Views
3 years ago

Preface - kmutt

Preface - kmutt

KMUTT Annual Research

KMUTT Annual Research Abstracts 2005 sorption performances for a geosmin removal by sorption onto granular activated carbons (GAC) manufactured from different raw materials of coconut shell and bituminous coal. The surface of GAC was modified by chitosan coating. The 90% deacetylated chitosan flakes were used to coated on GAC with the GAC:chitosan ratio of 5:1. The surface of GAC was characterized by scanning electron microscope (SEM) analysis, fourier transform infrared spectroscopy and measurement of the pH solution. The sorption of geosmin onto the chitosan for both uncoated and coated GACs could be described by the Freundlich adsorption model. Data revealed that the sequence of geosmin sorption was chitosan coated bituminous coal > uncoated bituminous coal > coated coconut shell > uncoated coconut shell. The bituminous coal based GAC with chitosan coating had a maximum capacity of 23.57 µg/g which was about two fold of uncoated bituminous coal based GAC. Two simplified kinetic models, pseudo-first order and pseudo-second order, were tested to investigate the sorption mechanisms. It was found that the intraparticle diffusion was a rate controlling step for the sorption and followed the pseudo-second order equation. IC-224 SYNTHESIS OF STYRENE- DIVINYLBENZENE COPOLYMERS ON COTTON CELLULOSE: CHARACTERIZATION AND APPLICATION FOR CATION REMOVAL IN FRESHWATER Set Siriwat, Soydoa Vinitnantharat, Chanchai Thongpin The 1 st International Water Association - Asia Pacific Regional Group Conference and Exhibition (IWA-ASPIKE), July 10-15, 2005, Pan Pacific Hotel, Singapore The aim of this work is to synthesis and develop the strong acid exchanger on the natural cellulose for the cation removal in freshwater. Crosslinked cation exchange resin bearing acylating sulfonic acid group was prepared by photo radiation-induced grafting of styrene containing crosslinker as divinylbenzene onto cotton cellulose followed by Friedel-Crafts acylation and Sulfoacylation reactions. The reaction temperatures in the range of 30-60 °C including reaction times of 4-6 h were investigated to select the optimum condition. The physical and chemical characteristics of the synthesized samples were compared to a 153 commercial styrene -divinylbenzene copolymer bed. As for the studies, the physical characteristics were observed by using the Scanning Electron Microscope (SEM). After the Friedel-Crafts reactions and Sulfoacylation of the synthesized samples, the chemical characteristics were investigated by using instrumental techniques namely Thermogravimetric analysis (TGA), Fourier Transform Infrared Spectrometer (FTIR) and hardness titration. However, more investigations are needed in order to comprehensive samples and commercial ion exchange resin. Then, the exchange resin samples were used to test the exchangeable cation of Ca 2+ , Mg 2+ and Fe 2+ of which concentrations 400, 1000 mg/1 as CaCO 3 and 15 mg Fe/1, respectively. IC-225 A BATCH TESTS FOR ASSESSING DECOLORIZATION AND KINETIC OF REACTIVE DYES BY GRANULATED ANAEROBIC MIXED CULTURE Sunantha Laowansiri, Soydao Vinitnantharat, Pawinee Chaiprasert, Sung Ryong Ha The International Conference on Quantitative Methods for the Environmental Sciences and General Meeting of the International Environmetrics Society, August 22-26, 2005, Friendship Hotel, Beijing, China, pp. 107-117 Most of published studies have considered adding carbon sources to wastewater to affect the degradation and kinetics of dyes, but in the normally textile process has the sizing agents as the carbon source. Therefore, the aim of this study was to investigate the rate of decolorization and biological kinetics of dyes by partially granulated anaerobic mixed culture from an upflow anaerobic sludge blanket (UASB) reactor. The partial granulated anaerobic mixed culture (1.8 g MLVSS l -1 ) was used to investigate the treatability of two diazo dyes, reactive red 120 (RR 120) and reactive red 141(RR 141) in different carbon sources, dye concentrations and COD in batch test experiments with an incubation time of 324 hours. Three sizing agents, modified starch (MS), polyvinyl alcohol (PVA) and acrylic size (AS), were used as a carbon sources concentrations varying in the range of 400-1600 mg COD l -1 and color concentrations of 20,40 and 60 mg l -1 . The removal efficiencies and biological kinetics were evaluated. Results revealed that increasing dye concentration could International Conference

154 inhibit the biodegradation, particularly when PVA is used as the carbon source. Additional experiments on the effect of dye concentration, using MS as the carbon source, revealed that degradation of RR 120 and RR 141 followed first-order kinetics. The decolorization rates increased with the decreasing dye concentrations of RR 120 and RR141. In contrast, the decolorization rates were increased with the increasing COD. The maximum decolorization of both RR 120 and RR141 was 96% when the 1600 mg COD l -1 and dye concentration of 60 mg I -1 were applied. In addition, the biological rates of RR120 and RR 141 were 2.61 x 10 -2 and 3.41 x 10 -2 h -1 , respectively. In conclusion, it is noted that anaerobic biodegradation of textile wastewater containing MS can be achieved, and that color removal of RR141 was faster than that of RR 120. IC-226 PERFORMANCE AND KINETICS OBSERVATION OF DYE REMOVAL BY ANAEROBIC/AEROBIC BIOLOGICAL ACTIVATED CARBON SEQUENCING BATCH REACTOR (A/A BAC-SBR) IN BATCH TEST Nittaya Pasukphun, Soydoa Vinitnantharat, Shabbir H. Gheewala, Sung Ryong Ha The International Conference on Quantitative Methods for the Environmental Sciences and General Meeting of the International Environmetrics Society, August 22-26, 2005, Friendship Hotel, Beijing, China, pp. 138-147 Textile wastewater treatment is an important problem because dye is hard to biodegrade. However, the anaerobic/aerobic (A/A) process is known to effective. The sequencing batch reactor (SBR) coupled with activated carbon adsorption or biological activated carbon-sequencing batch reactor (BAC-SBR) has also reported its capable for dye removal of textile wastewater through the combination of biodegradation, biosorption and activated carbon adsorption. This research aims to investigate the performance and kinetic characteristics of dye removal in A/A BAC-SBR by virgin GAC, mixed microorganisms and BAC. Batch test experiments were setup by using 250 mL of simulate textile wastewater containing a mixture of modified starch, polyvinyl alcohol and acrylic size as a carbon source and a reactive azo dye. The initial concentrations COD and dye were 950 and 100 mg/L, respectively. The batch tests KMUTT Annual Research Abstracts 2005 were operated as same as the SBR operational 24 h sequence (Fill 0.5 h, anaerobic reaction 18 h, aerobic reaction 3 h, settle 1.5 h, draw 0.5 h and idle 0.5 h). Samples from each operation were withdrawn and the filtrates were analysed for colour and COD concentrations. Four kinetic models including chemical kinetics equation, modified Freundlich, Pore Diffzyon model and Elovich equation were tested for dye removal by mixed microorganisms and BAC that including of biodegradation and BAC adsorption studies. The results revealed that biodegradation played a key role in COD and dye removal, however, dye removal by biodegradation and biosorption were almost as important. As mentions, colour removal by AC adsorption, biosorption, biodegradation and BAC sorption including biodegradation were 40.58%, 77.08%, 66.30% and 21.16% at 3000 mg/L of each item, respectively. As for colour removal kinetic, modified Freundlich and Pore Diffusion provided the best correlation for mixed microorganisms (with and without virgin AC) and BAC, respectively. These results indicate that type of adsorbent, dye molecule and molecular diffusion affect colour removal. The implications of this research are evaluation of removal mechanism role and removal potential for dye removal by A/A BAC-SBR that is related to system operation. The Joint Graduate School of Energy and Environment IC-227 STRATEGIC PLANNING FOR IMPROVED SOLID WASTE MANAGEMENT IN HUA HIN, THAILAND Shabbir H. Gheewala, Sebastien Bonnet, Wanida Wanichpongpan International Conference on Integrated Solid Waste Management in Southeast Asian Cities, July 5-7, 2005, Siem Reap, Cambodia, p. 43 Prachuap Khiri Khan Province is located 281 kilometers south of Bangkok. Although it has a very important place in the history of Thailand, it is more famous for its natural charm of beaches and mountains than for its historical attractions. Hua Hin, a major tourist location in the province, is one of Thailand's most popular seaside resorts among overseas visitors as well as Thais. In 2004, its population is reportedly to International Conference

  • Page 2:

    ISBN 974-456-652-3

  • Page 6:

    CONTENTS Page Preface International

  • Page 10 and 11:

    KMUTT Annual Research Abstracts 200

  • Page 12 and 13:

    KMUTT Annual Research Abstracts 200

  • Page 14 and 15:

    KMUTT Annual Research Abstracts 200

  • Page 16 and 17:

    KMUTT Annual Research Abstracts 200

  • Page 18 and 19:

    KMUTT Annual Research Abstracts 200

  • Page 20 and 21:

    KMUTT Annual Research Abstracts 200

  • Page 22 and 23:

    KMUTT Annual Research Abstracts 200

  • Page 24 and 25:

    KMUTT Annual Research Abstracts 200

  • Page 26 and 27:

    KMUTT Annual Research Abstracts 200

  • Page 28 and 29:

    KMUTT Annual Research Abstracts 200

  • Page 30 and 31:

    KMUTT Annual Research Abstracts 200

  • Page 32 and 33:

    KMUTT Annual Research Abstracts 200

  • Page 34 and 35:

    KMUTT Annual Research Abstracts 200

  • Page 36 and 37:

    KMUTT Annual Research Abstracts 200

  • Page 38 and 39:

    KMUTT Annual Research Abstracts 200

  • Page 40 and 41:

    KMUTT Annual Research Abstracts 200

  • Page 42 and 43:

    KMUTT Annual Research Abstracts 200

  • Page 44 and 45:

    KMUTT Annual Research Abstracts 200

  • Page 46 and 47:

    KMUTT Annual Research Abstracts 200

  • Page 48 and 49:

    KMUTT Annual Research Abstracts 200

  • Page 50 and 51:

    KMUTT Annual Research Abstracts 200

  • Page 52 and 53:

    KMUTT Annual Research Abstracts 200

  • Page 54 and 55:

    KMUTT Annual Research Abstracts 200

  • Page 56 and 57:

    KMUTT Annual Research Abstracts 200

  • Page 58:

    National Journals

  • Page 61 and 62:

    54 นอยกวาแบบต

  • Page 63 and 64:

    56 (Least Square Matching Method)

  • Page 65 and 66:

    58 อุณหภูมิ 30 แ

  • Page 67 and 68:

    60 สเปกตรัม จา

  • Page 69 and 70:

    62 ขอมูลดานทร

  • Page 71 and 72:

    64 22.8 มาตรฐานเป

  • Page 73 and 74:

    66 2545 NJ-033 EFFECTS OF ELEVATED

  • Page 75 and 76:

    68 เปลือกที่ม

  • Page 77 and 78:

    70 ของการดูดซ

  • Page 79 and 80:

    72 การสกัดดวย

  • Page 81 and 82:

    74 collection of authentic texts th

  • Page 83 and 84:

    76 รอยละ 32 มีสา

  • Page 86 and 87:

    KMUTT Annual Research Abstracts 200

  • Page 88 and 89:

    KMUTT Annual Research Abstracts 200

  • Page 90 and 91:

    KMUTT Annual Research Abstracts 200

  • Page 92 and 93:

    KMUTT Annual Research Abstracts 200

  • Page 94 and 95:

    KMUTT Annual Research Abstracts 200

  • Page 96 and 97:

    KMUTT Annual Research Abstracts 200

  • Page 98 and 99:

    KMUTT Annual Research Abstracts 200

  • Page 100 and 101:

    KMUTT Annual Research Abstracts 200

  • Page 102 and 103:

    KMUTT Annual Research Abstracts 200

  • Page 104 and 105:

    KMUTT Annual Research Abstracts 200

  • Page 106 and 107:

    KMUTT Annual Research Abstracts 200

  • Page 108 and 109:

    KMUTT Annual Research Abstracts 200

  • Page 110 and 111: KMUTT Annual Research Abstracts 200
  • Page 112 and 113: KMUTT Annual Research Abstracts 200
  • Page 114 and 115: KMUTT Annual Research Abstracts 200
  • Page 116 and 117: KMUTT Annual Research Abstracts 200
  • Page 118 and 119: KMUTT Annual Research Abstracts 200
  • Page 120 and 121: KMUTT Annual Research Abstracts 200
  • Page 122 and 123: KMUTT Annual Research Abstracts 200
  • Page 124 and 125: KMUTT Annual Research Abstracts 200
  • Page 126 and 127: KMUTT Annual Research Abstracts 200
  • Page 128 and 129: KMUTT Annual Research Abstracts 200
  • Page 130 and 131: KMUTT Annual Research Abstracts 200
  • Page 132 and 133: KMUTT Annual Research Abstracts 200
  • Page 134 and 135: KMUTT Annual Research Abstracts 200
  • Page 136 and 137: KMUTT Annual Research Abstracts 200
  • Page 138 and 139: KMUTT Annual Research Abstracts 200
  • Page 140 and 141: KMUTT Annual Research Abstracts 200
  • Page 142 and 143: KMUTT Annual Research Abstracts 200
  • Page 144 and 145: KMUTT Annual Research Abstracts 200
  • Page 146 and 147: KMUTT Annual Research Abstracts 200
  • Page 148 and 149: KMUTT Annual Research Abstracts 200
  • Page 150 and 151: KMUTT Annual Research Abstracts 200
  • Page 152 and 153: KMUTT Annual Research Abstracts 200
  • Page 154 and 155: KMUTT Annual Research Abstracts 200
  • Page 156 and 157: KMUTT Annual Research Abstracts 200
  • Page 158 and 159: KMUTT Annual Research Abstracts 200
  • Page 162 and 163: KMUTT Annual Research Abstracts 200
  • Page 164 and 165: KMUTT Annual Research Abstracts 200
  • Page 166 and 167: KMUTT Annual Research Abstracts 200
  • Page 168 and 169: KMUTT Annual Research Abstracts 200
  • Page 170 and 171: KMUTT Annual Research Abstracts 200
  • Page 172 and 173: KMUTT Annual Research Abstracts 200
  • Page 174 and 175: KMUTT Annual Research Abstracts 200
  • Page 176 and 177: KMUTT Annual Research Abstracts 200
  • Page 178 and 179: KMUTT Annual Research Abstracts 200
  • Page 180 and 181: KMUTT Annual Research Abstracts 200
  • Page 182 and 183: KMUTT Annual Research Abstracts 200
  • Page 184 and 185: KMUTT Annual Research Abstracts 200
  • Page 186 and 187: KMUTT Annual Research Abstracts 200
  • Page 188 and 189: KMUTT Annual Research Abstracts 200
  • Page 190 and 191: KMUTT Annual Research Abstracts 200
  • Page 192 and 193: KMUTT Annual Research Abstracts 200
  • Page 194 and 195: KMUTT Annual Research Abstracts 200
  • Page 196 and 197: KMUTT Annual Research Abstracts 200
  • Page 198 and 199: KMUTT Annual Research Abstracts 200
  • Page 200 and 201: KMUTT Annual Research Abstracts 200
  • Page 202 and 203: KMUTT Annual Research Abstracts 200
  • Page 204 and 205: KMUTT Annual Research Abstracts 200
  • Page 206 and 207: KMUTT Annual Research Abstracts 200
  • Page 208 and 209: KMUTT Annual Research Abstracts 200
  • Page 210 and 211:

    KMUTT Annual Research Abstracts 200

  • Page 212 and 213:

    KMUTT Annual Research Abstracts 200

  • Page 214:

    National Conferences

  • Page 217 and 218:

    210 จอมเทียนปา

  • Page 219 and 220:

    212 การสกัดสาร

  • Page 221 and 222:

    214 ไดแก อุณหภู

  • Page 223 and 224:

    216 โดยกลไกของ

  • Page 225 and 226:

    218 เคลือบเมื่

  • Page 227 and 228:

    220 สําเริง จัก

  • Page 229 and 230:

    222 ลดเวลาตลอด

  • Page 231 and 232:

    224 อุณหภูมิสู

  • Page 233 and 234:

    226 NC-043 การวิเคร

  • Page 235 and 236:

    228 เกิดพฤติกร

  • Page 237 and 238:

    230 เดียว เพื่อ

  • Page 239 and 240:

    232 มากนอยเพีย

  • Page 241 and 242:

    234 หลักที่พบใ

  • Page 243 and 244:

    236 NC-073 การออกแบ

  • Page 245 and 246:

    238 บทความนี้น

  • Page 247 and 248:

    240 นําเอาเวคเ

  • Page 249 and 250:

    242 งานวิจัยนี

  • Page 251 and 252:

    244 การอบแหงลด

  • Page 253 and 254:

    246 แยกเฟสต่ํา

  • Page 255 and 256:

    248 กลบ โดยเปรี

  • Page 257 and 258:

    250 นํามาใช คือ

  • Page 259 and 260:

    252 วิเคราะหหา

  • Page 261 and 262:

    254 NC-123 การวิเคร

  • Page 263 and 264:

    256 NC-129 เครื่องผ

  • Page 265 and 266:

    258 สามารถขยาย

  • Page 267 and 268:

    260 ครั้งที่ 43, 1-

  • Page 269 and 270:

    262 calculated with the use of the

  • Page 271 and 272:

    264 Version 1.3.1 และ Softwar

  • Page 273 and 274:

    266 ขนไกได จากก

  • Page 275 and 276:

    268 โครงสรางขอ

  • Page 277 and 278:

    270 การปลูกพืช

  • Page 279 and 280:

    272 ระดับพึงพอ

  • Page 281 and 282:

    274 ของแกสโซฮอ

  • Page 283 and 284:

    276 1) สภาพทั่วไ

  • Page 285 and 286:

    278 อนุปริญญา แ

  • Page 287 and 288:

    280 อาชีวศึกษา

  • Page 289 and 290:

    282 กระทบตอคุณ

  • Page 291 and 292:

    284 ตั้งกลไกแข

  • Page 293 and 294:

    286 นุชจรินทร เ

  • Page 295 and 296:

    288 โดยรวมผูบร

  • Page 297 and 298:

    290 แนนกระแสไฟ

  • Page 299 and 300:

    292 NC-222 ผลงานตีพ

  • Page 301 and 302:

    294 NC-227 เตาเผาไห

  • Page 303 and 304:

    296 จําเพาะรวม

  • Page 305 and 306:

    298 NC-238 จลนพลศาส

  • Page 307 and 308:

    300 ทนงเกียรติ

  • Page 309 and 310:

    302 ดีเซลนั้นม

  • Page 311 and 312:

    304 NC-254 การใชเทค

  • Page 313 and 314:

    306 อาคารศูนยก

  • Page 315 and 316:

    308 กระบวนการร

  • Page 317 and 318:

    310 บรรยากาศขอ

  • Page 319 and 320:

    312 metal ions on 2-AP biosyntheis

  • Page 321 and 322:

    314 total clones while the ethanol

  • Page 323 and 324:

    316 การประชุมท

  • Page 325 and 326:

    318 BioThailand (The 16 th Annual M

  • Page 327 and 328:

    320 สูงที่สุดพ

  • Page 329 and 330:

    322 นัยสําคัญท

  • Page 331 and 332:

    324 ความเขมขนร

  • Page 333 and 334:

    326 ปลูกแบบพรา

  • Page 335 and 336:

    328 นี้ทําใหทร

  • Page 337 and 338:

    330 ดุลชาติ มาน

  • Page 339 and 340:

    332 ไมโครเมตร ส

  • Page 341 and 342:

    334 In this study, we collected seq

  • Page 343 and 344:

    336 กนกรัตน นาค

  • Page 345 and 346:

    338 การพัฒนาสื

  • Page 347 and 348:

    340 one of the causes of difficulty

  • Page 349 and 350:

    342 ทวีรัตน วิจ

  • Page 351 and 352:

    344 program, Cytoscape. This model

  • Page 353 and 354:

    346 production demand. Nevertheless

  • Page 355 and 356:

    348 อุลตราไวโอ

  • Page 357 and 358:

    350 นี้อยูในชว

  • Page 359 and 360:

    352 เพื่อนําสว

  • Page 361 and 362:

    354 trichloroacetic acid (TCA) ม

  • Page 363 and 364:

    356 ทรัพยากรที

  • Page 365 and 366:

    358 ในประเทศสห

  • Page 367 and 368:

    360 8-9 ธันวาคม 2548,

  • Page 369 and 370:

    362 ซึ่งเกิดขอ

  • Page 371 and 372:

    364 NC-391 การวิเคร

  • Page 373 and 374:

    366 การประชุมว

  • Page 375 and 376:

    368 2547) พบวามหาว

  • Page 377 and 378:

    370 กนกพร ลีลาเ

  • Page 380:

    Authors Index

  • Page 383 and 384:

    376 จงจิตร หิรั

  • Page 385 and 386:

    378 ธ ธนธร ทองส

  • Page 387 and 388:

    380 พยุงศักดิ์

  • Page 389 and 390:

    382 วรรณพ วิเศษ

  • Page 391 and 392:

    384 สุดารัตน จิ

  • Page 393 and 394:

    386 อุลาวัณย กุ

  • Page 395 and 396:

    388 138, 141, 142 Jarunya Narangaja

  • Page 397 and 398:

    390 Panida Kongsawadworakul 191 Pan

  • Page 399 and 400:

    392 Sorakrich Maneewan 124, 136 Sor

  • Page 401 and 402:

    394 KMUTT Annual Research Abstracts

  • Page 404 and 405:

    KMUTT Annual Research Abstracts 200

  • Page 406 and 407:

    KMUTT Annual Research Abstracts 200

  • Page 408 and 409:

    KMUTT Annual Research Abstracts 200

  • Page 410 and 411:

    KMUTT Annual Research Abstracts 200

  • Page 412 and 413:

    KMUTT Annual Research Abstracts 200

  • Page 414 and 415:

    KMUTT Annual Research Abstracts 200

  • Page 416 and 417:

    KMUTT Annual Research Abstracts 200

  • Page 418 and 419:

    KMUTT Annual Research Abstracts 200

  • Page 420 and 421:

    KMUTT Annual Research Abstracts 200

  • Page 422 and 423:

    KMUTT Annual Research Abstracts 200

  • Page 424 and 425:

    KMUTT Annual Research Abstracts 200

  • Page 426 and 427:

    KMUTT Annual Research Abstracts 200

  • Page 428 and 429:

    KMUTT Annual Research Abstracts 200

  • Page 430 and 431:

    KMUTT Annual Research Abstracts 200

  • Page 432 and 433:

    KMUTT Annual Research Abstracts 200

  • Page 434 and 435:

    KMUTT Annual Research Abstracts 200

  • Page 436 and 437:

    KMUTT Annual Research Abstracts 200

  • Page 438 and 439:

    KMUTT Annual Research Abstracts 200

  • Page 440 and 441:

    KMUTT Annual Research Abstracts 200

  • Page 442 and 443:

    KMUTT Annual Research Abstracts 200

  • Page 444 and 445:

    KMUTT Annual Research Abstracts 200

  • Page 446 and 447:

    KMUTT Annual Research Abstracts 200

  • Page 448:

    KMUTT Annual Research Abstracts 200

  • Page 452:

    KMUTT Annual Research Abstracts 200