Views
4 years ago

Preface - kmutt

Preface - kmutt

KMUTT Annual Research

KMUTT Annual Research Abstracts 2005 IJ-091 CATALYTIC DRY REFORMING OF METHANE OVER HIGH SURFACE AREA CERIA Navadol Laosiripojana, Suttichai Assabumrungrat Applied Catalysis B: Environmental, Vol. 60, No. 1-2, 2005, pp. 107-116 High surface area ceria (CeO 2 (HSA)), synthesized by a surfactant-assisted approach, was found to have useful dry reforming activity for H 2 and CO production under solid oxide fuel cells (SOFCs) conditions. The catalyst provides significantly higher reforming reactivity and excellent resistance toward carbon deposition compared to Ni/Al 2 O 3 and conventional low surface area ceria (CeO 2 (LSA)) under dry reforming conditions. These enhancements are due to the high redox property of CeO 2 (HSA). During the dry reforming process, the redox reactions between the gaseous components in the system and the lattice oxygen (O x ) take place on ceria surface. Among these reactions, the rapid redox reactions of carbon compounds such as CH 4 , and CO with lattice oxygen (CH 4 + O x → CO + H 2 + O x−1 and CO + O x = CO 2 + O x−1 ) can prevent the formation of carbon species from the methane decomposition and Boudard reactions even at low inlet carbon dioxide concentration. In particular, the dry reforming rate over CeO 2 (HSA) is proportional to the methane partial pressure and the operating temperature. Carbon dioxide presents weak positive impact on the methane conversion, whereas both carbon monoxide and hydrogen inhibit the reforming rate. The activation energies and reforming rates under the same methane concentration for CeO 2 toward the dry reforming are almost equal to the steam reforming as previously reported. This result suggests the similar reaction mechanisms for both the steam reforming and the dry reforming over CeO 2 ; i.e., the dry reforming rate is governed by the slow reaction of adsorbed methane, or surface hydrocarbon species, with oxygen in CeO 2 , and a rapid gas–solid reaction between CO 2 and CeO 2 to replenish the oxygen. IJ-092 METHANE STEAM REFORMING OVER NI/CE-ZRO 2 CATALYST: INFLUENCES OF CE-ZRO 2 SUPPORT ON REACTIVITY, RESISTANCE TOWARD CARBON FORMATION, AND INTRINSIC REACTION KINETICS Navadol Laosiripojana, Suttichai Assabumrungrat 33 Applied Catalysis A: General, Vol. 290, No. 1-2, 2005, pp. 200-211 Ni/Ce–ZrO 2 showed good methane steam reforming performance in term of stability toward the deactivation by carbon deposition. It was first observed that the catalyst with Ce/Zr ratio of 3/1 showed the best activity among Ni/Ce–ZrO 2 samples with the Ce/Zr ratios of 1/0, 1/1, 1/3, and 3/1. Temperature-programmed oxidation (TPO) experiments indicated the excellent resistance toward carbon formation for this catalyst, compared to conventional Ni/Al 2 O 3 ; the requirement of inlet H 2 O/CH 4 to operate without the formation of carbon species is much lower. These benefits are related to the high oxygen storage capacity (OSC) of Ce–ZrO 2 . During the steam reforming process, in addition to the reactions on Ni surface (*), the redox reactions between the gaseous components present in the system and the lattice oxygen (O x ) on Ce–ZrO 2 surface also take place. Among these reactions, the redox reactions between the high carbon formation potential compounds (CH 4 , CH x -*n and CO) and the lattice oxygen (O x ) can prevent the formation of carbon species from the methane decomposition and Boudard reactions, even at low inlet H 2 O/CH 4 ratio (1.0/1.0). Regarding the intrinsic kinetic studies in the present work, the reaction order in methane over Ni/Ce–ZrO 2 was observed to be approximately 1.0 in all conditions. The dependence of steam on the rate was nonmonotonic, whereas addition of oxygen as an autothermal reforming promoted the rate but reduced CO and H 2 production selectivities. The addition of a small amount of hydrogen increased the conversion of methane, however, this positive effect became less pronounced and the methane conversion was eventually inhibited when high hydrogen concentration was added. Ni/Ce–ZrO 2 showed significantly stronger negative impact of hydrogen than Ni/Al 2 O 3 . The redox mechanism on ceria proposed by Otsuka et al. [K. Otsuka, T. Ushiyama, I. Yamanaka, Chem. Lett. (1993) 1517; K. Otsuka, M. Hatano, A. Morikawa, J. Catal. 79 (1983) 493; K. Otsuka, M. Hatano, A. Morikawa, Inorg. Chim. Acta 109 (1985) 193] can explain this high inhibition. IJ-093 SYNTHESIS GAS PRODUCTION FROM DRY REFORMING OF METHANE OVER CEO 2 DOPE NI/AL 2 O 3 : INFLUENCE OF THE DOPING International Journal

34 CERIA ON THE RESISTANCE TOWARD CARBON FORMATION Navadol Laosiripojana, Werawan Sutthisripok, Suttichai Assabumrungrat Chemical Engineering Journal, Vol. 112, No. 1- 3, 2005, pp. 13-22 Doping of CeO 2 as an additive promoter on Ni/Al 2 O 3 was found to improve dry reforming activity for H 2 and CO productions at solid oxide fuel cell (SOFC) operating temperature (800-900 o C). The catalyst provides significantly higher reforming reactivity and resistance toward carbon deposition compared to conventional Ni/Al 2 O 3 . These enhancements are mainly due to the influence of the redox property of ceria. During dry reforming process, in addition to the reactions on Ni surface, the gas–solid reactions between the gaseous components presented in the system (CH 4 , CO 2 , CO, H 2 O, and H 2 ) and the lattice oxygen (O x ) on ceria surface also take place. The reactions of adsorbed methane and carbon monoxide (produced during dry reforming process) with the lattice oxygen (O x ) on ceria surface (CH 4 + O x → CO + H 2 + O x−1 and CO + O x ⇔ CO 2 + O x−1 ) can prevent the formation of carbon species on Ni surface from methane decomposition reaction and Boudard reaction. In particular, CeO 2 doped Ni/Al 2 O 3 with 8% ceria content showed the best reforming activity among those with the ceria content between 0 and 14%. The amount of carbon formation decreased with increasing Ce content. However, Ni was oxidized when more than 10% of ceria was doped. According to the post-XPS measurement, a small formation of Ce 2 O 3 was observed after exposure in dry methane reforming conditions with low inlet CH 4 /CO 2 ratio (1.0/0.3). The intrinsic reaction kinetics of 8% CeO 2 doped Ni/Al 2 O 3 was studied by varying inlet CH 4 and CO 2 concentrations, and by adding H 2 and CO to the system at different temperatures. The dry reforming rate increased with increasing methane partial pressure and the operating temperature. The reaction orders in methane were always closed to 1.0 in all conditions. Carbon dioxide also presented weak positive impact on the methane conversion, whereas adding of carbon monoxide and hydrogen inhibited the reforming rate. IJ-094 THERMODYNAMIC ANALYSIS OF KMUTT Annual Research Abstracts 2005 CARBON FORMATION IN A SOLID OXIDE FUEL CELL WITH A DIRECT INTERNAL REFORMER FUELED BY METHANOL Suttichai Assabumrungrat, Navadol Laosiripojana, Varong Pavarajarn, Wibul Sangtongkitcharoen, Achara Tangjitmatee, Piyasan Praserthdam Journal of Power Sources, Vol. 139, No. 1-2, 2005, pp. 55-60 A detailed thermodynamic analysis is undertaken for carbon formation in a solid oxide fuel cell (SOFC) with a direct internal reformer (DIR) fuelled by methanol. Two types of fuel cell electrolyte, i.e. oxygen- and hydrogenconducting, are considered. Equilibrium calculations are performed to find the range of inlet steam methanol (H 2 O:MeOH) ratio where carbon formation is thermodynamically unfavourable in the temperature range of 500 to 1200 K. The key parameters that determine the boundary of carbon formation are temperature, type of solid electrolyte, and the extent of the electrochemical reaction of hydrogen. The minimum H 2 O:MeOH ratio for which carbon formation is thermodynamically unfavoured decreases with increasing temperature. Comparison between the two types of electrolyte reveals that the hydrogen-conducting electrolyte is impractical for use given the tendency for carbon formation. This is mainly due to the water formed by the electrochemical reaction at the electrodes. IJ-095 EFFECTS OF ELECTROLYTE TYPE AND FLOW PATTERN ON PERFORMANCE OF METHANOL-FUELLED SOLID OXIDE FUEL CELLS Suttichai Assabumrungrat, Wibul Sangtongkitcharoen, Navadol Laosiripojana, Amornchai Arpornwichanop, Sumittra Charojrochkul, Piyasan Praserthdam Journal of Power Sources, Vol. 148, No. 15, 2005, pp. 18-23 A comparison is made of the performances of methanol-fuelled solid oxide fuel cells (SOFCs) with different types of electrolyte (i.e., oxygen ion- and protonconducting electrolytes) and flow patterns (i.e., plug flow (PF) and mixed flow (MF)). Although it was demonstrated earlier that, under the same International Journal

  • Page 2: ISBN 974-456-652-3
  • Page 6: CONTENTS Page Preface International
  • Page 10 and 11: KMUTT Annual Research Abstracts 200
  • Page 12 and 13: KMUTT Annual Research Abstracts 200
  • Page 14 and 15: KMUTT Annual Research Abstracts 200
  • Page 16 and 17: KMUTT Annual Research Abstracts 200
  • Page 18 and 19: KMUTT Annual Research Abstracts 200
  • Page 20 and 21: KMUTT Annual Research Abstracts 200
  • Page 22 and 23: KMUTT Annual Research Abstracts 200
  • Page 24 and 25: KMUTT Annual Research Abstracts 200
  • Page 26 and 27: KMUTT Annual Research Abstracts 200
  • Page 28 and 29: KMUTT Annual Research Abstracts 200
  • Page 30 and 31: KMUTT Annual Research Abstracts 200
  • Page 32 and 33: KMUTT Annual Research Abstracts 200
  • Page 34 and 35: KMUTT Annual Research Abstracts 200
  • Page 36 and 37: KMUTT Annual Research Abstracts 200
  • Page 38 and 39: KMUTT Annual Research Abstracts 200
  • Page 42 and 43: KMUTT Annual Research Abstracts 200
  • Page 44 and 45: KMUTT Annual Research Abstracts 200
  • Page 46 and 47: KMUTT Annual Research Abstracts 200
  • Page 48 and 49: KMUTT Annual Research Abstracts 200
  • Page 50 and 51: KMUTT Annual Research Abstracts 200
  • Page 52 and 53: KMUTT Annual Research Abstracts 200
  • Page 54 and 55: KMUTT Annual Research Abstracts 200
  • Page 56 and 57: KMUTT Annual Research Abstracts 200
  • Page 58: National Journals
  • Page 61 and 62: 54 นอยกวาแบบต
  • Page 63 and 64: 56 (Least Square Matching Method)
  • Page 65 and 66: 58 อุณหภูมิ 30 แ
  • Page 67 and 68: 60 สเปกตรัม จา
  • Page 69 and 70: 62 ขอมูลดานทร
  • Page 71 and 72: 64 22.8 มาตรฐานเป
  • Page 73 and 74: 66 2545 NJ-033 EFFECTS OF ELEVATED
  • Page 75 and 76: 68 เปลือกที่ม
  • Page 77 and 78: 70 ของการดูดซ
  • Page 79 and 80: 72 การสกัดดวย
  • Page 81 and 82: 74 collection of authentic texts th
  • Page 83 and 84: 76 รอยละ 32 มีสา
  • Page 86 and 87: KMUTT Annual Research Abstracts 200
  • Page 88 and 89: KMUTT Annual Research Abstracts 200
  • Page 90 and 91:

    KMUTT Annual Research Abstracts 200

  • Page 92 and 93:

    KMUTT Annual Research Abstracts 200

  • Page 94 and 95:

    KMUTT Annual Research Abstracts 200

  • Page 96 and 97:

    KMUTT Annual Research Abstracts 200

  • Page 98 and 99:

    KMUTT Annual Research Abstracts 200

  • Page 100 and 101:

    KMUTT Annual Research Abstracts 200

  • Page 102 and 103:

    KMUTT Annual Research Abstracts 200

  • Page 104 and 105:

    KMUTT Annual Research Abstracts 200

  • Page 106 and 107:

    KMUTT Annual Research Abstracts 200

  • Page 108 and 109:

    KMUTT Annual Research Abstracts 200

  • Page 110 and 111:

    KMUTT Annual Research Abstracts 200

  • Page 112 and 113:

    KMUTT Annual Research Abstracts 200

  • Page 114 and 115:

    KMUTT Annual Research Abstracts 200

  • Page 116 and 117:

    KMUTT Annual Research Abstracts 200

  • Page 118 and 119:

    KMUTT Annual Research Abstracts 200

  • Page 120 and 121:

    KMUTT Annual Research Abstracts 200

  • Page 122 and 123:

    KMUTT Annual Research Abstracts 200

  • Page 124 and 125:

    KMUTT Annual Research Abstracts 200

  • Page 126 and 127:

    KMUTT Annual Research Abstracts 200

  • Page 128 and 129:

    KMUTT Annual Research Abstracts 200

  • Page 130 and 131:

    KMUTT Annual Research Abstracts 200

  • Page 132 and 133:

    KMUTT Annual Research Abstracts 200

  • Page 134 and 135:

    KMUTT Annual Research Abstracts 200

  • Page 136 and 137:

    KMUTT Annual Research Abstracts 200

  • Page 138 and 139:

    KMUTT Annual Research Abstracts 200

  • Page 140 and 141:

    KMUTT Annual Research Abstracts 200

  • Page 142 and 143:

    KMUTT Annual Research Abstracts 200

  • Page 144 and 145:

    KMUTT Annual Research Abstracts 200

  • Page 146 and 147:

    KMUTT Annual Research Abstracts 200

  • Page 148 and 149:

    KMUTT Annual Research Abstracts 200

  • Page 150 and 151:

    KMUTT Annual Research Abstracts 200

  • Page 152 and 153:

    KMUTT Annual Research Abstracts 200

  • Page 154 and 155:

    KMUTT Annual Research Abstracts 200

  • Page 156 and 157:

    KMUTT Annual Research Abstracts 200

  • Page 158 and 159:

    KMUTT Annual Research Abstracts 200

  • Page 160 and 161:

    KMUTT Annual Research Abstracts 200

  • Page 162 and 163:

    KMUTT Annual Research Abstracts 200

  • Page 164 and 165:

    KMUTT Annual Research Abstracts 200

  • Page 166 and 167:

    KMUTT Annual Research Abstracts 200

  • Page 168 and 169:

    KMUTT Annual Research Abstracts 200

  • Page 170 and 171:

    KMUTT Annual Research Abstracts 200

  • Page 172 and 173:

    KMUTT Annual Research Abstracts 200

  • Page 174 and 175:

    KMUTT Annual Research Abstracts 200

  • Page 176 and 177:

    KMUTT Annual Research Abstracts 200

  • Page 178 and 179:

    KMUTT Annual Research Abstracts 200

  • Page 180 and 181:

    KMUTT Annual Research Abstracts 200

  • Page 182 and 183:

    KMUTT Annual Research Abstracts 200

  • Page 184 and 185:

    KMUTT Annual Research Abstracts 200

  • Page 186 and 187:

    KMUTT Annual Research Abstracts 200

  • Page 188 and 189:

    KMUTT Annual Research Abstracts 200

  • Page 190 and 191:

    KMUTT Annual Research Abstracts 200

  • Page 192 and 193:

    KMUTT Annual Research Abstracts 200

  • Page 194 and 195:

    KMUTT Annual Research Abstracts 200

  • Page 196 and 197:

    KMUTT Annual Research Abstracts 200

  • Page 198 and 199:

    KMUTT Annual Research Abstracts 200

  • Page 200 and 201:

    KMUTT Annual Research Abstracts 200

  • Page 202 and 203:

    KMUTT Annual Research Abstracts 200

  • Page 204 and 205:

    KMUTT Annual Research Abstracts 200

  • Page 206 and 207:

    KMUTT Annual Research Abstracts 200

  • Page 208 and 209:

    KMUTT Annual Research Abstracts 200

  • Page 210 and 211:

    KMUTT Annual Research Abstracts 200

  • Page 212 and 213:

    KMUTT Annual Research Abstracts 200

  • Page 214:

    National Conferences

  • Page 217 and 218:

    210 จอมเทียนปา

  • Page 219 and 220:

    212 การสกัดสาร

  • Page 221 and 222:

    214 ไดแก อุณหภู

  • Page 223 and 224:

    216 โดยกลไกของ

  • Page 225 and 226:

    218 เคลือบเมื่

  • Page 227 and 228:

    220 สําเริง จัก

  • Page 229 and 230:

    222 ลดเวลาตลอด

  • Page 231 and 232:

    224 อุณหภูมิสู

  • Page 233 and 234:

    226 NC-043 การวิเคร

  • Page 235 and 236:

    228 เกิดพฤติกร

  • Page 237 and 238:

    230 เดียว เพื่อ

  • Page 239 and 240:

    232 มากนอยเพีย

  • Page 241 and 242:

    234 หลักที่พบใ

  • Page 243 and 244:

    236 NC-073 การออกแบ

  • Page 245 and 246:

    238 บทความนี้น

  • Page 247 and 248:

    240 นําเอาเวคเ

  • Page 249 and 250:

    242 งานวิจัยนี

  • Page 251 and 252:

    244 การอบแหงลด

  • Page 253 and 254:

    246 แยกเฟสต่ํา

  • Page 255 and 256:

    248 กลบ โดยเปรี

  • Page 257 and 258:

    250 นํามาใช คือ

  • Page 259 and 260:

    252 วิเคราะหหา

  • Page 261 and 262:

    254 NC-123 การวิเคร

  • Page 263 and 264:

    256 NC-129 เครื่องผ

  • Page 265 and 266:

    258 สามารถขยาย

  • Page 267 and 268:

    260 ครั้งที่ 43, 1-

  • Page 269 and 270:

    262 calculated with the use of the

  • Page 271 and 272:

    264 Version 1.3.1 และ Softwar

  • Page 273 and 274:

    266 ขนไกได จากก

  • Page 275 and 276:

    268 โครงสรางขอ

  • Page 277 and 278:

    270 การปลูกพืช

  • Page 279 and 280:

    272 ระดับพึงพอ

  • Page 281 and 282:

    274 ของแกสโซฮอ

  • Page 283 and 284:

    276 1) สภาพทั่วไ

  • Page 285 and 286:

    278 อนุปริญญา แ

  • Page 287 and 288:

    280 อาชีวศึกษา

  • Page 289 and 290:

    282 กระทบตอคุณ

  • Page 291 and 292:

    284 ตั้งกลไกแข

  • Page 293 and 294:

    286 นุชจรินทร เ

  • Page 295 and 296:

    288 โดยรวมผูบร

  • Page 297 and 298:

    290 แนนกระแสไฟ

  • Page 299 and 300:

    292 NC-222 ผลงานตีพ

  • Page 301 and 302:

    294 NC-227 เตาเผาไห

  • Page 303 and 304:

    296 จําเพาะรวม

  • Page 305 and 306:

    298 NC-238 จลนพลศาส

  • Page 307 and 308:

    300 ทนงเกียรติ

  • Page 309 and 310:

    302 ดีเซลนั้นม

  • Page 311 and 312:

    304 NC-254 การใชเทค

  • Page 313 and 314:

    306 อาคารศูนยก

  • Page 315 and 316:

    308 กระบวนการร

  • Page 317 and 318:

    310 บรรยากาศขอ

  • Page 319 and 320:

    312 metal ions on 2-AP biosyntheis

  • Page 321 and 322:

    314 total clones while the ethanol

  • Page 323 and 324:

    316 การประชุมท

  • Page 325 and 326:

    318 BioThailand (The 16 th Annual M

  • Page 327 and 328:

    320 สูงที่สุดพ

  • Page 329 and 330:

    322 นัยสําคัญท

  • Page 331 and 332:

    324 ความเขมขนร

  • Page 333 and 334:

    326 ปลูกแบบพรา

  • Page 335 and 336:

    328 นี้ทําใหทร

  • Page 337 and 338:

    330 ดุลชาติ มาน

  • Page 339 and 340:

    332 ไมโครเมตร ส

  • Page 341 and 342:

    334 In this study, we collected seq

  • Page 343 and 344:

    336 กนกรัตน นาค

  • Page 345 and 346:

    338 การพัฒนาสื

  • Page 347 and 348:

    340 one of the causes of difficulty

  • Page 349 and 350:

    342 ทวีรัตน วิจ

  • Page 351 and 352:

    344 program, Cytoscape. This model

  • Page 353 and 354:

    346 production demand. Nevertheless

  • Page 355 and 356:

    348 อุลตราไวโอ

  • Page 357 and 358:

    350 นี้อยูในชว

  • Page 359 and 360:

    352 เพื่อนําสว

  • Page 361 and 362:

    354 trichloroacetic acid (TCA) ม

  • Page 363 and 364:

    356 ทรัพยากรที

  • Page 365 and 366:

    358 ในประเทศสห

  • Page 367 and 368:

    360 8-9 ธันวาคม 2548,

  • Page 369 and 370:

    362 ซึ่งเกิดขอ

  • Page 371 and 372:

    364 NC-391 การวิเคร

  • Page 373 and 374:

    366 การประชุมว

  • Page 375 and 376:

    368 2547) พบวามหาว

  • Page 377 and 378:

    370 กนกพร ลีลาเ

  • Page 380:

    Authors Index

  • Page 383 and 384:

    376 จงจิตร หิรั

  • Page 385 and 386:

    378 ธ ธนธร ทองส

  • Page 387 and 388:

    380 พยุงศักดิ์

  • Page 389 and 390:

    382 วรรณพ วิเศษ

  • Page 391 and 392:

    384 สุดารัตน จิ

  • Page 393 and 394:

    386 อุลาวัณย กุ

  • Page 395 and 396:

    388 138, 141, 142 Jarunya Narangaja

  • Page 397 and 398:

    390 Panida Kongsawadworakul 191 Pan

  • Page 399 and 400:

    392 Sorakrich Maneewan 124, 136 Sor

  • Page 401 and 402:

    394 KMUTT Annual Research Abstracts

  • Page 404 and 405:

    KMUTT Annual Research Abstracts 200

  • Page 406 and 407:

    KMUTT Annual Research Abstracts 200

  • Page 408 and 409:

    KMUTT Annual Research Abstracts 200

  • Page 410 and 411:

    KMUTT Annual Research Abstracts 200

  • Page 412 and 413:

    KMUTT Annual Research Abstracts 200

  • Page 414 and 415:

    KMUTT Annual Research Abstracts 200

  • Page 416 and 417:

    KMUTT Annual Research Abstracts 200

  • Page 418 and 419:

    KMUTT Annual Research Abstracts 200

  • Page 420 and 421:

    KMUTT Annual Research Abstracts 200

  • Page 422 and 423:

    KMUTT Annual Research Abstracts 200

  • Page 424 and 425:

    KMUTT Annual Research Abstracts 200

  • Page 426 and 427:

    KMUTT Annual Research Abstracts 200

  • Page 428 and 429:

    KMUTT Annual Research Abstracts 200

  • Page 430 and 431:

    KMUTT Annual Research Abstracts 200

  • Page 432 and 433:

    KMUTT Annual Research Abstracts 200

  • Page 434 and 435:

    KMUTT Annual Research Abstracts 200

  • Page 436 and 437:

    KMUTT Annual Research Abstracts 200

  • Page 438 and 439:

    KMUTT Annual Research Abstracts 200

  • Page 440 and 441:

    KMUTT Annual Research Abstracts 200

  • Page 442 and 443:

    KMUTT Annual Research Abstracts 200

  • Page 444 and 445:

    KMUTT Annual Research Abstracts 200

  • Page 446 and 447:

    KMUTT Annual Research Abstracts 200

  • Page 448:

    KMUTT Annual Research Abstracts 200

  • Page 452:

    KMUTT Annual Research Abstracts 200

แผนการจัดการความรู้ - kmutt
Cover, Foreword, Preface, Acknowledgements, Content - iarc
Cover, Foreword, Preface, Acknowledgements, List of ... - IARC
Preface - FHWA Safety Program - U.S. Department of Transportation
preface - National Institute of Fuel-Cell Technology - West Virginia ...
The Interpretation Of Dreams Sigmund Freud (1900) PREFACE
The British essayists, with prefaces, biographical, historical, and critical
Preface to the Third Edition - Handbook of inter-rater reliability, 3rd ...
Front Matter (Title Page, TOC, Preface and Forward) - Store
Energy Efficiency in Industry in Thailand
Annual Report 2006 - Thai Beverage Public Company Limited
2007 Graduate Catalog and 2006 Annual R & D Report - Sirindhorn ...
AU Abstracts 2008 - AU Journal - Assumption University of Thailand
Abstracts of the Scientific Posters, 2013 AACC Annual Meeting ...
BIO-DATA Name: Somchart Soponronnarit (สมชาติ โสภณรณ ... - kmutt
CURRICULUM VITAE Name Mr. Somkiat Prachayawarakorn ... - kmutt
ตัวอยางจดหมายสมัครงาน - kmutt
ประวัติ (CV) - kmutt
คำแนะนำการเขียนคำขอสิทธิบัตร - kmutt
Download Oral presentation program - kmutt
Suranaree Journal of Science and Technology - kmutt
รายชื่อเล่มวิทยานิพนธ์ระดับบัณฑิตศึกษา - kmutt
รายวิชาตามหลักสูตร - kmutt
ประกาศกองกิจการนักศึกษา มหาวิทยาลัยเทคโนโล - kmutt