Views
3 years ago

Preface - kmutt

Preface - kmutt

KMUTT Annual Research

KMUTT Annual Research Abstracts 2005 This research deals with ihe feasibility of Integrating a new process based on reversedisomerization which converts i-paraffin to n- paraffin, prior to feeding to an existing naphtha steam cracking process. The study was done via thermodynamics, economics and the mechanism of reversed-isomerization reaction. The thermodynamic study showed that the equilibrium composition of i-paraffin and n- paraffin can be calculated via Gibb's free energy change of reaction using two correlations: Van Krevelen (theoretical) and Chermin (empirical). The results showed that a reversed-isomenzation process is technically possible and is strongly dependent on temperature. The equilibrium composition of n-paraffin will increase when temperature is increased. From the economics study, it was found that the integrated process was not feasible at equilibrium conversions. Also, this research proposes that the mechanism of the reversed-isomenzation reaction is similar to the mechanism of the isomerization reaction, but would operate in the opposite direction. IC-338 UPGRADING OF BIOGAS VIA WATER SCRUBBING Panghom Jermsutjarit, Jonathan Hoyin Chan, Donald W. Kirk The 55 th Canadian Chemical Engineering Conference, October 16-19, 2005, Metro Toronto Convention Centre, Toronto, Ontario, Canada The current interest in energy security has prompted many countries to look more seriously at developing renewable energy sources. Wind, solar and wave energies are examples. While these sources are available, the cost of bringing them on line for large scale utilization has been a significant deterrent. Nevertheless there are potential opportunities for developing distributed energy supplies using smaller scale energy systems. One such opportunity is to use biogas generated from anaerobic digestion of organic wastes. Biogas can be captured from anaerobic digestion of sludge from waste water treatment, from municipal waste landfill sites or from farming operations. The biogas as produced contains in addition to valuable methane gas, carbon dioxide, nitrogen, sulphur compounds and water vapour. The chemical value is quite low and the contaminants generally prevent direct use of the gas as a fuel. 195 In this work, we reinvestigate water scrubbing of biogas as an inexpensive cleanup and upgrading unit operation for a particular landfill biogas. The target is to provide a clean methane, carbon dioxide gas mixture with an enhanced methane value. The operation includes the water system with recycle. The modeling uses Aspen plus with experimental data. The results show that under certain conditions, water scrubbing can be an effective biogas treatment method. IC-339 OXIDATIVE KINETIC ANALYSIS OF MALTODEXTRIN Chadarat Kheanprasit, Jonathan Hoyin Chan Starch Update 2005 : The 3 rd Conference on Starch Technology (BioThailand 2005), November 4-5, 2005, Queen Sirikit National Convention Center, Bangkok, Thailand, p. 330 The reaction kinetics of maltodextrin was studied in an oxidative environment in this work using a thermogravimetric analyzer (TGA). The obtained TGA thermogram showed that there were three major regions: water (Region W), branched amylopectin (Region I) and linear amylose (Region II). In addition, using a pseudo first order method of kinetic analysis, it was found that Region I may be further classified into four temperature subregions with distinct activation energies and Region II into three sub-regions. This indicates a potential change in the degradation mechanism of maltodextrin as a function of temperature for this group of glucose polymers. IC-340 WATER VAPOUR TRANSMISSION CHARACTERISTICS OF STARCH-MODIFIED FILMS Chadarat Kheanprasit, Wanchai Lerdwijitjarud, Jonathan Hoyin Chan Starch Update 2005 : The 3 rd Conference on Starch Technology (BioThailand 2005), November 4-5, 2005, Queen Sirikit National Convention Center, Bangkok, Thailand, p. 375 Thermally degradable high density polyethylene (HDPE) samples containing modified starch (malto-dextrin) additives were investigated in this work. The film specimens were produce either by a blown film extruder or by a twin screw extruder followed by compression molding. They were tested for their International Conference

196 water vapour transmission rates (WVTR) as a function of the starch content. WVTR increased with higher additive loading, as expected, due to the hygroscopic nature of the starch additive. Based on these results, a study was then done by using starch as an additive to produce breathable films. Different loadings of calciu carbonate and starch were used to prepare the HDPE blends. The modified HDPE films were found to have WVTR values very comparable to commercially available breathable films. In addition, the (bio)degradability of the breathable film is expected to improve with starch addition. It is recommended that further work to be undertaken in order to improve the compatibility as well as mixing and disperson of the additives in this particular film system. IC-341 ENGINEERING THE PHOSPHATE BINDING PROTEIN FOR AN OXYANION SENSOR ARRAY Sukunya Oaew, Tony Cass The International Conference on Bionanotechnology : A New Chapter of Life (BioThailand 2005), November 2-4, 2005, Queen Sirikit National Convention Center, Bangkok, Thailand, p. 19 The use of periplasmic binding proteins as biorecognition elements in biosensor applications has risen over the past decade. This is due to their diversity in ligand recognition, well-defined ligand binding mechanism and available x-ray crystal structures. This thesis describes the development of the phosphate binding protein (PBP) as an oxyanion sensor by widening the native ligand binding range. A 6- histidine tag was introduced to the C-terminus of PBP both to ease purification by affinity chromatography and to effect immobilization on Ni-NTA modified glass slides. To sense phosphate binding, the cysteine mutant (A197C) was constructed and an environmentally sensitive fluorophore (MDCC) covalently attached via the introduced thiol group. The apparent Kd for phosphate binding was found to be 0.31 ± 0.13 µM. In order to widen the range of phosphate quantification and produce the elements of an oxyanion sensing array, sitedirected mutagenesis was employed to generate PBP variants. The affinities of mutants for phosphate and a variety of oxyanion ligands that have similar geometry to phosphate were tested in solution in a 96-well plate format. A mixture KMUTT Annual Research Abstracts 2005 of mutants with one-order of magnitude differences in the binding constants was used to make a composite sensor, in which the range of phosphate quantification could be extended to four-orders of magnitude (0.1-3000 µM). On testing with other oxyanion ligands, the D56H mutant was found to bind most of the tested oxyanions (FPO 2- 3- 3 , AsOU 4 and MoO 2- 4 ) followed by the S254G (FPO 2- 3 and AsO 3- 4 ) and F11H (C1O - 4 and MoO 2- 4 ) mutants. In addition, isothermal titration calorimetry (ITC), fluorescence lifetime imaging (FLIM) and circular dichroism (CD) were employed to gain further insight into the properties of the proteins when binding to phosphate. Finally, all the mutants were arrayed by immobilization on modified glass slides and tested for their suitability for making protein microarray based biosensors. In this work, we have demonstrated that the ligand binding affinity and specificity of a single protein can be altered using rational protein design. By using this strategy, whilst altering protein binding properties, a common molecular signal transduction was conserved. This accordingly may found to be useful for biosensor and protein array development in future by diversifying the range of biological recognition elements for particular applications without requiring the development of new detection technology. IC-342 HYDROPHOBIC COATING OF CARBON NANOTUBE MODIFIED ELECTRODE FOR PHENOLIC COMPOUNDS DETECTION Chatuporn Phanthong, Mithran Somasundrum The International Conference on Bionanotechnology : A New Chapter of Life (BioThailand 2005), November 2-4, 2005, Queen Sirikit National Convention Center, Bangkok, Thailand, p. 24 Phenolic compounds are hydrophobic chemicals which moderately dissolve in water. A phenol sensor for direct measurement in waste water, should process redox activity that enable operate at low voltage potentials, high sensitivity, low detection limits and moreover prevent fouling by phenol reaction products. A phenol sensor based on a hydrophobic solvent coated onto a carbon nanotube-modified carbon electrode is a new method that has begun to be characterized. The selection of the hydrophobic solvent for coating onto electrode surface, to International Conference

  • Page 2:

    ISBN 974-456-652-3

  • Page 6:

    CONTENTS Page Preface International

  • Page 10 and 11:

    KMUTT Annual Research Abstracts 200

  • Page 12 and 13:

    KMUTT Annual Research Abstracts 200

  • Page 14 and 15:

    KMUTT Annual Research Abstracts 200

  • Page 16 and 17:

    KMUTT Annual Research Abstracts 200

  • Page 18 and 19:

    KMUTT Annual Research Abstracts 200

  • Page 20 and 21:

    KMUTT Annual Research Abstracts 200

  • Page 22 and 23:

    KMUTT Annual Research Abstracts 200

  • Page 24 and 25:

    KMUTT Annual Research Abstracts 200

  • Page 26 and 27:

    KMUTT Annual Research Abstracts 200

  • Page 28 and 29:

    KMUTT Annual Research Abstracts 200

  • Page 30 and 31:

    KMUTT Annual Research Abstracts 200

  • Page 32 and 33:

    KMUTT Annual Research Abstracts 200

  • Page 34 and 35:

    KMUTT Annual Research Abstracts 200

  • Page 36 and 37:

    KMUTT Annual Research Abstracts 200

  • Page 38 and 39:

    KMUTT Annual Research Abstracts 200

  • Page 40 and 41:

    KMUTT Annual Research Abstracts 200

  • Page 42 and 43:

    KMUTT Annual Research Abstracts 200

  • Page 44 and 45:

    KMUTT Annual Research Abstracts 200

  • Page 46 and 47:

    KMUTT Annual Research Abstracts 200

  • Page 48 and 49:

    KMUTT Annual Research Abstracts 200

  • Page 50 and 51:

    KMUTT Annual Research Abstracts 200

  • Page 52 and 53:

    KMUTT Annual Research Abstracts 200

  • Page 54 and 55:

    KMUTT Annual Research Abstracts 200

  • Page 56 and 57:

    KMUTT Annual Research Abstracts 200

  • Page 58:

    National Journals

  • Page 61 and 62:

    54 นอยกวาแบบต

  • Page 63 and 64:

    56 (Least Square Matching Method)

  • Page 65 and 66:

    58 อุณหภูมิ 30 แ

  • Page 67 and 68:

    60 สเปกตรัม จา

  • Page 69 and 70:

    62 ขอมูลดานทร

  • Page 71 and 72:

    64 22.8 มาตรฐานเป

  • Page 73 and 74:

    66 2545 NJ-033 EFFECTS OF ELEVATED

  • Page 75 and 76:

    68 เปลือกที่ม

  • Page 77 and 78:

    70 ของการดูดซ

  • Page 79 and 80:

    72 การสกัดดวย

  • Page 81 and 82:

    74 collection of authentic texts th

  • Page 83 and 84:

    76 รอยละ 32 มีสา

  • Page 86 and 87:

    KMUTT Annual Research Abstracts 200

  • Page 88 and 89:

    KMUTT Annual Research Abstracts 200

  • Page 90 and 91:

    KMUTT Annual Research Abstracts 200

  • Page 92 and 93:

    KMUTT Annual Research Abstracts 200

  • Page 94 and 95:

    KMUTT Annual Research Abstracts 200

  • Page 96 and 97:

    KMUTT Annual Research Abstracts 200

  • Page 98 and 99:

    KMUTT Annual Research Abstracts 200

  • Page 100 and 101:

    KMUTT Annual Research Abstracts 200

  • Page 102 and 103:

    KMUTT Annual Research Abstracts 200

  • Page 104 and 105:

    KMUTT Annual Research Abstracts 200

  • Page 106 and 107:

    KMUTT Annual Research Abstracts 200

  • Page 108 and 109:

    KMUTT Annual Research Abstracts 200

  • Page 110 and 111:

    KMUTT Annual Research Abstracts 200

  • Page 112 and 113:

    KMUTT Annual Research Abstracts 200

  • Page 114 and 115:

    KMUTT Annual Research Abstracts 200

  • Page 116 and 117:

    KMUTT Annual Research Abstracts 200

  • Page 118 and 119:

    KMUTT Annual Research Abstracts 200

  • Page 120 and 121:

    KMUTT Annual Research Abstracts 200

  • Page 122 and 123:

    KMUTT Annual Research Abstracts 200

  • Page 124 and 125:

    KMUTT Annual Research Abstracts 200

  • Page 126 and 127:

    KMUTT Annual Research Abstracts 200

  • Page 128 and 129:

    KMUTT Annual Research Abstracts 200

  • Page 130 and 131:

    KMUTT Annual Research Abstracts 200

  • Page 132 and 133:

    KMUTT Annual Research Abstracts 200

  • Page 134 and 135:

    KMUTT Annual Research Abstracts 200

  • Page 136 and 137:

    KMUTT Annual Research Abstracts 200

  • Page 138 and 139:

    KMUTT Annual Research Abstracts 200

  • Page 140 and 141:

    KMUTT Annual Research Abstracts 200

  • Page 142 and 143:

    KMUTT Annual Research Abstracts 200

  • Page 144 and 145:

    KMUTT Annual Research Abstracts 200

  • Page 146 and 147:

    KMUTT Annual Research Abstracts 200

  • Page 148 and 149:

    KMUTT Annual Research Abstracts 200

  • Page 150 and 151:

    KMUTT Annual Research Abstracts 200

  • Page 152 and 153: KMUTT Annual Research Abstracts 200
  • Page 154 and 155: KMUTT Annual Research Abstracts 200
  • Page 156 and 157: KMUTT Annual Research Abstracts 200
  • Page 158 and 159: KMUTT Annual Research Abstracts 200
  • Page 160 and 161: KMUTT Annual Research Abstracts 200
  • Page 162 and 163: KMUTT Annual Research Abstracts 200
  • Page 164 and 165: KMUTT Annual Research Abstracts 200
  • Page 166 and 167: KMUTT Annual Research Abstracts 200
  • Page 168 and 169: KMUTT Annual Research Abstracts 200
  • Page 170 and 171: KMUTT Annual Research Abstracts 200
  • Page 172 and 173: KMUTT Annual Research Abstracts 200
  • Page 174 and 175: KMUTT Annual Research Abstracts 200
  • Page 176 and 177: KMUTT Annual Research Abstracts 200
  • Page 178 and 179: KMUTT Annual Research Abstracts 200
  • Page 180 and 181: KMUTT Annual Research Abstracts 200
  • Page 182 and 183: KMUTT Annual Research Abstracts 200
  • Page 184 and 185: KMUTT Annual Research Abstracts 200
  • Page 186 and 187: KMUTT Annual Research Abstracts 200
  • Page 188 and 189: KMUTT Annual Research Abstracts 200
  • Page 190 and 191: KMUTT Annual Research Abstracts 200
  • Page 192 and 193: KMUTT Annual Research Abstracts 200
  • Page 194 and 195: KMUTT Annual Research Abstracts 200
  • Page 196 and 197: KMUTT Annual Research Abstracts 200
  • Page 198 and 199: KMUTT Annual Research Abstracts 200
  • Page 200 and 201: KMUTT Annual Research Abstracts 200
  • Page 204 and 205: KMUTT Annual Research Abstracts 200
  • Page 206 and 207: KMUTT Annual Research Abstracts 200
  • Page 208 and 209: KMUTT Annual Research Abstracts 200
  • Page 210 and 211: KMUTT Annual Research Abstracts 200
  • Page 212 and 213: KMUTT Annual Research Abstracts 200
  • Page 214: National Conferences
  • Page 217 and 218: 210 จอมเทียนปา
  • Page 219 and 220: 212 การสกัดสาร
  • Page 221 and 222: 214 ไดแก อุณหภู
  • Page 223 and 224: 216 โดยกลไกของ
  • Page 225 and 226: 218 เคลือบเมื่
  • Page 227 and 228: 220 สําเริง จัก
  • Page 229 and 230: 222 ลดเวลาตลอด
  • Page 231 and 232: 224 อุณหภูมิสู
  • Page 233 and 234: 226 NC-043 การวิเคร
  • Page 235 and 236: 228 เกิดพฤติกร
  • Page 237 and 238: 230 เดียว เพื่อ
  • Page 239 and 240: 232 มากนอยเพีย
  • Page 241 and 242: 234 หลักที่พบใ
  • Page 243 and 244: 236 NC-073 การออกแบ
  • Page 245 and 246: 238 บทความนี้น
  • Page 247 and 248: 240 นําเอาเวคเ
  • Page 249 and 250: 242 งานวิจัยนี
  • Page 251 and 252: 244 การอบแหงลด
  • Page 253 and 254:

    246 แยกเฟสต่ํา

  • Page 255 and 256:

    248 กลบ โดยเปรี

  • Page 257 and 258:

    250 นํามาใช คือ

  • Page 259 and 260:

    252 วิเคราะหหา

  • Page 261 and 262:

    254 NC-123 การวิเคร

  • Page 263 and 264:

    256 NC-129 เครื่องผ

  • Page 265 and 266:

    258 สามารถขยาย

  • Page 267 and 268:

    260 ครั้งที่ 43, 1-

  • Page 269 and 270:

    262 calculated with the use of the

  • Page 271 and 272:

    264 Version 1.3.1 และ Softwar

  • Page 273 and 274:

    266 ขนไกได จากก

  • Page 275 and 276:

    268 โครงสรางขอ

  • Page 277 and 278:

    270 การปลูกพืช

  • Page 279 and 280:

    272 ระดับพึงพอ

  • Page 281 and 282:

    274 ของแกสโซฮอ

  • Page 283 and 284:

    276 1) สภาพทั่วไ

  • Page 285 and 286:

    278 อนุปริญญา แ

  • Page 287 and 288:

    280 อาชีวศึกษา

  • Page 289 and 290:

    282 กระทบตอคุณ

  • Page 291 and 292:

    284 ตั้งกลไกแข

  • Page 293 and 294:

    286 นุชจรินทร เ

  • Page 295 and 296:

    288 โดยรวมผูบร

  • Page 297 and 298:

    290 แนนกระแสไฟ

  • Page 299 and 300:

    292 NC-222 ผลงานตีพ

  • Page 301 and 302:

    294 NC-227 เตาเผาไห

  • Page 303 and 304:

    296 จําเพาะรวม

  • Page 305 and 306:

    298 NC-238 จลนพลศาส

  • Page 307 and 308:

    300 ทนงเกียรติ

  • Page 309 and 310:

    302 ดีเซลนั้นม

  • Page 311 and 312:

    304 NC-254 การใชเทค

  • Page 313 and 314:

    306 อาคารศูนยก

  • Page 315 and 316:

    308 กระบวนการร

  • Page 317 and 318:

    310 บรรยากาศขอ

  • Page 319 and 320:

    312 metal ions on 2-AP biosyntheis

  • Page 321 and 322:

    314 total clones while the ethanol

  • Page 323 and 324:

    316 การประชุมท

  • Page 325 and 326:

    318 BioThailand (The 16 th Annual M

  • Page 327 and 328:

    320 สูงที่สุดพ

  • Page 329 and 330:

    322 นัยสําคัญท

  • Page 331 and 332:

    324 ความเขมขนร

  • Page 333 and 334:

    326 ปลูกแบบพรา

  • Page 335 and 336:

    328 นี้ทําใหทร

  • Page 337 and 338:

    330 ดุลชาติ มาน

  • Page 339 and 340:

    332 ไมโครเมตร ส

  • Page 341 and 342:

    334 In this study, we collected seq

  • Page 343 and 344:

    336 กนกรัตน นาค

  • Page 345 and 346:

    338 การพัฒนาสื

  • Page 347 and 348:

    340 one of the causes of difficulty

  • Page 349 and 350:

    342 ทวีรัตน วิจ

  • Page 351 and 352:

    344 program, Cytoscape. This model

  • Page 353 and 354:

    346 production demand. Nevertheless

  • Page 355 and 356:

    348 อุลตราไวโอ

  • Page 357 and 358:

    350 นี้อยูในชว

  • Page 359 and 360:

    352 เพื่อนําสว

  • Page 361 and 362:

    354 trichloroacetic acid (TCA) ม

  • Page 363 and 364:

    356 ทรัพยากรที

  • Page 365 and 366:

    358 ในประเทศสห

  • Page 367 and 368:

    360 8-9 ธันวาคม 2548,

  • Page 369 and 370:

    362 ซึ่งเกิดขอ

  • Page 371 and 372:

    364 NC-391 การวิเคร

  • Page 373 and 374:

    366 การประชุมว

  • Page 375 and 376:

    368 2547) พบวามหาว

  • Page 377 and 378:

    370 กนกพร ลีลาเ

  • Page 380:

    Authors Index

  • Page 383 and 384:

    376 จงจิตร หิรั

  • Page 385 and 386:

    378 ธ ธนธร ทองส

  • Page 387 and 388:

    380 พยุงศักดิ์

  • Page 389 and 390:

    382 วรรณพ วิเศษ

  • Page 391 and 392:

    384 สุดารัตน จิ

  • Page 393 and 394:

    386 อุลาวัณย กุ

  • Page 395 and 396:

    388 138, 141, 142 Jarunya Narangaja

  • Page 397 and 398:

    390 Panida Kongsawadworakul 191 Pan

  • Page 399 and 400:

    392 Sorakrich Maneewan 124, 136 Sor

  • Page 401 and 402:

    394 KMUTT Annual Research Abstracts

  • Page 404 and 405:

    KMUTT Annual Research Abstracts 200

  • Page 406 and 407:

    KMUTT Annual Research Abstracts 200

  • Page 408 and 409:

    KMUTT Annual Research Abstracts 200

  • Page 410 and 411:

    KMUTT Annual Research Abstracts 200

  • Page 412 and 413:

    KMUTT Annual Research Abstracts 200

  • Page 414 and 415:

    KMUTT Annual Research Abstracts 200

  • Page 416 and 417:

    KMUTT Annual Research Abstracts 200

  • Page 418 and 419:

    KMUTT Annual Research Abstracts 200

  • Page 420 and 421:

    KMUTT Annual Research Abstracts 200

  • Page 422 and 423:

    KMUTT Annual Research Abstracts 200

  • Page 424 and 425:

    KMUTT Annual Research Abstracts 200

  • Page 426 and 427:

    KMUTT Annual Research Abstracts 200

  • Page 428 and 429:

    KMUTT Annual Research Abstracts 200

  • Page 430 and 431:

    KMUTT Annual Research Abstracts 200

  • Page 432 and 433:

    KMUTT Annual Research Abstracts 200

  • Page 434 and 435:

    KMUTT Annual Research Abstracts 200

  • Page 436 and 437:

    KMUTT Annual Research Abstracts 200

  • Page 438 and 439:

    KMUTT Annual Research Abstracts 200

  • Page 440 and 441:

    KMUTT Annual Research Abstracts 200

  • Page 442 and 443:

    KMUTT Annual Research Abstracts 200

  • Page 444 and 445:

    KMUTT Annual Research Abstracts 200

  • Page 446 and 447:

    KMUTT Annual Research Abstracts 200

  • Page 448:

    KMUTT Annual Research Abstracts 200

  • Page 452:

    KMUTT Annual Research Abstracts 200

แผนการจัดการความรู้ - kmutt
Cover, Foreword, Preface, Acknowledgements, List of ... - IARC
Preface C# Programming: From Problem Analysis To Program Design
The Interpretation Of Dreams Sigmund Freud (1900) PREFACE
Cover, Foreword, Preface, Acknowledgements, Content - iarc
Preface to the Third Edition - Handbook of inter-rater reliability, 3rd ...
The British essayists, with prefaces, biographical, historical, and critical
Preface - FHWA Safety Program - U.S. Department of Transportation
Front Matter (Title Page, TOC, Preface and Forward) - Store
preface - National Institute of Fuel-Cell Technology - West Virginia ...
Abstracts of the Scientific Posters, 2013 AACC Annual Meeting ...
AU Abstracts 2008 - AU Journal - Assumption University of Thailand
Annual Report 2006 - Thai Beverage Public Company Limited
Energy Efficiency in Industry in Thailand
2007 Graduate Catalog and 2006 Annual R & D Report - Sirindhorn ...
BIO-DATA Name: Somchart Soponronnarit (สมชาติ โสภณรณ ... - kmutt
CURRICULUM VITAE Name Mr. Somkiat Prachayawarakorn ... - kmutt
ประวัติ (CV) - kmutt
ตัวอยางจดหมายสมัครงาน - kmutt
คำแนะนำการเขียนคำขอสิทธิบัตร - kmutt
Suranaree Journal of Science and Technology - kmutt
Download Oral presentation program - kmutt
แบบสำรวจความพึงพอใจ การใช้บริการยานพาหนะ รับ - kmutt
รายชื่อเล่มวิทยานิพนธ์ระดับบัณฑิตศึกษา - kmutt