Views
3 years ago

Preface - kmutt

Preface - kmutt

KMUTT Annual Research

KMUTT Annual Research Abstracts 2005 GLA proportion in fermented mass was increased during the fungal growth. Highest biomass (0.2 g/g dry substrate) and highest GLA content (2 g/kg dry substrate) were obtained after 3 days. The results suggested that SSF using soy bean pulp could be applied to produce GLA rich-oils. NC-345 DEVELOPMENT OF A TOOL FOR RELATIVE GENE EXPRESSION ANALYSIS พิชาภัค อุทัยไพศาลวงศ, เสาวลักษณ กัลปณุลักษณ, ตรีนุช สายทอง, อัศวิน มีชัย, เกรียงไกร ปอแกว, สุภาภรณ ชีวะธนรักษ, ศักรินทร ภูมิรัตน BioThailand (The 16 th Annual Meeting of the Thai Society of Biotechnology: The Era of Bionanotechnology), 4-5 พฤศจิกายน 2548, ศูนยการประชุมแหงชาติสิริกิติ์, กรุงเทพฯ, หนา 75 At present, researchers have been interested in the quantitative representation of gene interaction. This representation allows the study and prediction of gene expression level, and the cell behaviors under changing genetic and environmental conditions. Recently, a new algorithm for quantifying the relative gene interaction has been developed by our group. It bases on the evaluation of the Expression Correlation Coefficient (ECC) indicating the extent of two-gene interaction. This new method, although proven helpful, is laborious and time-consuming, particularly for highly complex gene networks. To tackle the problem, we are developing a software tool to facilitate the analysis of the relative gene expression of large networks. We design a stand-alone tool for supporting the time-series-Stanford microarray data. Written by the perl programming language, our tool consists of three main modules including Mysql-based database, calculation, and output report modules. The database module retrieves and rearranges the raw and normalized microarray data from The Stanford Microarray Databases (SMD) to the format easily for ECC computation. For demonstration, diauxic shift experiments of Saccharomyces cerevisiae are employed for generating the quantitative relative gene interaction. In the calculation and output report modules, we query the Log(base2) of R/G normalized ratio of each gene from database to evaluate the ECC values and show the results of ECC in each interaction relation pair by bar graphs and show the set of gene relation in a 343 matrix format. Interpretation of these results provides insight into the interaction of genes in relation with environmental conditions being exposed. NC-346 CONSTRUCTION OF TRANSCRIPTIONAL REGULATORY NETWORK OF DESATURASE GENES INVOLVED IN ESSENTIAL FATTY ACID SYNTHESIS OF Mucor rouxii VIA COMPUTATIONAL APPROACH พิณรัตน รัตนวิสุทธิ์, กอบกุล เหลาเทง, มรกต ตันติเจริญ, ศักรินทร ภูมิรัตน, สุภาภรณ ชีวะธนรักษ BioThailand (The 16 th Annual Meeting of the Thai Society of Biotechnology: The Era of Bionanotechnology), 4-5 พฤศจิกายน 2548, ศูนยการประชุมแหงชาติสิริกิติ์, กรุงเทพฯ, หนา 57 Gamma-linolenic acid (GLA) is an essential fatty acid, which has beneficial impact on human health, Mucor rouxii is an oleaginous fungus capable of accumulating high amount of GLA (40% w/w total fatty acid). Insight understanding the molecular basis of regulation of genes involved in GLA synthesis will facilitate in the process design and product optimization. In this work, the transcription factor (TF) binding sites of upstream promoter sequences of genes involved in GLA synthesis of M. rouxii were identified and then used to construct a transcriptional regulatory network model of fatty acid desaturation. Three databases, including Genomatrix, Motiffinder and TFsearch, were used for computational prediction of TF binding sites. 70, 82, 77 and 80 TFs binding sites were firstly selected from the ∆ 9 , ∆ 12 and ∆ 6 (isoform I and II) desaturase promoters with the core and matrix similarities thresholds of 1 and ≥0.85, respectively. There were 72 identified TF binding sites that shared ng these promoters. Subsequently, the individual and shared TFs were classified into 20 functional categories by using Ontoglyphs. Four important functional categories involved in fatty acid synthesis were found, including lipid metabolism, carbohydrate metabolism, amino acid metabolism and stress responsive mechanism. Based on the gene ontology (GO), only 46 TFs matched with the identified proteins, that possess the transcription factor activity. The transcriptional regulatory network model of fatty acid desaturation of M. rouxii was constructed and visualized by a visualization National Conference

344 program, Cytoscape. This model is being used to decipher the control of GLA synthesis in M. rouxii and to assist the experimental ationof the important TF binding sites. NC-347 FUNCTIONAL EXPRESSION Spirulina ∆ 12 - AND ∆ 6 -DESTURASES IN HETEROLOGOUS YEAST, Saccharomycese cerevisiae พีรดา พรหมมีเนตร, อภิรดี หงสทอง, ภาวิณี เกิดฤทธิ์, สุภาภรณ ชีวะธนรักษ BioThailand (The 16 th Annual Meeting of the Thai Society of Biotechnology: The Era of Bionanotechnology), 4-5 พฤศจิกายน 2548, ศูนยการประชุมแหงชาติสิริกิติ์, กรุงเทพฯ, หนา 246 The γ-linolenic acid (GLA) biosynthesis in Spirulina sp. is involved with three difference enzymes, ∆ 9 -, ∆ 12 - and ∆ 6 - desaturase which encoded by gene desC, desA and desD, respectively. These enzymes catalyze the fatty acid desaturation process to yield GLA as the final desaturation product in its pathway. In this study, the Spirulina desA and desD desaturase genes have been cloned and functionally characterized by heterologous expression in yeast, Saccharomycese cerevisiae cells. The products of desaturation reaction were determined by gas chromatographic and mass spectrometric analysis of the yeast cultures. The results indicated the growth of yeast cells with co-expression activity of Spirulina ∆ 12 - desaturase and ∆ 6 -desaturase and yield the final product in this pathway, GLA. The result revealed a possible way for Spirulina desaturases pathway reconstitution in heterologous yeast cells and also indicated a possibility for using a heterologous yeast cells as a model for functional study of Spirulina GLA pathway reconstruction. NC-348 FLUX ANALYSIS OF CENTRAL METABOLIC PATHWAYS OF Saccharomyces cerevesiae GROWN UNDER LOW TEMPERATURE มนตรี ฉายสวาง, กฤติญา เกรียงศักดิ์ศรี, กอบกุล เหลาเทง, อภิรดี หงสทอง, วศิมน เรืองเล็ก, อัศวิน มีชัย, สุภาภรณ ชีวะธนรักษ, ศักรินทร ภูมิรัตน BioThailand (The 16 th Annual Meeting of the Thai Society of Biotechnology: The Era of Bionanotechnology), 4-5 พฤศจิกายน 2548, KMUTT Annual Research Abstracts 2005 ศูนยการประชุมแหงชาติสิริกิติ์, กรุงเทพฯ, หนา 55 Cold temperature has been reported to increase the synthesis of polyunsaturated fatty acid (PUFA) in fungi including Saccaromyces cerevisiae, but fairly little information regarding cellular fluxes under such condition is available. In this study, we investigated how low temperature affected the intracellular fluxes particularly on the central metabolic pathways of S. cerevisiae, hoping to disclose the critical enzymes controlling step that could dominate the PUFA synthesis. The estimated cellular fluxes of the major central pathways including the Embden-Meyerhoff-Parnas pathway, the pentose phosphate pathway, and the tricarboxylic acid cycle of S. cerevisiae were compared using metabolic flux analysis (MFA) of chemostat culture at 15 and 30°C. The stoichiometric model of 74 reactions and 65 metabolites describing yeast aerobic metabolism was constructed based on data from yeast genome databases and literatures. Preminary results showed that, with the equally-controlled growth rate, the low temperature led to reduction in rates of malate secretion but enhancing that of ethanol and acetate. Analysis studies concerning the calculation and comparison of the intracellular fluxes in the central pathways of the two temperatures aim to determine potential rate controlling reactions. Future redirection of rate controlling fluxes could potentially lead to an improved precursors yield for PUFA production in S. cerevisiae cultivation at 30 °C. NC-349 EFFECT OF GLUCOSE CONCENTRATION ON THE FATTY ACID AND LIPID BIOSYNTHESIS OF Mucor rouxii รพีพรรณ พงษเชื้อชิดไทย, กอบกุล เหลาเทง, มรกต ตันติเจริญ, สุภาภรณ ชีวะธนรักษ BioThailand (The 16 th Annual Meeting of the Thai Society of Biotechnology: The Era of Bionanotechnology), 4-5 พฤศจิกายน 2548, ศูนยการประชุมแหงชาติสิริกิติ์, กรุงเทพฯ, หนา 252 fatty acids play the important roles as structure and function of biological organisms. Several factors affecting on the fatty acid constitution have been reported. Nutrient component mediated in fatty acid and lipid metabolisms of many organisms. Mucor rouxii is one of the promising sources for production of an essential fatty acid, gamma-linolenic acid National Conference

  • Page 2:

    ISBN 974-456-652-3

  • Page 6:

    CONTENTS Page Preface International

  • Page 10 and 11:

    KMUTT Annual Research Abstracts 200

  • Page 12 and 13:

    KMUTT Annual Research Abstracts 200

  • Page 14 and 15:

    KMUTT Annual Research Abstracts 200

  • Page 16 and 17:

    KMUTT Annual Research Abstracts 200

  • Page 18 and 19:

    KMUTT Annual Research Abstracts 200

  • Page 20 and 21:

    KMUTT Annual Research Abstracts 200

  • Page 22 and 23:

    KMUTT Annual Research Abstracts 200

  • Page 24 and 25:

    KMUTT Annual Research Abstracts 200

  • Page 26 and 27:

    KMUTT Annual Research Abstracts 200

  • Page 28 and 29:

    KMUTT Annual Research Abstracts 200

  • Page 30 and 31:

    KMUTT Annual Research Abstracts 200

  • Page 32 and 33:

    KMUTT Annual Research Abstracts 200

  • Page 34 and 35:

    KMUTT Annual Research Abstracts 200

  • Page 36 and 37:

    KMUTT Annual Research Abstracts 200

  • Page 38 and 39:

    KMUTT Annual Research Abstracts 200

  • Page 40 and 41:

    KMUTT Annual Research Abstracts 200

  • Page 42 and 43:

    KMUTT Annual Research Abstracts 200

  • Page 44 and 45:

    KMUTT Annual Research Abstracts 200

  • Page 46 and 47:

    KMUTT Annual Research Abstracts 200

  • Page 48 and 49:

    KMUTT Annual Research Abstracts 200

  • Page 50 and 51:

    KMUTT Annual Research Abstracts 200

  • Page 52 and 53:

    KMUTT Annual Research Abstracts 200

  • Page 54 and 55:

    KMUTT Annual Research Abstracts 200

  • Page 56 and 57:

    KMUTT Annual Research Abstracts 200

  • Page 58:

    National Journals

  • Page 61 and 62:

    54 นอยกวาแบบต

  • Page 63 and 64:

    56 (Least Square Matching Method)

  • Page 65 and 66:

    58 อุณหภูมิ 30 แ

  • Page 67 and 68:

    60 สเปกตรัม จา

  • Page 69 and 70:

    62 ขอมูลดานทร

  • Page 71 and 72:

    64 22.8 มาตรฐานเป

  • Page 73 and 74:

    66 2545 NJ-033 EFFECTS OF ELEVATED

  • Page 75 and 76:

    68 เปลือกที่ม

  • Page 77 and 78:

    70 ของการดูดซ

  • Page 79 and 80:

    72 การสกัดดวย

  • Page 81 and 82:

    74 collection of authentic texts th

  • Page 83 and 84:

    76 รอยละ 32 มีสา

  • Page 86 and 87:

    KMUTT Annual Research Abstracts 200

  • Page 88 and 89:

    KMUTT Annual Research Abstracts 200

  • Page 90 and 91:

    KMUTT Annual Research Abstracts 200

  • Page 92 and 93:

    KMUTT Annual Research Abstracts 200

  • Page 94 and 95:

    KMUTT Annual Research Abstracts 200

  • Page 96 and 97:

    KMUTT Annual Research Abstracts 200

  • Page 98 and 99:

    KMUTT Annual Research Abstracts 200

  • Page 100 and 101:

    KMUTT Annual Research Abstracts 200

  • Page 102 and 103:

    KMUTT Annual Research Abstracts 200

  • Page 104 and 105:

    KMUTT Annual Research Abstracts 200

  • Page 106 and 107:

    KMUTT Annual Research Abstracts 200

  • Page 108 and 109:

    KMUTT Annual Research Abstracts 200

  • Page 110 and 111:

    KMUTT Annual Research Abstracts 200

  • Page 112 and 113:

    KMUTT Annual Research Abstracts 200

  • Page 114 and 115:

    KMUTT Annual Research Abstracts 200

  • Page 116 and 117:

    KMUTT Annual Research Abstracts 200

  • Page 118 and 119:

    KMUTT Annual Research Abstracts 200

  • Page 120 and 121:

    KMUTT Annual Research Abstracts 200

  • Page 122 and 123:

    KMUTT Annual Research Abstracts 200

  • Page 124 and 125:

    KMUTT Annual Research Abstracts 200

  • Page 126 and 127:

    KMUTT Annual Research Abstracts 200

  • Page 128 and 129:

    KMUTT Annual Research Abstracts 200

  • Page 130 and 131:

    KMUTT Annual Research Abstracts 200

  • Page 132 and 133:

    KMUTT Annual Research Abstracts 200

  • Page 134 and 135:

    KMUTT Annual Research Abstracts 200

  • Page 136 and 137:

    KMUTT Annual Research Abstracts 200

  • Page 138 and 139:

    KMUTT Annual Research Abstracts 200

  • Page 140 and 141:

    KMUTT Annual Research Abstracts 200

  • Page 142 and 143:

    KMUTT Annual Research Abstracts 200

  • Page 144 and 145:

    KMUTT Annual Research Abstracts 200

  • Page 146 and 147:

    KMUTT Annual Research Abstracts 200

  • Page 148 and 149:

    KMUTT Annual Research Abstracts 200

  • Page 150 and 151:

    KMUTT Annual Research Abstracts 200

  • Page 152 and 153:

    KMUTT Annual Research Abstracts 200

  • Page 154 and 155:

    KMUTT Annual Research Abstracts 200

  • Page 156 and 157:

    KMUTT Annual Research Abstracts 200

  • Page 158 and 159:

    KMUTT Annual Research Abstracts 200

  • Page 160 and 161:

    KMUTT Annual Research Abstracts 200

  • Page 162 and 163:

    KMUTT Annual Research Abstracts 200

  • Page 164 and 165:

    KMUTT Annual Research Abstracts 200

  • Page 166 and 167:

    KMUTT Annual Research Abstracts 200

  • Page 168 and 169:

    KMUTT Annual Research Abstracts 200

  • Page 170 and 171:

    KMUTT Annual Research Abstracts 200

  • Page 172 and 173:

    KMUTT Annual Research Abstracts 200

  • Page 174 and 175:

    KMUTT Annual Research Abstracts 200

  • Page 176 and 177:

    KMUTT Annual Research Abstracts 200

  • Page 178 and 179:

    KMUTT Annual Research Abstracts 200

  • Page 180 and 181:

    KMUTT Annual Research Abstracts 200

  • Page 182 and 183:

    KMUTT Annual Research Abstracts 200

  • Page 184 and 185:

    KMUTT Annual Research Abstracts 200

  • Page 186 and 187:

    KMUTT Annual Research Abstracts 200

  • Page 188 and 189:

    KMUTT Annual Research Abstracts 200

  • Page 190 and 191:

    KMUTT Annual Research Abstracts 200

  • Page 192 and 193:

    KMUTT Annual Research Abstracts 200

  • Page 194 and 195:

    KMUTT Annual Research Abstracts 200

  • Page 196 and 197:

    KMUTT Annual Research Abstracts 200

  • Page 198 and 199:

    KMUTT Annual Research Abstracts 200

  • Page 200 and 201:

    KMUTT Annual Research Abstracts 200

  • Page 202 and 203:

    KMUTT Annual Research Abstracts 200

  • Page 204 and 205:

    KMUTT Annual Research Abstracts 200

  • Page 206 and 207:

    KMUTT Annual Research Abstracts 200

  • Page 208 and 209:

    KMUTT Annual Research Abstracts 200

  • Page 210 and 211:

    KMUTT Annual Research Abstracts 200

  • Page 212 and 213:

    KMUTT Annual Research Abstracts 200

  • Page 214:

    National Conferences

  • Page 217 and 218:

    210 จอมเทียนปา

  • Page 219 and 220:

    212 การสกัดสาร

  • Page 221 and 222:

    214 ไดแก อุณหภู

  • Page 223 and 224:

    216 โดยกลไกของ

  • Page 225 and 226:

    218 เคลือบเมื่

  • Page 227 and 228:

    220 สําเริง จัก

  • Page 229 and 230:

    222 ลดเวลาตลอด

  • Page 231 and 232:

    224 อุณหภูมิสู

  • Page 233 and 234:

    226 NC-043 การวิเคร

  • Page 235 and 236:

    228 เกิดพฤติกร

  • Page 237 and 238:

    230 เดียว เพื่อ

  • Page 239 and 240:

    232 มากนอยเพีย

  • Page 241 and 242:

    234 หลักที่พบใ

  • Page 243 and 244:

    236 NC-073 การออกแบ

  • Page 245 and 246:

    238 บทความนี้น

  • Page 247 and 248:

    240 นําเอาเวคเ

  • Page 249 and 250:

    242 งานวิจัยนี

  • Page 251 and 252:

    244 การอบแหงลด

  • Page 253 and 254:

    246 แยกเฟสต่ํา

  • Page 255 and 256:

    248 กลบ โดยเปรี

  • Page 257 and 258:

    250 นํามาใช คือ

  • Page 259 and 260:

    252 วิเคราะหหา

  • Page 261 and 262:

    254 NC-123 การวิเคร

  • Page 263 and 264:

    256 NC-129 เครื่องผ

  • Page 265 and 266:

    258 สามารถขยาย

  • Page 267 and 268:

    260 ครั้งที่ 43, 1-

  • Page 269 and 270:

    262 calculated with the use of the

  • Page 271 and 272:

    264 Version 1.3.1 และ Softwar

  • Page 273 and 274:

    266 ขนไกได จากก

  • Page 275 and 276:

    268 โครงสรางขอ

  • Page 277 and 278:

    270 การปลูกพืช

  • Page 279 and 280:

    272 ระดับพึงพอ

  • Page 281 and 282:

    274 ของแกสโซฮอ

  • Page 283 and 284:

    276 1) สภาพทั่วไ

  • Page 285 and 286:

    278 อนุปริญญา แ

  • Page 287 and 288:

    280 อาชีวศึกษา

  • Page 289 and 290:

    282 กระทบตอคุณ

  • Page 291 and 292:

    284 ตั้งกลไกแข

  • Page 293 and 294:

    286 นุชจรินทร เ

  • Page 295 and 296:

    288 โดยรวมผูบร

  • Page 297 and 298:

    290 แนนกระแสไฟ

  • Page 299 and 300: 292 NC-222 ผลงานตีพ
  • Page 301 and 302: 294 NC-227 เตาเผาไห
  • Page 303 and 304: 296 จําเพาะรวม
  • Page 305 and 306: 298 NC-238 จลนพลศาส
  • Page 307 and 308: 300 ทนงเกียรติ
  • Page 309 and 310: 302 ดีเซลนั้นม
  • Page 311 and 312: 304 NC-254 การใชเทค
  • Page 313 and 314: 306 อาคารศูนยก
  • Page 315 and 316: 308 กระบวนการร
  • Page 317 and 318: 310 บรรยากาศขอ
  • Page 319 and 320: 312 metal ions on 2-AP biosyntheis
  • Page 321 and 322: 314 total clones while the ethanol
  • Page 323 and 324: 316 การประชุมท
  • Page 325 and 326: 318 BioThailand (The 16 th Annual M
  • Page 327 and 328: 320 สูงที่สุดพ
  • Page 329 and 330: 322 นัยสําคัญท
  • Page 331 and 332: 324 ความเขมขนร
  • Page 333 and 334: 326 ปลูกแบบพรา
  • Page 335 and 336: 328 นี้ทําใหทร
  • Page 337 and 338: 330 ดุลชาติ มาน
  • Page 339 and 340: 332 ไมโครเมตร ส
  • Page 341 and 342: 334 In this study, we collected seq
  • Page 343 and 344: 336 กนกรัตน นาค
  • Page 345 and 346: 338 การพัฒนาสื
  • Page 347 and 348: 340 one of the causes of difficulty
  • Page 349: 342 ทวีรัตน วิจ
  • Page 353 and 354: 346 production demand. Nevertheless
  • Page 355 and 356: 348 อุลตราไวโอ
  • Page 357 and 358: 350 นี้อยูในชว
  • Page 359 and 360: 352 เพื่อนําสว
  • Page 361 and 362: 354 trichloroacetic acid (TCA) ม
  • Page 363 and 364: 356 ทรัพยากรที
  • Page 365 and 366: 358 ในประเทศสห
  • Page 367 and 368: 360 8-9 ธันวาคม 2548,
  • Page 369 and 370: 362 ซึ่งเกิดขอ
  • Page 371 and 372: 364 NC-391 การวิเคร
  • Page 373 and 374: 366 การประชุมว
  • Page 375 and 376: 368 2547) พบวามหาว
  • Page 377 and 378: 370 กนกพร ลีลาเ
  • Page 380: Authors Index
  • Page 383 and 384: 376 จงจิตร หิรั
  • Page 385 and 386: 378 ธ ธนธร ทองส
  • Page 387 and 388: 380 พยุงศักดิ์
  • Page 389 and 390: 382 วรรณพ วิเศษ
  • Page 391 and 392: 384 สุดารัตน จิ
  • Page 393 and 394: 386 อุลาวัณย กุ
  • Page 395 and 396: 388 138, 141, 142 Jarunya Narangaja
  • Page 397 and 398: 390 Panida Kongsawadworakul 191 Pan
  • Page 399 and 400: 392 Sorakrich Maneewan 124, 136 Sor
  • Page 401 and 402:

    394 KMUTT Annual Research Abstracts

  • Page 404 and 405:

    KMUTT Annual Research Abstracts 200

  • Page 406 and 407:

    KMUTT Annual Research Abstracts 200

  • Page 408 and 409:

    KMUTT Annual Research Abstracts 200

  • Page 410 and 411:

    KMUTT Annual Research Abstracts 200

  • Page 412 and 413:

    KMUTT Annual Research Abstracts 200

  • Page 414 and 415:

    KMUTT Annual Research Abstracts 200

  • Page 416 and 417:

    KMUTT Annual Research Abstracts 200

  • Page 418 and 419:

    KMUTT Annual Research Abstracts 200

  • Page 420 and 421:

    KMUTT Annual Research Abstracts 200

  • Page 422 and 423:

    KMUTT Annual Research Abstracts 200

  • Page 424 and 425:

    KMUTT Annual Research Abstracts 200

  • Page 426 and 427:

    KMUTT Annual Research Abstracts 200

  • Page 428 and 429:

    KMUTT Annual Research Abstracts 200

  • Page 430 and 431:

    KMUTT Annual Research Abstracts 200

  • Page 432 and 433:

    KMUTT Annual Research Abstracts 200

  • Page 434 and 435:

    KMUTT Annual Research Abstracts 200

  • Page 436 and 437:

    KMUTT Annual Research Abstracts 200

  • Page 438 and 439:

    KMUTT Annual Research Abstracts 200

  • Page 440 and 441:

    KMUTT Annual Research Abstracts 200

  • Page 442 and 443:

    KMUTT Annual Research Abstracts 200

  • Page 444 and 445:

    KMUTT Annual Research Abstracts 200

  • Page 446 and 447:

    KMUTT Annual Research Abstracts 200

  • Page 448:

    KMUTT Annual Research Abstracts 200

  • Page 452:

    KMUTT Annual Research Abstracts 200

แผนการจัดการความรู้ - kmutt
preface - National Institute of Fuel-Cell Technology - West Virginia ...
Cover, Foreword, Preface, Acknowledgements, List of ... - IARC
Cover, Foreword, Preface, Acknowledgements, Content - iarc
Preface - FHWA Safety Program - U.S. Department of Transportation
Energy Efficiency in Industry in Thailand
The British essayists, with prefaces, biographical, historical, and critical
2007 Graduate Catalog and 2006 Annual R & D Report - Sirindhorn ...
The Interpretation Of Dreams Sigmund Freud (1900) PREFACE
Front Matter (Title Page, TOC, Preface and Forward) - Store
Preface to the Third Edition - Handbook of inter-rater reliability, 3rd ...
AU Abstracts 2008 - AU Journal - Assumption University of Thailand
Annual Report 2006 - Thai Beverage Public Company Limited
Abstracts of the Scientific Posters, 2013 AACC Annual Meeting ...
BIO-DATA Name: Somchart Soponronnarit (สมชาติ โสภณรณ ... - kmutt
CURRICULUM VITAE Name Mr. Somkiat Prachayawarakorn ... - kmutt
ประวัติ (CV) - kmutt
ตัวอยางจดหมายสมัครงาน - kmutt
คำแนะนำการเขียนคำขอสิทธิบัตร - kmutt
รายชื่อเล่มวิทยานิพนธ์ระดับบัณฑิตศึกษา - kmutt
ประกาศกองกิจการนักศึกษา มหาวิทยาลัยเทคโนโล - kmutt
อ่านรายละเอียดต่อ - kmutt
Suranaree Journal of Science and Technology - kmutt
Download Oral presentation program - kmutt