and 220:

    212 การสกัดสาร

  • Page 221 and 222:

    214 ไดแก อุณหภู

  • Page 223 and 224:

    216 โดยกลไกของ

  • Page 225 and 226:

    218 เคลือบเมื่

  • Page 227 and 228:

    220 สําเริง จัก

  • Page 229 and 230:

    222 ลดเวลาตลอด

  • Page 231 and 232:

    224 อุณหภูมิสู

  • Page 233 and 234:

    226 NC-043 การวิเคร

  • Page 235 and 236:

    228 เกิดพฤติกร

  • Page 237 and 238:

    230 เดียว เพื่อ

  • Page 239 and 240:

    232 มากนอยเพีย

  • Page 241 and 242:

    234 หลักที่พบใ

  • Page 243 and 244:

    236 NC-073 การออกแบ

  • Page 245 and 246:

    238 บทความนี้น

  • Page 247 and 248:

    240 นําเอาเวคเ

  • Page 249 and 250:

    242 งานวิจัยนี

  • Page 251 and 252:

    244 การอบแหงลด

  • Page 253 and 254:

    246 แยกเฟสต่ํา

  • Page 255 and 256:

    248 กลบ โดยเปรี

  • Page 257 and 258:

    250 นํามาใช คือ

  • Page 259 and 260:

    252 วิเคราะหหา

  • Page 261 and 262:

    254 NC-123 การวิเคร

  • Page 263 and 264:

    256 NC-129 เครื่องผ

  • Page 265 and 266:

    258 สามารถขยาย

  • Page 267 and 268:

    260 ครั้งที่ 43, 1-

  • Page 269 and 270:

    262 calculated with the use of the

  • Page 271 and 272:

    264 Version 1.3.1 และ Softwar

  • Page 273 and 274:

    266 ขนไกได จากก

  • Page 275 and 276:

    268 โครงสรางขอ

  • Page 277 and 278:

    270 การปลูกพืช

  • Page 279 and 280:

    272 ระดับพึงพอ

  • Page 281 and 282:

    274 ของแกสโซฮอ

  • Page 283 and 284:

    276 1) สภาพทั่วไ

  • Page 285 and 286:

    278 อนุปริญญา แ

  • Page 287 and 288:

    280 อาชีวศึกษา

  • Page 289 and 290:

    282 กระทบตอคุณ

  • Page 291 and 292:

    284 ตั้งกลไกแข

  • Page 293 and 294:

    286 นุชจรินทร เ

  • Page 295 and 296:

    288 โดยรวมผูบร

  • Page 297 and 298:

    290 แนนกระแสไฟ

  • Page 299 and 300:

    292 NC-222 ผลงานตีพ

  • Page 301 and 302:

    294 NC-227 เตาเผาไห

  • Page 303 and 304:

    296 จําเพาะรวม

  • Page 305 and 306:

    298 NC-238 จลนพลศาส

  • Page 307 and 308:

    300 ทนงเกียรติ

  • Page 309 and 310:

    302 ดีเซลนั้นม

  • Page 311 and 312:

    304 NC-254 การใชเทค

  • Page 313 and 314:

    306 อาคารศูนยก

  • Page 315 and 316:

    308 กระบวนการร

  • Page 317 and 318:

    310 บรรยากาศขอ

  • Page 319 and 320:

    312 metal ions on 2-AP biosyntheis

  • Page 321 and 322:

    314 total clones while the ethanol

  • Page 323 and 324:

    316 การประชุมท

  • Page 325 and 326:

    318 BioThailand (The 16 th Annual M

  • Page 327 and 328:

    320 สูงที่สุดพ

  • Page 329 and 330:

    322 นัยสําคัญท

  • Page 331 and 332:

    324 ความเขมขนร

  • Page 333 and 334:

    326 ปลูกแบบพรา

  • Page 335 and 336:

    328 นี้ทําใหทร

  • Page 337 and 338:

    330 ดุลชาติ มาน

  • Page 339 and 340:

    332 ไมโครเมตร ส

  • Page 341 and 342:

    334 In this study, we collected seq

  • Page 343 and 344:

    336 กนกรัตน นาค

  • Page 345 and 346:

    338 การพัฒนาสื

  • Page 347 and 348:

    340 one of the causes of difficulty

  • Page 349 and 350:

    342 ทวีรัตน วิจ

  • Page 351 and 352:

    344 program, Cytoscape. This model

  • Page 353 and 354:

    346 production demand. Nevertheless

  • Page 355 and 356:

    348 อุลตราไวโอ

  • Page 357 and 358:

    350 นี้อยูในชว

  • Page 359 and 360:

    352 เพื่อนําสว

  • Page 361 and 362:

    354 trichloroacetic acid (TCA) ม

  • Page 363 and 364:

    356 ทรัพยากรที

  • Page 365 and 366:

    358 ในประเทศสห

  • Page 367 and 368:

    360 8-9 ธันวาคม 2548,

  • Page 369 and 370:

    362 ซึ่งเกิดขอ

  • Page 371 and 372:

    364 NC-391 การวิเคร

  • Page 373 and 374:

    366 การประชุมว

  • Page 375 and 376:

    368 2547) พบวามหาว

  • Page 377 and 378:

    370 กนกพร ลีลาเ

  • Page 380:

    Authors Index

  • Page 383 and 384:

    376 จงจิตร หิรั

  • Page 385 and 386:

    378 ธ ธนธร ทองส

  • Page 387 and 388:

    380 พยุงศักดิ์

  • Page 389 and 390:

    382 วรรณพ วิเศษ

  • Page 391 and 392:

    384 สุดารัตน จิ

  • Page 393 and 394:

    386 อุลาวัณย กุ

  • Page 395 and 396:

    388 138, 141, 142 Jarunya Narangaja

  • Page 397 and 398:

    390 Panida Kongsawadworakul 191 Pan

  • Page 399 and 400:

    392 Sorakrich Maneewan 124, 136 Sor

  • Page 401 and 402:

    394 KMUTT Annual Research Abstracts

  • Page 404 and 405:

    KMUTT Annual Research Abstracts 200

  • Page 406 and 407:

    KMUTT Annual Research Abstracts 200

  • Page 408 and 409:

    KMUTT Annual Research Abstracts 200

  • Page 410 and 411:

    KMUTT Annual Research Abstracts 200

  • Page 412 and 413:

    KMUTT Annual Research Abstracts 200

  • Page 414 and 415:

    KMUTT Annual Research Abstracts 200

  • Page 416 and 417:

    KMUTT Annual Research Abstracts 200

  • Page 418 and 419:

    KMUTT Annual Research Abstracts 200

  • Page 420 and 421:

    KMUTT Annual Research Abstracts 200

  • Page 422 and 423:

    KMUTT Annual Research Abstracts 200

  • Page 424 and 425:

    KMUTT Annual Research Abstracts 200

  • Page 426 and 427:

    KMUTT Annual Research Abstracts 200

  • Page 428 and 429:

    KMUTT Annual Research Abstracts 200

  • Page 430 and 431:

    KMUTT Annual Research Abstracts 200

  • Page 432 and 433:

    KMUTT Annual Research Abstracts 200

  • Page 434 and 435:

    KMUTT Annual Research Abstracts 200

  • Page 436 and 437:

    KMUTT Annual Research Abstracts 200

  • Page 438 and 439:

    KMUTT Annual Research Abstracts 200

  • Page 440 and 441:

    KMUTT Annual Research Abstracts 200

  • Page 442 and 443:

    KMUTT Annual Research Abstracts 200

  • Page 444 and 445:

    KMUTT Annual Research Abstracts 200

  • Page 446 and 447:

    KMUTT Annual Research Abstracts 200

  • Page 448:

    KMUTT Annual Research Abstracts 200

  • Page 452:

    KMUTT Annual Research Abstracts 200