25.12.2014 Views

By province - Institute for China and Global Development

By province - Institute for China and Global Development

By province - Institute for China and Global Development

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Albert Park, University of Ox<strong>for</strong>d, CEPR, <strong>and</strong> IZA


• Since 2008, <strong>China</strong>’s labor markets were<br />

greatly influenced by two major events<br />

• New Labor Contract Law ‐‐ beginning of 2008<br />

• <strong>Global</strong> economic crisis ‐‐ October 2008<br />

• Evidence of robust employment recovery<br />

• Relative lack of in<strong>for</strong>mation on how well the<br />

new Labor Law has been en<strong>for</strong>ced, including<br />

• Employment impacts<br />

• Affect of crisis on implementation


• How did the crisis affect employment<br />

• How well has the Labor Law been en<strong>for</strong>ced in<br />

different cities<br />

• Did the crisis affect en<strong>for</strong>cement<br />

• How did city variation in en<strong>for</strong>cement affect<br />

the impact of the Labor Law on employment<br />

changes<br />

• Did the crisis reduce these impacts


• 8 <strong>province</strong>s: 4 coastal <strong>province</strong>s (Sh<strong>and</strong>ong, Jiangsu,<br />

Zhejiang, <strong>and</strong> Guangdong), one northeast <strong>province</strong><br />

(Jilin), one central <strong>province</strong> (Hubei), one northwest<br />

<strong>province</strong> (Shaanxi), <strong>and</strong> one southwest <strong>province</strong><br />

(Sichuan).<br />

• Representative sample of >2000 manufacturing firms<br />

in 25 municipalities<br />

• Focus on employment at 4 points in time: end‐2007,<br />

mid‐2008, end‐2008, mid‐2009<br />

• Sampling frame: all firms who ever had credit<br />

relationship with any financial institution<br />

• Key collaborators: People’s Bank of <strong>China</strong> Research<br />

Department, Peking University, CASS


• In each of 6 cities, survey 700 local resident<br />

households <strong>and</strong> 600 migrant households<br />

• Surveyed >15,000 adults, including 6000<br />

migrants<br />

• 3‐stage PPS sampling of urban sub‐districts,<br />

neighborhoods, <strong>and</strong> households<br />

• Detailed enumeration of all dwellings in each<br />

neighborhood<br />

• Surveys directed by CASS, working closely with<br />

city Statistical Bureaus


Growth was slowing prior to the crisis <strong>and</strong> rebounded quickly


• Massive $560 billion economic stimulus package<br />

• Support to enterprises:<br />

• suspend tax payments<br />

• social insurance contributions delayed <strong>and</strong>/or reduced<br />

• credit expansion<br />

• wage subsidies<br />

• Expansion of labor training programs<br />

• Expansion of safety net programs (esp. rural minimum<br />

living st<strong>and</strong>ards subsidies)<br />

• Exp<strong>and</strong>ed social insurance coverage (including<br />

portable pension <strong>and</strong> unemployment insurance <strong>for</strong><br />

migrants)


• Job vacancy rates fell but bounced back quickly<br />

• Up to 20 million migrant workers lost jobs<br />

temporarily (MOA, NBS surveys)<br />

• 2/3 of those losing jobs reemployed by summer<br />

2009 (Rozelle et al., 2009)<br />

• Migrant employment in cities increased by 2.9%<br />

from 2008 to 2009 (to 145 million) (NBS)<br />

• <strong>By</strong> 2010, very low urban unemployment rates<br />

(<strong>China</strong> Urban Labor Survey in 6 cities)<br />

• Migrant wages continued to increase on average<br />

through the crisis


CULS2 (2005) CULS3 (2010)<br />

Local Migrants Local Migrants<br />

All 5.34 1.39 2.36 0.66<br />

<strong>By</strong> gender:<br />

Male 5.97 1.06 2.88 0.54<br />

Female 4.74 1.75 1.88 0.78<br />

<strong>By</strong> age:<br />

16~29 9.60 2.14 8.24 1.15<br />

30~39 7.60 0.91 1.74 0.20<br />

40~49 7.23 0.68 2.35 0.52<br />

50~59 3.10 1.91 1.84 0.68<br />

60+ 0.07 0 - 0<br />

<strong>By</strong> education:<br />

0~6 0.90 1.27 0.33 1.17<br />

7~9 7.00 1.48 2.52 0.53<br />

10~12 6.41 1.46 2.29 0.92<br />

13+ 2.19 0.70 2.89 0.97


NBS=National Bureau of Statistics<br />

RCRE=Research Center <strong>for</strong> Rural Economy (Ministry of Agriculture)<br />

PBC=People’s Bank of <strong>China</strong>


2008 2009<br />

Manufacturing 42.0 39.1<br />

Construction 16.3 17.3<br />

Hotels <strong>and</strong> 7.6 7.8<br />

catering<br />

Wholesale <strong>and</strong> 7.0 7.8<br />

retail trade<br />

Transport 5.6 5.9<br />

Other 21.5 22.1<br />

Units: %. Source: Sheng Laiyun of NBS (2009)


Jun‐08 Dec‐08 Jun‐09<br />

All firms 3.03 ‐0.53 2.87<br />

Non‐exporters 3.27 0.68 3.20<br />

Exporters 2.76 ‐1.92 2.48<br />

<strong>By</strong> ownership:<br />

State/collective ‐6.05 ‐0.83 1.78<br />

Private 2.61 0.99 5.40<br />

Joint/Ltd/Other 3.70 0.65 1.70<br />

Foreign 3.84 ‐4.55 4.30<br />

<strong>By</strong> size (#employees)<br />

Smallest quartile 2.11 0.48 3.41<br />

Second quartile 3.00 0.28 3.20<br />

Third quartile 3.00 0.16 4.16<br />

Largest quartile 3.05 ‐0.72 2.63<br />

Crisis hit exporters, <strong>for</strong>eign‐invested firms, <strong>and</strong> larger firms the hardest.


Surplus Appropriate Deficit<br />

All firms 5.05 59.86 35.09<br />

<strong>By</strong> ownership:<br />

State/collective 35.15 53.26 11.59<br />

Private 4.55 57.33 38.12<br />

Joint/Ltd/Other 2.55 69.90 27.55<br />

Foreign 1.65 45.36 52.99<br />

Still very high labor dem<strong>and</strong>, despite regulations <strong>and</strong> recent negative shocks.<br />

State/collective sector still plagued by surplus labor.


• Labor Contracts<br />

• After 2 fixed‐term contracts, or 10 years of employment,<br />

contract must be open‐ended<br />

• Limits on probationary period (1‐3 months depending on<br />

contract length)<br />

• Regulations on temporary work agencies (labor service<br />

companies)<br />

• Severance conditions<br />

• 30‐day written notice<br />

• Severance pay: one month’s pay <strong>for</strong> each year of service (half<br />

month’s pay if less than 6 months), double severance pay <strong>for</strong><br />

unfair dismissal<br />

• Internationally, law considered highly protective of<br />

workers


100%<br />

80%<br />

Very poor<br />

60%<br />

Somewhat<br />

poor<br />

40%<br />

So so<br />

20%<br />

Satisfied<br />

Very good<br />

0%<br />

Local residents<br />

be<strong>for</strong>e crisis<br />

Local residents<br />

after crisis<br />

Migrants be<strong>for</strong>e<br />

crisis<br />

Migrants after<br />

crisis<br />

• There is no significant difference between local residents <strong>and</strong> migrants.<br />

• There is no significant change in en<strong>for</strong>cement be<strong>for</strong>e <strong>and</strong> after crisis <strong>for</strong> both local<br />

residents <strong>and</strong> migrants.


Notable reduction in in<strong>for</strong>mality of migrant employment


Very strict Strict Not strict<br />

<strong>By</strong> period:<br />

2007 21.57 71.12 7.31<br />

Jan‐Jun 2008 22.46 72.61 4.93<br />

Jul‐Dec 2008 23.47 72.33 4.19<br />

Jan‐Jun 2009 24.61 71.34 4.04<br />

<strong>By</strong> size:<br />

Smallest 18.32 73.21 8.47<br />

2nd quartile 25.02 70.38 4.60<br />

3rd quartile 22.01 73.66 4.33<br />

Largest 26.40 70.27 3.33<br />

Firms report strict en<strong>for</strong>cement, with no weakening during the crisis.<br />

Smaller firms report less strict en<strong>for</strong>cement than larger firms.


Have labor regulations<br />

made it more difficult<br />

<strong>for</strong> your firm to hire <strong>and</strong><br />

fire workers (% yes)<br />

Has new Law<br />

reduce hiring<br />

(% yes)<br />

Has new Law<br />

reduce firing<br />

(% yes)<br />

Total 34.5 15.8 30.8<br />

<strong>By</strong> ownership type:<br />

State/collective 28.1 18.4 27.3<br />

Private 31.6 19.0 33.8<br />

Joint/Ltd/Other 35.4 15.2 32.8<br />

Foreign 38.3 13.5 25.8<br />

<strong>By</strong> <strong>province</strong>:<br />

Zhejiang 46.5 17.8 29.7<br />

Jiangsu 31.9 20.3 35.0<br />

Guangdong 45.5 15.8 38.9<br />

Sh<strong>and</strong>ong 21.5 13.2 28.7<br />

Jilin 25.4 51.5 34.1<br />

Hubei 21.4 5.3 37.2<br />

Shaanxi 26.0 7.1 27.7<br />

Sichuan 20.4 5.1 13.8<br />

<strong>By</strong> export status:<br />

0 34.9 16.8 27.2<br />

1 33.5 14.8 35.7


Province<br />

significant<br />

increase<br />

some<br />

increase<br />

no<br />

increase<br />

Zhejiang 12.74 60.28 26.98<br />

Jiangsu 15.97 67.46 16.57<br />

Guangdong 15.65 75.97 8.38<br />

Sh<strong>and</strong>ong 6.14 70.81 23.05<br />

Jilin 8.29 67.67 24.04<br />

Hubei 21.34 42.57 36.09<br />

Shaanxi 10.98 64.09 24.93<br />

Sichuan 5.04 86.68 8.28<br />

Total 11.21 68.16 20.63


Days yuan<br />

Total 6.43 12850<br />

<strong>By</strong> ownership:<br />

State/col 10.65 21189<br />

Private 6.36 9391<br />

Joint/Ltd 6.49 14319<br />

Foreign 5.24 12166<br />

<strong>By</strong> <strong>province</strong>:<br />

Zhejiang 4.62 10401<br />

Jiangsu 5.89 7135<br />

Guangdong 6.37 18949<br />

Sh<strong>and</strong>ong 8.25 17483<br />

Jilin 9.20 7837<br />

Hubei 7.51 10412<br />

Shaanxi 9.24 15571<br />

Sichuan 5.65 11981


Albert Park, University of Ox<strong>for</strong>d<br />

John Giles, World Bank<br />

Du Yang, Chinese Academy of Social Sciences<br />

Preliminary, please do not cite


• A number of previous papers have found a negative<br />

(positive) relationship between the flexibility of labor<br />

regulations <strong>and</strong> employment (unemployment) (Besley <strong>and</strong><br />

Burgess, 2004; Ahsan <strong>and</strong> Pages, 2009; Fledmann, 2009;<br />

Djankov <strong>and</strong> Ramalho, 2009; Kaplan, 2009)<br />

• Few studies analyze firm‐level data<br />

• Almeido <strong>and</strong> Carneiro (2005) find stricter en<strong>for</strong>cement (higher<br />

fine) has no effect on total employment, but increases in<strong>for</strong>mal<br />

employment in Brazil<br />

• Amin (2007) finds negative effect of stricter regulation (mean<br />

perception by state) on employment in Indian retail outlets<br />

• Fallon <strong>and</strong> Lucas (1993) find a negative employment effect of<br />

new legislation to increase job security in India <strong>and</strong> Zimbabwe<br />

*only latter study uses panel data, aggregated to industry level


• Positives:<br />

• Essential <strong>for</strong> constructing aggregate measures of<br />

en<strong>for</strong>cement <strong>and</strong> implementation<br />

• Enables examination of heterogeneity in impacts<br />

<strong>for</strong> different types of firms<br />

• Negatives:<br />

• Selectivity bias if exited firms not surveyed<br />

• Captures employment only in sampled firms (may<br />

exclude small firms, in<strong>for</strong>mal sector, nonmanufacturing<br />

sector)


Firm static model:<br />

L ijc,t = α 1 X c,2007 + α 2 X ijc + α 3 Exporter ijc,2007 *S jc,t + λ t + ε ijc,t<br />

Dynamic model:<br />

L ijc,t = δ 1 L ijc,2007 + δ 2 X c,2007 + δ 3 X ijc + δ 4 Exporter ijc,2007 *S jc,t + λ t + u ijc,t<br />

Note: models can be estimated at firm or city level<br />

• Subscripts i=firm, j=sector, c=city, t=year<br />

• X ijc includes firm time‐invariant characteristics (including 2007<br />

characteristics, e.g., size, exporter)<br />

• X c,2007 are city characteristics be<strong>for</strong>e Labor Law implemented<br />

• λ t are time period fixed effects<br />

• Notes: interacted terms also included independently as regressors,<br />

constant term omitted


• Quarterly export data from first quarter of<br />

2007 through second quarter of 2009<br />

• Data on export volume by city‐sectordestination<br />

• Used to construct export shock variable (S) by<br />

sector (s) in each city (c):<br />

Δexports cst = exports cst –exports cst‐1 ,<br />

where exports ct = exports in previous 6 months (12<br />

months <strong>for</strong> 2007)


National Data<br />

25 sample cities


Dependent variable (ordered probit):<br />

En<strong>for</strong>cement<br />

(3=very strict, 2=strict, 1=not strict)<br />

Reference categories:<br />

food <strong>and</strong> beverage<br />

state sector<br />

Zhejiang<br />

Size quartile 4 (smallest size)<br />

2007<br />

Findings: en<strong>for</strong>cement stricter <strong>for</strong>:<br />

‐ capital producers<br />

‐ state sector (not <strong>for</strong>eign)<br />

‐ Sichuan, Jiangsu, Jilin (no strong<br />

pattern)<br />

‐ exporters<br />

‐ large firms<br />

‐ most recent period<br />

Coef. Std. Err. t P>|t|<br />

Sector consumer products ‐0.0171 0.0689 ‐0.25 0.804<br />

Sector raw material 0.0552 0.0665 0.83 0.406<br />

Sector capital <strong>and</strong> equipment 0.1761 0.0722 2.44 0.015<br />

Sector other 0.2774 0.0927 2.99 0.003<br />

Ownership private ‐0.0669 0.1036 ‐0.65 0.519<br />

Ownership joint ‐0.0373 0.0996 ‐0.37 0.708<br />

Ownership <strong>for</strong>eign ‐0.2348 0.1136 ‐2.07 0.039<br />

Jiangsu 0.2459 0.0626 3.93 0.000<br />

Guangdong 0.0556 0.0667 0.83 0.404<br />

Sh<strong>and</strong>ong 0.0303 0.0603 0.50 0.615<br />

Jilin 0.1213 0.0867 1.40 0.162<br />

Hubei ‐0.1217 0.1328 ‐0.92 0.360<br />

Shaanxi 0.0514 0.0826 0.62 0.534<br />

Sichuan 0.5851 0.0863 6.78 0.000<br />

Size‐3 rd quartile 0.4032 0.0585 6.89 0.000<br />

Size‐2 nd quartile 0.4289 0.0595 7.20 0.000<br />

Size‐largest quartile 0.5440 0.0624 8.71 0.000<br />

Exporter 0.1090 0.0508 2.15 0.032<br />

End‐2008 0.0164 0.0473 0.35 0.728<br />

Mid‐2009 0.0950 0.0472 2.01 0.044


Coef. Std. Err. t P>|t|<br />

2007 city en<strong>for</strong>cement ‐0.13771 0.005644 ‐24.4 0<br />

Sector consumer products ‐0.00472 0.001952 ‐2.42 0.016<br />

Sector raw material ‐0.00355 0.001893 ‐1.87 0.061<br />

Sector capital <strong>and</strong> equipment ‐0.01039 0.002032 ‐5.11 0<br />

Sector other ‐0.00256 0.00257 ‐0.99 0.32<br />

Ownership private 0.005141 0.002896 1.78 0.076<br />

Ownership joint 0.001413 0.002802 0.5 0.614<br />

Ownership <strong>for</strong>eign 0.011397 0.003129 3.64 0<br />

Jiangsu ‐0.01689 0.001907 ‐8.86 0<br />

Guangdong ‐0.04176 0.002599 ‐16.07 0<br />

Sh<strong>and</strong>ong 0.011121 0.003057 3.64 0<br />

Jilin ‐0.06418 0.004317 ‐14.87 0<br />

Hubei ‐0.01749 0.004375 ‐4 0<br />

Shaanxi 0.098844 0.003127 31.61 0<br />

Sichuan 0.137756 0.003589 38.38 0<br />

Size‐3 rd quartile 0.001194 0.001586 0.75 0.452<br />

Size‐2 nd quartile 0.003146 0.001592 1.98 0.048<br />

Size‐largest quartile 0.00627 0.001686 3.72 0<br />

Exporter 0.004404 0.001364 3.23 0.001<br />

Export shock ‐0.0023 0.00103 ‐2.23 0.026<br />

Exporter*export shock 0.002957 0.002133 1.39 0.166<br />

End‐2008 0.017288 0.001264 13.68 0<br />

Mid‐2009 0.029576 0.001306 22.64 0<br />

Log 2007 city population ‐0.01828 0.001362 ‐13.43 0<br />

Log 2007 city GDP p.c. 0.056516 0.003863 14.63 0<br />

Log 2007 city GDP growth ‐0.0078 0.000452 ‐17.25 0<br />

Log 2006‐7 city budget expend p.c. 0.085827 0.002624 32.71 0<br />

Log 2007 city wage ‐0.10943 0.007819 ‐14 0<br />

2007 city secondary sector share ‐0.00286 0.000113 ‐25.31 0<br />

Constant 0.489621 0.056978 8.59 0<br />

En<strong>for</strong>cement increased more <strong>for</strong><br />

cities with:<br />

1) Less initial en<strong>for</strong>cement<br />

2) Smaller population<br />

3) Higher GDP p.c.<br />

4) Lower prior economic growth<br />

5) More budgetary expend p.c.<br />

6) Lower wage<br />

7) interior <strong>province</strong>s<br />

8) Larger firms<br />

9) Exporters<br />

10) City‐sectors less subject to<br />

negative export shocks


• Consider employment (E t ) to be a simple ratio of a firm’s<br />

optimal employment given perfect en<strong>for</strong>cement of the<br />

Labor Law (L t ) <strong>and</strong> the actual strictness of Labor Law<br />

en<strong>for</strong>cement (s t ):<br />

E t = L t /s t<br />

Here, 0


• Consider two possible impacts of Law on strictness of<br />

en<strong>for</strong>cement:<br />

• Brings strictness of all cities closer to being perfect<br />

(s 2 =1), then ΔlnE = ΔlnL + lns 1<br />

> initial strictness is associated with increases in<br />

employment<br />

• No change in strictness, then ΔlnE = ΔlnL<br />

> strictness has no effect on employment change, but<br />

this is sensitive to assumptions about the<br />

complementarity between strictness <strong>and</strong> substance of<br />

the law


ΔW ijc,t = β 1 L c,2007 + β 2 X c,2007 + β 3 X ijc + β 4 S jc,t + β 5 Exporter ijc,2007 S jc,t L c,2007 + λ t + u ijc,t<br />

• Key identification issue: endogeneity of en<strong>for</strong>cement<br />

– Focus on pre‐Labor Law en<strong>for</strong>cement (predetermined)<br />

– City‐level measures of en<strong>for</strong>cement<br />

• Measurement<br />

– Which en<strong>for</strong>cement variables<br />

– Defining shocks:<br />

• City‐sector trade shocks from customs data


• Clustered st<strong>and</strong>ard errors<br />

• L c,2007 is city‐level measurement, so should cluster st<strong>and</strong>ard<br />

errors at city level<br />

• Small number of clusters (25)<br />

▪ *Bootstrapped st<strong>and</strong>ard errors (Cameron, Gelbach, Miller,<br />

2008)<br />

▪ *Define observations at city‐level<br />

• Classical measurement error in L c,2007 due to reporting error <strong>and</strong><br />

sampling error<br />

• Attenuation bias toward zero<br />

• *Use IV constructed from alternative en<strong>for</strong>cement<br />

measurements<br />

*To do!


Coef. Std. Err. t P>|t|<br />

2007 city en<strong>for</strong>cement 0.090 0.020 4.53 0<br />

Sector consumer products ‐0.018 0.016 ‐1.09 0.285<br />

Sector raw material 0.003 0.014 0.19 0.85<br />

Sector capital <strong>and</strong> equipment 0.005 0.015 0.33 0.747<br />

Sector other 0.006 0.023 0.27 0.789<br />

Ownership private 0.015 0.015 1.02 0.317<br />

Ownership joint 0.018 0.016 1.1 0.285<br />

Ownership <strong>for</strong>eign 0.000 0.018 ‐0.01 0.993<br />

Jiangsu 0.000 0.010 0.02 0.985<br />

Guangdong ‐0.015 0.013 ‐1.19 0.248<br />

Sh<strong>and</strong>ong 0.009 0.013 0.69 0.497<br />

Jilin ‐0.022 0.016 ‐1.38 0.182<br />

Hubei 0.107 0.013 8.17 0<br />

Shaanxi ‐0.031 0.011 ‐2.89 0.009<br />

Sichuan ‐0.047 0.020 ‐2.42 0.024<br />

Exporter ‐0.021 0.009 ‐2.22 0.037<br />

Export shock 0.010 0.011 0.89 0.385<br />

Exporter*export shock 0.030 0.016 1.79 0.086<br />

Size‐3 rd quartile 0.024 0.010 2.33 0.029<br />

Size‐2 nd quartile 0.025 0.008 3 0.007<br />

Size‐largest quartile 0.032 0.009 3.41 0.003<br />

Firm age ‐0.002 0.001 ‐3.75 0.001<br />

End‐2008 ‐0.032 0.008 ‐3.93 0.001<br />

Mid‐2009 ‐0.015 0.008 ‐1.74 0.096<br />

N=3775<br />

St<strong>and</strong>ard errors<br />

clustered by city‐year


Log 2007 city population 0.017 0.005 3.21 0.004<br />

Log 2007 city GDP p.c. ‐0.031 0.014 ‐2.21 0.038<br />

Log 2007 city GDP growth 0.006 0.002 3.39 0.003<br />

Log 2006‐7 city budget expend p.c. ‐0.040 0.010 ‐4.07 0.001<br />

Log 2007 city wage 0.095 0.034 2.81 0.01<br />

2007 city secondary sector share 0.001 0.000 1.95 0.064<br />

Constant ‐0.679 0.248 ‐2.73 0.012<br />

Note: Controlling <strong>for</strong> city characteristics increases the coefficient magnitude <strong>and</strong><br />

statistical significance of 2007 city en<strong>for</strong>cement


Without city controls With city controls<br />

2007 city en<strong>for</strong>cement 0.054*** 0.090***<br />

Ln(mean training cost per firm) 0.021*** 0.028***<br />

Mean training days 0.00433* 0.00682***<br />

Notes: ***significant at 1% level, * significant at 10% level.<br />

Results are from separate regressions using each en<strong>for</strong>cement measure <strong>and</strong><br />

same specification as in previous tables.


• Regressions of change in city en<strong>for</strong>cement<br />

from 2007 to 2009 on initial city en<strong>for</strong>cement<br />

level finds a highly significant negative<br />

coefficient of ‐0.12


Coef. Std. Err. t P>|t|<br />

2007 city en<strong>for</strong>cement ‐0.0037 0.0295 ‐0.13 0.900<br />

Export shock ‐0.0815 0.0363 ‐2.25 0.028<br />

Exporter 0.0027 0.1190 0.02 0.982<br />

En<strong>for</strong>cement*Export shock 0.0437 0.0185 2.36 0.021<br />

En<strong>for</strong>cement*Exporter ‐0.0116 0.0548 ‐0.21 0.833<br />

Export shock*Exporter 0.1514 0.0826 1.83 0.071<br />

En<strong>for</strong>cement*Export<br />

shock*Exporter<br />

‐0.0658 0.0380 ‐1.73 0.088<br />

Dependent variable: change in ln(production workers). Table shows coefficents on<br />

newly added interaction terms. Rest of specification same as above, other coefficients<br />

not reported here.<br />

Firms suffering from adverse export shocks were more sensitive to 2007 en<strong>for</strong>cement<br />

differences


• Impacts less <strong>for</strong> materials <strong>and</strong> capital sectors<br />

• Impacts are greater in Sh<strong>and</strong>ong <strong>and</strong> Hubei<br />

• Impacts less <strong>for</strong> state firms, larger firms, <strong>and</strong><br />

in earlier years, but none of these differences<br />

are statistically significant


• A significant share of managers report that the new<br />

Labor Law is en<strong>for</strong>ced strictly <strong>and</strong> has affected<br />

employment decisions <strong>and</strong> increased labor costs<br />

• En<strong>for</strong>cement strictness increased more in interior<br />

<strong>province</strong>s <strong>and</strong> with more <strong>for</strong>eign firms/exporters, but<br />

was less strict in cities exposed to negative export<br />

shocks<br />

• Results suggest that en<strong>for</strong>cement of the new Labor<br />

Law reduced employment growth more in areas with<br />

previous lax en<strong>for</strong>cement<br />

• These effects were more apparent <strong>for</strong> firms exposed<br />

to adverse export shocks


• Crisis had very short‐term impacts on aggregate<br />

employment despite introduction of Labor Law<br />

• This was NOT due to lack of en<strong>for</strong>cement of the<br />

Labor Law<br />

• Suggests that robust labor dem<strong>and</strong> is facilitating<br />

regulatory re<strong>for</strong>m<br />

• Labor Law reduced employment growth more in<br />

cities with prior lax en<strong>for</strong>cement<br />

• Labor regulation still may emerge as key constraint<br />

in future

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!