25.12.2014 Views

PEM fuel cell stack experiments applying air exhaust recirculation ...

PEM fuel cell stack experiments applying air exhaust recirculation ...

PEM fuel cell stack experiments applying air exhaust recirculation ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>PEM</strong> <strong>fuel</strong> <strong>cell</strong> <strong>stack</strong> <strong>experiments</strong><br />

<strong>applying</strong> <strong>air</strong> <strong>exhaust</strong> <strong>recirculation</strong><br />

for <strong>air</strong> humidification<br />

Sept., 23 th , 2009<br />

Beom Jun Kim * , Sung-il Kim,<br />

Soo-young Byun, Min-soo Kim<br />

Dept. of Mechanical & Aerospace Engineering<br />

Seoul National University, South Korea


Outline<br />

1. Introduction<br />

- Needs for Humidification in <strong>PEM</strong> Fuel Cell<br />

- Kinds of Humidification Methods<br />

- Basic Concept of Humidification using Exhaust Air<br />

Recirculation<br />

2. Theoretical Analysis<br />

- Solving Basic Species Equations<br />

- Results of Calculation<br />

3. <strong>PEM</strong> Fuel Cell Stack Experiments<br />

- Fuel Cell Operation with 20% Exhaust Air<br />

Recirculation<br />

- Effects of Oxygen Mole Fraction and Flow Increase<br />

4. Conclusion<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


1. Introduction


Needs for Reactants Humidification in <strong>PEM</strong>FC<br />

Not Enough<br />

Hydration<br />

Dry Out<br />

1. Life Span, Durability<br />

2. Performance, Ion<br />

Conductivity<br />

Membrane<br />

Catalyst<br />

GDL Layer<br />

Gas<br />

distribution<br />

channel<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Kinds of Humidifier<br />

Enthalpy Wheel<br />

-The rotating<br />

Cordierite drum for<br />

Heat and Vapor<br />

Exchanger<br />

-Simple, Low<br />

Parasitic Power<br />

Loss<br />

- Cost of<br />

Maintenance<br />

Internal Humidifier<br />

- No requiring<br />

additional devices<br />

- Insufficient<br />

Humidification<br />

- Hard to direct<br />

application<br />

Dry gas<br />

Humid gas<br />

Membrane Humidifier<br />

- Simple, No<br />

Parasitic Power<br />

Loss<br />

- Expensive<br />

- Bulky<br />

- Difficult to Control<br />

the Humidity<br />

Water<br />

Figure Bubbling<br />

Heater<br />

Steam<br />

Figure Steam<br />

injection<br />

Figure Direct water injection<br />

with inter-digitized flow<br />

channels<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Basic Concept of Exhaust Air Recirculation<br />

AIR INLET<br />

AIR SUPPLY<br />

AIR OUTLET<br />

AIR<br />

BLOWER<br />

MIXER<br />

AIR FILTER<br />

<strong>PEM</strong>FC STACK<br />

EXHAUST AIR<br />

– It does not need any additional blower for the <strong>air</strong> recycle.<br />

– Fresh <strong>air</strong> from the ambient and Exhaust <strong>air</strong> are mixed before the<br />

blower, and supplied to the <strong>fuel</strong> <strong>cell</strong> <strong>stack</strong>.<br />

– There is a trade-off between the humidity increase and the oxygen<br />

concentration decrease according to the <strong>recirculation</strong> ratio.<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


2. Theoretical Analysis


Solving the Species Conservation Equations<br />

AIR INLET<br />

n&<br />

+ n&<br />

N _ Amb O _ Amb<br />

2 2<br />

n& O 2 _ Consumed<br />

AIR OUTLET<br />

AIR BLOWER<br />

MIXER<br />

AIR<br />

SUPPLY<br />

x ´ ( n& + n& + n&<br />

)<br />

O _ Ex N _ Ex H O _ Ex<br />

2 2 2<br />

<strong>PEM</strong>FC STACK<br />

( 1 - x )( n& O _ Ex<br />

+ n& N _ Ex<br />

+ n&<br />

H O _ Ex )<br />

2 2 2<br />

1)<br />

n& + x´ n& = n& + n&<br />

O _ Amb O _ Ex O _ Consumed O _ Ex<br />

2 2 2 2<br />

2) n& N 2<br />

2 _ Amb<br />

+ x´ n& N2 _ Ex<br />

= n&<br />

N2<br />

_ Ex<br />

0.79<br />

3) n&<br />

N2 _ Amb<br />

= ´ n&<br />

O2<br />

_ Amb<br />

0.21<br />

1<br />

4) n& O2 _ Consumed<br />

= ( n& O2 _ Amb<br />

+ x´<br />

n&<br />

O2<br />

_ Ex)<br />

SR<br />

Psat , Ex<br />

5) n& H 2O _ Ex<br />

= ´ ( n& O2 _ Ex<br />

+ n&<br />

N2<br />

_ Ex<br />

)<br />

P - P<br />

Ex<br />

sat , Ex<br />

EXHAUST AIR<br />

1 1<br />

6) k ´ 2 ´ ´ n& O2 _ Consumed<br />

= ´ n& O2 _ Amb<br />

+ x ´ ( n& O2 _ Ex<br />

+ n& N 2 _ Ex<br />

+ n&<br />

H 2O _ Ex<br />

)<br />

0.21 0.21<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Solving the Species Conservation Equations<br />

• Results<br />

7) SR<br />

8) X<br />

O<br />

9) X<br />

10)<br />

2<br />

2<br />

_ IN<br />

H O _<br />

X<br />

P<br />

ì<br />

w, Ex<br />

2 ï æ P öü<br />

w,<br />

Ex ï<br />

´ 4.76x + í9.52k + 3.76 - ý x -9.52k<br />

PEx - P ç<br />

w, Ex<br />

PEx P ÷<br />

ï è -<br />

w,<br />

Ex øï<br />

=<br />

î<br />

þ<br />

æ P<br />

ö<br />

w,<br />

Ex<br />

( x - 1)<br />

´ 4.76x<br />

+<br />

ç<br />

4.76<br />

PEx<br />

P<br />

÷<br />

è -<br />

w,<br />

Ex<br />

ø<br />

SR<br />

=<br />

9.52k<br />

Pw , Ex<br />

x ´ ´ é4.76 ´ {( 1- SR2)<br />

x + SR}<br />

-1ù<br />

PEx<br />

- P ë<br />

û<br />

w,<br />

Ex<br />

IN<br />

=<br />

9.52 k(1 - x)<br />

O _ DA_<br />

IN<br />

2<br />

X<br />

O _ IN<br />

SR(1 - x)<br />

1-<br />

X<br />

P<br />

H2O<br />

_ IN<br />

k x x é SR x SR<br />

P - P ë<br />

2<br />

= =<br />

{( ) }<br />

w,<br />

Ex<br />

9.52 (1 - ) - ´ ´ 4.76´ 1- + -1<br />

Ex<br />

w,<br />

Ex<br />

ù<br />

û<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Solving the Species Conservation Equations<br />

• Results<br />

SR<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

k=1<br />

k=1.1<br />

k=1.2<br />

Oxygen mole fraction in dry <strong>air</strong><br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

k=1<br />

k=1.1<br />

k=1.2<br />

1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Recirculation ratio, x<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Recirculation ratio, x<br />

– As inceasing <strong>recirculation</strong> ratio, concentration of oxygen is decreased.<br />

– At 20% <strong>recirculation</strong> ratio, SR is 1.68. However as flow rate is increased, SR<br />

is increased.<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Solving the Species Conservation Equations<br />

• Results<br />

60<br />

80<br />

Relative humidity @65℃ (%)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

k=1<br />

k=1.1<br />

k=1.2<br />

Relative humidity @65℃ (%)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

60℃<br />

65℃<br />

70℃<br />

75℃<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Recirculation ratio, x<br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

Recirculation ratio, x<br />

– With 20% <strong>recirculation</strong> ratio, we can obtain relative humidity 29.58% at<br />

65℃.<br />

– The bigger dew point of <strong>exhaust</strong> <strong>air</strong>, The bigger effect of humidification<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


3. <strong>PEM</strong> Fuel Cell<br />

Stack Experiments


Design of Experimental Setup<br />

Inverter<br />

P<br />

Dewpoint<br />

Meter<br />

Ambient<br />

Air<br />

T<br />

Air<br />

Inlet<br />

(+)<br />

(-)<br />

Filter<br />

MFM<br />

AC Blower<br />

Air<br />

Outlet<br />

Control Valve<br />

2<br />

Orifice<br />

Flow Meter<br />

Orifice<br />

Flow Meter<br />

T<br />

Air Exhaust<br />

P<br />

Dewpoint<br />

Meter<br />

Gas Analyzer<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Devices applied to the Experimental Setup<br />

5 <strong>cell</strong>s Fuel Cell Stack Control Valve (Needle Valve<br />

+ Stepping Motor + Driver)<br />

Dew Point Meter<br />

Orifice Flow Meter Air Blower Mass Flow Controller<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Devices applied to the Experimental Setup<br />

Fuel Cell Stack Setting<br />

Electric Loader<br />

Air Supply and Exhaust Lines<br />

Fuel Cell Test Stand<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Experiments of 1 kW Fuel Cell Stack<br />

with Air Recirculation Humidification<br />

• Test Conditions<br />

Pressure<br />

[Fuel Cell Operation]<br />

SR<br />

[O2]<br />

SR<br />

[H2]<br />

Temperature(℃)<br />

[Cathode Inlet, Air]<br />

Temperature(℃)<br />

[Incoming Air]<br />

Temperature(℃) Temperature(℃)<br />

[Anode Inlet, H2] [Coolant Inlet]<br />

Dewpoint (℃)<br />

[Cathode Inlet]<br />

Dewpoint(℃)<br />

[Anode Inlet]<br />

Bubbler 1.01325 bar 2 1.5 65 - 65 65 65 65<br />

20% Recirc<br />

ulation<br />

1.01325 bar 1.68 1.5 65 60 65 65 38 65<br />

• Recirculation ratio is controled by<br />

the control valve<br />

• Control the external <strong>air</strong> flow rate<br />

with the normal flow rate<br />

multiplied by the following<br />

coefficient equation.<br />

{( ) }<br />

(11) 0.5´ 1- SR x + SR<br />

2<br />

Current Density Current External Air Flow Rate (SLPM)<br />

Bubbler 20% Recirculation<br />

(mA/cm 2 ) (A) H 2 AIR Air<br />

0 0.00 0.000 0.000 0.00<br />

40 10.00 0.523 1.663 1.28<br />

80 20.00 1.045 3.327 2.56<br />

160 40.00 2.091 6.653 5.12<br />

320 80.00 4.182 13.307 10.25<br />

480 120.00 6.272 19.960 15.37<br />

640 160.00 8.363 26.613 20.49<br />

800 200.00 10.454 33.267 25.62<br />

1000 250.00 13.068 41.584 32.02<br />

1200 300.00 15.681 49.900 38.42<br />

1400 350.00 18.295 58.217 44.83<br />

1600 400.00 20.908 66.534 51.23<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Experiments of 1 kW Fuel Cell Stack<br />

with Air Recirculation Humidification<br />

• Polarization Curves<br />

Voltage (V)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

Current density (A/cm 2 )<br />

Cell 1, 65℃ 100%RH<br />

Cell 2, 65℃ 100%RH<br />

Cell 3, 65℃ 100%RH<br />

Cell 4, 65℃ 100%RH<br />

Cell 5, 65℃ 100%RH<br />

Cell 1, 20% Recycle<br />

Cell 2, 20% Recycle<br />

Cell 3, 20% Recycle<br />

Cell 4, 20% Recycle<br />

Cell 5, 20% Recycle<br />

- Differences in voltage at each single <strong>cell</strong> are increased as current<br />

density is increased.<br />

- At 20% <strong>recirculation</strong> and 1 A/cm 2 , average single <strong>cell</strong> voltage is<br />

0.536 V.<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Experiments of 1 kW Fuel Cell Stack<br />

with Air Recirculation Humidification<br />

• Power Curves<br />

250<br />

200<br />

65℃<br />

100%RH<br />

Power (W)<br />

150<br />

100<br />

50<br />

0<br />

0 0.5 1 1.5 2<br />

Current denstiy (A/cm 2 )<br />

- Average single <strong>cell</strong> voltage is decreased and average single <strong>cell</strong><br />

power is decreased upto 23W at current densitiy 1 A/cm 2 , .<br />

- Without increase in flow rate the concentration loss is big.<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Experiments of 1 kW Fuel Cell Stack<br />

with Varying O 2 Mole Fraction and SR<br />

• Polarization Curves<br />

1.2<br />

1<br />

0.8<br />

Normal <strong>air</strong>(O2 mole fraction 0.21)<br />

O2 mole fraction 0.19<br />

O2 mole fraction 0.17<br />

10% flow rate increase, oxygen 0.19<br />

10% flow rate increase, oxygen 0.17<br />

Voltage (V)<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

Current density (A/cm 2 )<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Experiments of 1 kW Fuel Cell Stack<br />

with Varying O 2 Mole Fraction and SR<br />

• Power Curves<br />

200<br />

180<br />

160<br />

140<br />

Power (W)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Normal <strong>air</strong>(O2 mole fraction 0.21)<br />

O2 mole fraction 0.19<br />

O2 mole fraction 0.17<br />

10% flow rate increase, oxygen 0.19<br />

10% flow rate increase, oxygen 0.17<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

Current density (cm/m 2 )<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Conclusion<br />

• When k is 1.0 and <strong>recirculation</strong> ratio is 20%, we can obtain<br />

relative humidity 29.58% at 65℃. It is not sufficient with<br />

only <strong>exhaust</strong> <strong>air</strong> <strong>recirculation</strong>.<br />

• By <strong>applying</strong> this method to the hybrid humidification<br />

system with membrane humidifier, we can achieve the<br />

good humidification system.<br />

• This hybrid humidification system is easier to control,<br />

cheaper and smaller than membrane humidifier.<br />

SEOUL NATIONAL UNIVERSITY, SOUTH KOREA<br />

Fuel Cell System Laboratory


Thank you !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!