Views
3 years ago

Preface - kmutt

Preface - kmutt

KMUTT Annual Research

KMUTT Annual Research Abstracts 2005 have 46,275 persons and accounted more than 1,784,298 visitors. In recent years, waste management has become a major issue in Hua Hin. It has been found that 90 tons/day of municipal solid waste are generated but only 75 tons/day are collected. As a result 15 tons/day of solid waste remain in the environment without any formal management. The amount of municipal solid waste that is not collected is rising as a result of an increasing population and tourism activities which directly affects the local population's quality of life. In order to improve the municipal solid waste management situation in Hua Hin, a methodological framework is being developed in this study based on a life cycle approach with particular emphasis on social issues. The study is still on-going and the paper summarizes the results obtained so far with directions towards the final outcome of having a workable plan for municipal solid waste management at Hua Hin. IC-228 LIFE CYCLE MANAGEMENT OF MSW LANDFILL: A CASE STUDY IN THAILAND Wanida Wanichpongpan, Shabbir H. Gheewala The 2 nd International Conference on Life Cycle Management (LCM 2005), September 5-7, 2005, Barcelona, Spain Many municipalities in Thailand face the problem of finding a suitable way to manage municipal solid waste (MSW). Currently, the popular way of dealing waste is dumping into the landfill. But only about 10% of the landfills are sanitary, the rest being either non-sanitary landfills or open dumping sites. However, landfilling is a relatively simple, low-cost technology and thus cannot be written off but can be improved. One of the major impacts from landfilling is the emission of methane, a potent greenhouse gas (GHG). Tropical climatic conditions further this problem with faster methane generation rates. The landfill gas (LFG) can also pose safety and health hazards if not properly controlled. LFG can be collected and either utilized as a valuable renewable energy source or safely disposed through flaring. To utilize the potential of methane for electricity production, a certain minimum amount of waste is required. To meet this requirement, waste must be collected from a large region increasing the transportation and consequent emissions. Thus, this study focuses on comparing the use of large landfills with electricity production and 155 small landfills with lesser transportation requirement in a life cycle perspective. IC-229 CATALYTIC STEAM REFORMING OF ETHANE OVER CEO 2 -DOPED NI/AL 2 O 3 : IMPROVEMENT OF REACTIVITY AND RESISTANCE TOWARD CARBON FORMATION BY THE DOPING OF CEO 2 Navadol Laosiripojana, Suttichai Assabumrungrat International Hydrogen Energy Congress & Exhibition (IHEC 2005), July 13-15, 2005, Istanbul, Turkey. Ni/Al 2 O 3 with the doping of CeO 2 was found to have useful activity to reform ethane with steam. CeO 2 -doped Ni/Al 2 O 3 with 14% ceria doping content showed the best reforming activity among those with the ceria content between 2-20%. Compared to conventional Ni/A l 2 O 3 , 14%CeO 2 -doped Ni/Al 2 O 3 provides significantly higher reactivity and resistance toward carbon deposition. These enhancements are mainly due to the influence of the redox property of doped ceria. During the reforming process, in addition to the reactions on Ni surface, the gas-solid reactions between the gaseous components presented in the system (C 2 H 6 , C 2 H 4 , CH 4 , CO 2 , CO, H 2 O, and H 2 ) and the lattice oxygen (O x ) on ceria surface also take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen (O x ) on ceria surface (C n H m + O x → nCO + m/2(H 2 ) + O x-n ) can prevent the formation of carbon species on Ni surface from hydrocarbons decomposition reaction. Moreover, the formation of carbon via Boudard reaction is also reduced by the gas-solid reaction of carbon monoxide with the lattice oxygen. IC-230 CATALYTIC STEAM REFORMING OF METHANE OVER NI ON HIGH SURFACE AREA CEO 2 AND CE-ZRO 2 SUPPORTS Navadol Laosiripojana, Suttichai Assabumrungrat, Weerawan Sutthisripok The PSU-UNS International Conference on Engineering and Environment (ICEE 2005), May 19-21, 2005, Novi Sad, Serbia &. Montenegro Methane steam reforming performances of Ni on high surface area (HSA) CeO 2 and Ce- International Conference

156 ZrO 2 supports have been studied under solid oxide fuel cell (SOFC) operating conditions. Their performances were compared to general Ni/CeO 2 , Ni/Ce-ZrO 2 , and Ni/A1 2 O 3 . It was observed that Ni/Ce-ZrO 2 (HSA) with the Ce/Zr ratio of 3/1 showed good activity and stability toward the methane steam reforming. Both Ni/Ce-ZrO 2 (HSA) and Ni/CeO 2 (HSA) presented better resistance toward carbon formation than the general Ni/CeO 2 , Ni/Ce- ZrO 2 , and Ni/A1 2 O 3 at the same operating conditions. The inlet H 2 O/CH 4 ratios required to operate without the formation of carbon species for Ni/Ce-ZrO 2 (HSA) and Ni/CeO 2 (HSA) are much lower. IC-231 CATALYTIC STEAM REFORMING OF HIGH SURFACE AREA CEO 2 FUELED BY METHANE Navadol Laosiripojana, Suttichai Assabumrungrat, David Chadwick International Hydrogen Energy Congress & Exhibition (IHEC 2005), July 13-15, 2005, Istanbul, Turkey High surface area ceria (CeO 2 (HSA)), synthesized by surfactant-assisted approach, was found to have useful methane steam reforming activity for H 2 and CO production under Solid Oxide Fuel Cells (SOFCs) conditions. Under methane steam reforming conditions, the catalyst provides extreme resistance toward carbon deposition. Moreover, compared to general low surface area caria (CeO 2 (LSA)), the use of CeO 2 (HSA) significantly reduces the deactivation rate due to the thermal sintering, and consequently provides higher steady state steam reforming reactivity under the same operating conditions. These enhancements are due to the high redox property of CeO 2 (HSA). During the steam reforming process, the redox reactions between the gaseous components in the system and the lattice oxygen (O x ) take place on ceria surface. Among these reactions, the rapid redox reactions of carbon compounds such as CH 4 , and CO with lattice oxygen (CH 4 + O x → CO + H 2 + O x-1 and CO + O x = CO 2 + O x-1) can prevent the formation of carbon species from the methane decomposition and Boudard reactions even at low inlet steam concentration. IC-232 FEASIBILITY STUDY OF GAS PURIFICATION USING PSA TO ENRICH METHANE IN BIOGAS FOR NGV APPLICATION THAILAND PERSPECTIVE KMUTT Annual Research Abstracts 2005 Shivanahalli K. Rajesh, Navadol Laosiripojana The 3 rd Eco-Energy and Materials Science and Engineering Symposium (EMSES), April 6-9, 2005, Lotus Pang Suan Kaew Hotel, Chiang Mai, Thailand Biogas cannot be transported easily over large distances. It requires large process volume. Biogas contains methane (CH 4 ) as a major energy value compound having 60% and 35- 40% CO 2 as well as 1000-2000 ppm of H 2 S. Biogas and natural gas cannot be subjected directly in the vehicles or the main processes. . It needs purification of harmful gases such as hydrogen sulfide and CO 2 . Removal and purification of H 2 S from biogas would help in preventing odors, safety hazards, and corrosion of the biogas transport equipment. Additionally, removal of CO 2 would increase significantly the BTU value of the remaining biogas, consisting predominantly of CH 4 . The biogas after purification is almost equal to the natural gas. The biogas technology witnessed the several failures in the past due to lack of technology matching in the end-use applications. Adsorption based processes, particularly Pressure Swing Adsorption (PSA), were shown to be the best techniques for achieving the separation of the constituents of a biogas stream. This paper, focus on techno-economic feasibility study for biogas purification to remove CO 2 and H 2 S by using pressure swing adsorption for NGV vehicles. Techno-economic study involves energy balance and cost economics of adsorption system. IC-233 TO PREPARE INITIAL CONDITIONS OF NUMERICAL OCEAN MODELING FOR THE GULF OF THAILAND WITH INTERPOLATION Nitima Aschariyaphotha, Prungchan Wongwises, Somchai Wongwises, Usa Humphries International Conference on Scientific Computing (ICSC05), June 4-8, 2005, Nanjing Normal University, Nanjing, China, p. 80 A numerical three dimensional ocean model with spherical coordinate in horizontal and vertical sigma coordinate developed for the Gulf of Thailand, situated between longitudes to and latitudes to, which requires climatological data as an important input. The model is applied to predict the current pattern, temperature and International Conference

  • Page 2:

    ISBN 974-456-652-3

  • Page 6:

    CONTENTS Page Preface International

  • Page 10 and 11:

    KMUTT Annual Research Abstracts 200

  • Page 12 and 13:

    KMUTT Annual Research Abstracts 200

  • Page 14 and 15:

    KMUTT Annual Research Abstracts 200

  • Page 16 and 17:

    KMUTT Annual Research Abstracts 200

  • Page 18 and 19:

    KMUTT Annual Research Abstracts 200

  • Page 20 and 21:

    KMUTT Annual Research Abstracts 200

  • Page 22 and 23:

    KMUTT Annual Research Abstracts 200

  • Page 24 and 25:

    KMUTT Annual Research Abstracts 200

  • Page 26 and 27:

    KMUTT Annual Research Abstracts 200

  • Page 28 and 29:

    KMUTT Annual Research Abstracts 200

  • Page 30 and 31:

    KMUTT Annual Research Abstracts 200

  • Page 32 and 33:

    KMUTT Annual Research Abstracts 200

  • Page 34 and 35:

    KMUTT Annual Research Abstracts 200

  • Page 36 and 37:

    KMUTT Annual Research Abstracts 200

  • Page 38 and 39:

    KMUTT Annual Research Abstracts 200

  • Page 40 and 41:

    KMUTT Annual Research Abstracts 200

  • Page 42 and 43:

    KMUTT Annual Research Abstracts 200

  • Page 44 and 45:

    KMUTT Annual Research Abstracts 200

  • Page 46 and 47:

    KMUTT Annual Research Abstracts 200

  • Page 48 and 49:

    KMUTT Annual Research Abstracts 200

  • Page 50 and 51:

    KMUTT Annual Research Abstracts 200

  • Page 52 and 53:

    KMUTT Annual Research Abstracts 200

  • Page 54 and 55:

    KMUTT Annual Research Abstracts 200

  • Page 56 and 57:

    KMUTT Annual Research Abstracts 200

  • Page 58:

    National Journals

  • Page 61 and 62:

    54 นอยกวาแบบต

  • Page 63 and 64:

    56 (Least Square Matching Method)

  • Page 65 and 66:

    58 อุณหภูมิ 30 แ

  • Page 67 and 68:

    60 สเปกตรัม จา

  • Page 69 and 70:

    62 ขอมูลดานทร

  • Page 71 and 72:

    64 22.8 มาตรฐานเป

  • Page 73 and 74:

    66 2545 NJ-033 EFFECTS OF ELEVATED

  • Page 75 and 76:

    68 เปลือกที่ม

  • Page 77 and 78:

    70 ของการดูดซ

  • Page 79 and 80:

    72 การสกัดดวย

  • Page 81 and 82:

    74 collection of authentic texts th

  • Page 83 and 84:

    76 รอยละ 32 มีสา

  • Page 86 and 87:

    KMUTT Annual Research Abstracts 200

  • Page 88 and 89:

    KMUTT Annual Research Abstracts 200

  • Page 90 and 91:

    KMUTT Annual Research Abstracts 200

  • Page 92 and 93:

    KMUTT Annual Research Abstracts 200

  • Page 94 and 95:

    KMUTT Annual Research Abstracts 200

  • Page 96 and 97:

    KMUTT Annual Research Abstracts 200

  • Page 98 and 99:

    KMUTT Annual Research Abstracts 200

  • Page 100 and 101:

    KMUTT Annual Research Abstracts 200

  • Page 102 and 103:

    KMUTT Annual Research Abstracts 200

  • Page 104 and 105:

    KMUTT Annual Research Abstracts 200

  • Page 106 and 107:

    KMUTT Annual Research Abstracts 200

  • Page 108 and 109:

    KMUTT Annual Research Abstracts 200

  • Page 110 and 111:

    KMUTT Annual Research Abstracts 200

  • Page 112 and 113: KMUTT Annual Research Abstracts 200
  • Page 114 and 115: KMUTT Annual Research Abstracts 200
  • Page 116 and 117: KMUTT Annual Research Abstracts 200
  • Page 118 and 119: KMUTT Annual Research Abstracts 200
  • Page 120 and 121: KMUTT Annual Research Abstracts 200
  • Page 122 and 123: KMUTT Annual Research Abstracts 200
  • Page 124 and 125: KMUTT Annual Research Abstracts 200
  • Page 126 and 127: KMUTT Annual Research Abstracts 200
  • Page 128 and 129: KMUTT Annual Research Abstracts 200
  • Page 130 and 131: KMUTT Annual Research Abstracts 200
  • Page 132 and 133: KMUTT Annual Research Abstracts 200
  • Page 134 and 135: KMUTT Annual Research Abstracts 200
  • Page 136 and 137: KMUTT Annual Research Abstracts 200
  • Page 138 and 139: KMUTT Annual Research Abstracts 200
  • Page 140 and 141: KMUTT Annual Research Abstracts 200
  • Page 142 and 143: KMUTT Annual Research Abstracts 200
  • Page 144 and 145: KMUTT Annual Research Abstracts 200
  • Page 146 and 147: KMUTT Annual Research Abstracts 200
  • Page 148 and 149: KMUTT Annual Research Abstracts 200
  • Page 150 and 151: KMUTT Annual Research Abstracts 200
  • Page 152 and 153: KMUTT Annual Research Abstracts 200
  • Page 154 and 155: KMUTT Annual Research Abstracts 200
  • Page 156 and 157: KMUTT Annual Research Abstracts 200
  • Page 158 and 159: KMUTT Annual Research Abstracts 200
  • Page 160 and 161: KMUTT Annual Research Abstracts 200
  • Page 164 and 165: KMUTT Annual Research Abstracts 200
  • Page 166 and 167: KMUTT Annual Research Abstracts 200
  • Page 168 and 169: KMUTT Annual Research Abstracts 200
  • Page 170 and 171: KMUTT Annual Research Abstracts 200
  • Page 172 and 173: KMUTT Annual Research Abstracts 200
  • Page 174 and 175: KMUTT Annual Research Abstracts 200
  • Page 176 and 177: KMUTT Annual Research Abstracts 200
  • Page 178 and 179: KMUTT Annual Research Abstracts 200
  • Page 180 and 181: KMUTT Annual Research Abstracts 200
  • Page 182 and 183: KMUTT Annual Research Abstracts 200
  • Page 184 and 185: KMUTT Annual Research Abstracts 200
  • Page 186 and 187: KMUTT Annual Research Abstracts 200
  • Page 188 and 189: KMUTT Annual Research Abstracts 200
  • Page 190 and 191: KMUTT Annual Research Abstracts 200
  • Page 192 and 193: KMUTT Annual Research Abstracts 200
  • Page 194 and 195: KMUTT Annual Research Abstracts 200
  • Page 196 and 197: KMUTT Annual Research Abstracts 200
  • Page 198 and 199: KMUTT Annual Research Abstracts 200
  • Page 200 and 201: KMUTT Annual Research Abstracts 200
  • Page 202 and 203: KMUTT Annual Research Abstracts 200
  • Page 204 and 205: KMUTT Annual Research Abstracts 200
  • Page 206 and 207: KMUTT Annual Research Abstracts 200
  • Page 208 and 209: KMUTT Annual Research Abstracts 200
  • Page 210 and 211: KMUTT Annual Research Abstracts 200
  • Page 212 and 213:

    KMUTT Annual Research Abstracts 200

  • Page 214:

    National Conferences

  • Page 217 and 218:

    210 จอมเทียนปา

  • Page 219 and 220:

    212 การสกัดสาร

  • Page 221 and 222:

    214 ไดแก อุณหภู

  • Page 223 and 224:

    216 โดยกลไกของ

  • Page 225 and 226:

    218 เคลือบเมื่

  • Page 227 and 228:

    220 สําเริง จัก

  • Page 229 and 230:

    222 ลดเวลาตลอด

  • Page 231 and 232:

    224 อุณหภูมิสู

  • Page 233 and 234:

    226 NC-043 การวิเคร

  • Page 235 and 236:

    228 เกิดพฤติกร

  • Page 237 and 238:

    230 เดียว เพื่อ

  • Page 239 and 240:

    232 มากนอยเพีย

  • Page 241 and 242:

    234 หลักที่พบใ

  • Page 243 and 244:

    236 NC-073 การออกแบ

  • Page 245 and 246:

    238 บทความนี้น

  • Page 247 and 248:

    240 นําเอาเวคเ

  • Page 249 and 250:

    242 งานวิจัยนี

  • Page 251 and 252:

    244 การอบแหงลด

  • Page 253 and 254:

    246 แยกเฟสต่ํา

  • Page 255 and 256:

    248 กลบ โดยเปรี

  • Page 257 and 258:

    250 นํามาใช คือ

  • Page 259 and 260:

    252 วิเคราะหหา

  • Page 261 and 262:

    254 NC-123 การวิเคร

  • Page 263 and 264:

    256 NC-129 เครื่องผ

  • Page 265 and 266:

    258 สามารถขยาย

  • Page 267 and 268:

    260 ครั้งที่ 43, 1-

  • Page 269 and 270:

    262 calculated with the use of the

  • Page 271 and 272:

    264 Version 1.3.1 และ Softwar

  • Page 273 and 274:

    266 ขนไกได จากก

  • Page 275 and 276:

    268 โครงสรางขอ

  • Page 277 and 278:

    270 การปลูกพืช

  • Page 279 and 280:

    272 ระดับพึงพอ

  • Page 281 and 282:

    274 ของแกสโซฮอ

  • Page 283 and 284:

    276 1) สภาพทั่วไ

  • Page 285 and 286:

    278 อนุปริญญา แ

  • Page 287 and 288:

    280 อาชีวศึกษา

  • Page 289 and 290:

    282 กระทบตอคุณ

  • Page 291 and 292:

    284 ตั้งกลไกแข

  • Page 293 and 294:

    286 นุชจรินทร เ

  • Page 295 and 296:

    288 โดยรวมผูบร

  • Page 297 and 298:

    290 แนนกระแสไฟ

  • Page 299 and 300:

    292 NC-222 ผลงานตีพ

  • Page 301 and 302:

    294 NC-227 เตาเผาไห

  • Page 303 and 304:

    296 จําเพาะรวม

  • Page 305 and 306:

    298 NC-238 จลนพลศาส

  • Page 307 and 308:

    300 ทนงเกียรติ

  • Page 309 and 310:

    302 ดีเซลนั้นม

  • Page 311 and 312:

    304 NC-254 การใชเทค

  • Page 313 and 314:

    306 อาคารศูนยก

  • Page 315 and 316:

    308 กระบวนการร

  • Page 317 and 318:

    310 บรรยากาศขอ

  • Page 319 and 320:

    312 metal ions on 2-AP biosyntheis

  • Page 321 and 322:

    314 total clones while the ethanol

  • Page 323 and 324:

    316 การประชุมท

  • Page 325 and 326:

    318 BioThailand (The 16 th Annual M

  • Page 327 and 328:

    320 สูงที่สุดพ

  • Page 329 and 330:

    322 นัยสําคัญท

  • Page 331 and 332:

    324 ความเขมขนร

  • Page 333 and 334:

    326 ปลูกแบบพรา

  • Page 335 and 336:

    328 นี้ทําใหทร

  • Page 337 and 338:

    330 ดุลชาติ มาน

  • Page 339 and 340:

    332 ไมโครเมตร ส

  • Page 341 and 342:

    334 In this study, we collected seq

  • Page 343 and 344:

    336 กนกรัตน นาค

  • Page 345 and 346:

    338 การพัฒนาสื

  • Page 347 and 348:

    340 one of the causes of difficulty

  • Page 349 and 350:

    342 ทวีรัตน วิจ

  • Page 351 and 352:

    344 program, Cytoscape. This model

  • Page 353 and 354:

    346 production demand. Nevertheless

  • Page 355 and 356:

    348 อุลตราไวโอ

  • Page 357 and 358:

    350 นี้อยูในชว

  • Page 359 and 360:

    352 เพื่อนําสว

  • Page 361 and 362:

    354 trichloroacetic acid (TCA) ม

  • Page 363 and 364:

    356 ทรัพยากรที

  • Page 365 and 366:

    358 ในประเทศสห

  • Page 367 and 368:

    360 8-9 ธันวาคม 2548,

  • Page 369 and 370:

    362 ซึ่งเกิดขอ

  • Page 371 and 372:

    364 NC-391 การวิเคร

  • Page 373 and 374:

    366 การประชุมว

  • Page 375 and 376:

    368 2547) พบวามหาว

  • Page 377 and 378:

    370 กนกพร ลีลาเ

  • Page 380:

    Authors Index

  • Page 383 and 384:

    376 จงจิตร หิรั

  • Page 385 and 386:

    378 ธ ธนธร ทองส

  • Page 387 and 388:

    380 พยุงศักดิ์

  • Page 389 and 390:

    382 วรรณพ วิเศษ

  • Page 391 and 392:

    384 สุดารัตน จิ

  • Page 393 and 394:

    386 อุลาวัณย กุ

  • Page 395 and 396:

    388 138, 141, 142 Jarunya Narangaja

  • Page 397 and 398:

    390 Panida Kongsawadworakul 191 Pan

  • Page 399 and 400:

    392 Sorakrich Maneewan 124, 136 Sor

  • Page 401 and 402:

    394 KMUTT Annual Research Abstracts

  • Page 404 and 405:

    KMUTT Annual Research Abstracts 200

  • Page 406 and 407:

    KMUTT Annual Research Abstracts 200

  • Page 408 and 409:

    KMUTT Annual Research Abstracts 200

  • Page 410 and 411:

    KMUTT Annual Research Abstracts 200

  • Page 412 and 413:

    KMUTT Annual Research Abstracts 200

  • Page 414 and 415:

    KMUTT Annual Research Abstracts 200

  • Page 416 and 417:

    KMUTT Annual Research Abstracts 200

  • Page 418 and 419:

    KMUTT Annual Research Abstracts 200

  • Page 420 and 421:

    KMUTT Annual Research Abstracts 200

  • Page 422 and 423:

    KMUTT Annual Research Abstracts 200

  • Page 424 and 425:

    KMUTT Annual Research Abstracts 200

  • Page 426 and 427:

    KMUTT Annual Research Abstracts 200

  • Page 428 and 429:

    KMUTT Annual Research Abstracts 200

  • Page 430 and 431:

    KMUTT Annual Research Abstracts 200

  • Page 432 and 433:

    KMUTT Annual Research Abstracts 200

  • Page 434 and 435:

    KMUTT Annual Research Abstracts 200

  • Page 436 and 437:

    KMUTT Annual Research Abstracts 200

  • Page 438 and 439:

    KMUTT Annual Research Abstracts 200

  • Page 440 and 441:

    KMUTT Annual Research Abstracts 200

  • Page 442 and 443:

    KMUTT Annual Research Abstracts 200

  • Page 444 and 445:

    KMUTT Annual Research Abstracts 200

  • Page 446 and 447:

    KMUTT Annual Research Abstracts 200

  • Page 448:

    KMUTT Annual Research Abstracts 200

  • Page 452:

    KMUTT Annual Research Abstracts 200