30.12.2014 Views

autumn vertical distribution of zooplankton in the eastern ... - IMBER

autumn vertical distribution of zooplankton in the eastern ... - IMBER

autumn vertical distribution of zooplankton in the eastern ... - IMBER

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

AUTUMN VERTICAL DISTRIBUTION OF ZOOPLANKTON IN THE EASTERN<br />

TROPICAL MEXICAN PACIFIC IN RELATION TO OXYGEN, FOOD<br />

AVAILABITY AND HYDROGRAPHY<br />

Jaime Färber Lorda, Emilio Beier, Ignacio Romero,<br />

Victor God<strong>in</strong>ez, Cesar Almeda, Jose Martín Hernandez 1, Ana Franco 1 Aramis Olivos 2.<br />

0 División de Oceanología, CICESE, Ensenada, México<br />

1 Universidad Autónoma de Baja California. Instituto de Investigaciones Oceanológicas, Ensenada, México<br />

2 Universidad de Colima, Manzanillo, México


Outl<strong>in</strong>e<br />

• Why study <strong>the</strong> Eastern Tropical Mexican Pacific<br />

• Introduction and former work <strong>in</strong> <strong>the</strong> area.<br />

• The Habitat Compression hypo<strong>the</strong>sis.<br />

• The PROCOMEX XI Cruise. November 2009.<br />

• Results<br />

• Conclusions<br />

IMBIZO, Crete, Farber Lorda et al.


Why Study <strong>the</strong> Eastern Tropical Pacific<br />

The <strong>eastern</strong> tropical Pacific is an unique and huge area, <strong>in</strong> which some<br />

uncommon characteristics challenge <strong>the</strong> validity <strong>of</strong> some recognized<br />

pr<strong>in</strong>ciples <strong>in</strong> oceanography. Some <strong>of</strong> <strong>the</strong>m:<br />

- Relatively high productivity, high stratification and low circulation, which<br />

produces a pronounced Oxygen M<strong>in</strong>imum Layer (OML).<br />

- In this thick low oxygen layer (Over 1000 m <strong>in</strong> some areas), we do not<br />

have <strong>the</strong> presence <strong>of</strong> sulphide, like <strong>in</strong> o<strong>the</strong>r low oxygen areas (i.e. Black<br />

Sea).<br />

-Typical levels for most <strong>of</strong> <strong>the</strong> hypoxic areas are


Circulation <strong>in</strong> <strong>the</strong> Eastern tropical Pacific (Kessler, 2006)<br />

IMBIZO, Crete, Farber Lorda et al.


Fernandez-Álamo and Färber Lorda, 2006<br />

Oxygen m<strong>in</strong>imum depth <strong>in</strong> <strong>the</strong> <strong>eastern</strong> tropical Pacific. The higher <strong>zooplankton</strong><br />

volumes co<strong>in</strong>cide, <strong>in</strong> most cases, with <strong>the</strong> shallower oxygen m<strong>in</strong>imum depth.<br />

IMBIZO, Crete, Farber Lorda et al.


Farber Lorda et al, 2009


God<strong>in</strong>ez et al. Unpublished


Support for <strong>the</strong> Habitat<br />

Compression<br />

Hypo<strong>the</strong>sis<br />

The treshold is 1 ml l<br />

Färber Lorda and Fiedler, Unpublished<br />

IMBIZO, Crete, Farber Lorda et al.


Fernandez Alamo and Färber Lorda, 2006<br />

Historical data <strong>of</strong> <strong>zooplankton</strong> volume (ma<strong>in</strong>ly<br />

EASTROPAC data) shows greater volumes around<br />

<strong>the</strong> Costa Rica Dome, <strong>of</strong>f Peru, and extend to <strong>the</strong><br />

equatorial area, where <strong>the</strong> equatorial undercurrent<br />

transports cooler, oxygenated and nutrient rich<br />

waters from <strong>the</strong> east, with a deeper OML. N=2405


IMBIZO, Crete, Farber Lorda et al.<br />

Farber Lorda et al (2004b )and Farber Lorda<br />

(2004c) found not significant differences<br />

between day and Stations for <strong>zooplankton</strong><br />

Biomass.


Historical data <strong>of</strong> Day and Night <strong>zooplankton</strong> volumes <strong>in</strong><br />

ETPac. In certa<strong>in</strong> areas differences between night and<br />

day are not so obvious.<br />

Consider<strong>in</strong>g former evidence by Färber Lorda et al.<br />

(2004b) and Färber Lorda et al (2004c), who found no<br />

significant differences between day and night<br />

<strong>zooplankton</strong> biomasses, and try<strong>in</strong>g to show a no<br />

Night/Day difference <strong>in</strong> <strong>the</strong> ETPac area; <strong>the</strong> Night/Day<br />

ratio was obta<strong>in</strong>ed for 1 degree areas.<br />

Fernandez Alamo and Färber Lorda, 2006<br />

IMBIZO, Crete, Farber Lorda et al.


• There is a good<br />

co<strong>in</strong>cidence between<br />

areas with shallow low<br />

oxygen and small N/D<br />

ratios.<br />

• A significant difference<br />

between night and day<br />

was not found, probably<br />

related to <strong>the</strong> great<br />

variability <strong>of</strong> <strong>the</strong> data.<br />

From: Fernandez Alamo and Färber Lorda, 2006<br />

Hypo<strong>the</strong>sis: The shallow <strong>the</strong>rmocl<strong>in</strong>e and/or low oxygen conf<strong>in</strong>e <strong>the</strong> animals,<br />

not adapted to low oxygen, to stay above <strong>the</strong> OML, restra<strong>in</strong><strong>in</strong>g <strong>the</strong>ir <strong>vertical</strong><br />

<strong>distribution</strong> to shallow waters and concentrat<strong>in</strong>g <strong>zooplankton</strong> above <strong>the</strong> OML, or<br />

<strong>the</strong> <strong>the</strong>rmocl<strong>in</strong>e, this is my Habitat Contraction Hypo<strong>the</strong>sis (Summer ASLO,<br />

Victoria, 2006), even if someone elses gave it that name.<br />

IMBIZO, Crete, Farber Lorda et al.


GCW<br />

SCC<br />

WMC<br />

IMBIZO, Crete, Farber Lorda et al.


PROCOMEX Cruise, November, 2009<br />

Study area <strong>of</strong> <strong>the</strong><br />

PROCOMEX XI Cruise,<br />

November 2009.<br />

IMBIZO, Crete, Farber Lorda et al.


E<br />

El Puma Research Vessel<br />

IMBIZO, Crete, Farber Lorda et al.


• Dur<strong>in</strong>g <strong>the</strong> cruise we were at <strong>the</strong> end <strong>of</strong> a moderate El Niño year.<br />

Consider<strong>in</strong>g this we migth expect warmer temperatures and a deeper<br />

<strong>the</strong>rmocl<strong>in</strong>e and Oxygen M<strong>in</strong>imum (OM)<br />

IMBIZO, Crete, Farber Lorda et al.


Sampl<strong>in</strong>g<br />

• CTD casts, Temperatrure, Sal<strong>in</strong>ity, Florescence, Oxygen.<br />

• Nutrients: Nitrate+nitrite, Ammonium, Phosphate, Silicates.<br />

• Filtrations for Particulate matter: seston, prote<strong>in</strong>, carbohydrates,<br />

lipids, pigments.<br />

• MOCNESS tows: 0-500 m.<br />

• Bongo tows 200-0 m.<br />

• PCO2 , Omega aragonite, Omega Calcite, pH, DIC.<br />

• Micro<strong>zooplankton</strong> graz<strong>in</strong>g.<br />

IMBIZO, Crete, Farber Lorda et al.


• Färber Lorda et al., 2009<br />

IMBIZO, Crete, Farber Lorda et al.


• B transect <strong>the</strong> gyres br<strong>in</strong>g low sal<strong>in</strong>ity water to <strong>the</strong> extremes <strong>of</strong> <strong>the</strong><br />

transect.<br />

IMBIZO, Crete, Farber Lorda et al.


The two chlorophyll maxima are not well def<strong>in</strong>ed due to <strong>the</strong> presence <strong>of</strong> <strong>the</strong><br />

California Current waters and <strong>the</strong> gyres present <strong>in</strong> <strong>the</strong> area. The oxygen m<strong>in</strong>imum<br />

is deeper.<br />

IMBIZO, Crete, Farber Lorda et al.


• More stratified waters were present <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn transect<br />

IMBIZO, Crete, Farber Lorda et al.


• The more stratified D transect shows <strong>the</strong> presence <strong>of</strong> 2 chlorophyll<br />

maxima, at around 50 and 120 m.<br />

IMBIZO, Crete, Farber Lorda et al.


1 60 14 0 12 0 100 8 0 60 40 20 0<br />

PROCOMEX NOV 2002<br />

0<br />

50<br />

100<br />

Depth (db)<br />

150<br />

O2(µmol/kg)<br />

200<br />

IMBIZO, Crete, Farber Lorda et al.


Results<br />

MOCNESS samples clearly show <strong>the</strong> drastic reduction <strong>of</strong> <strong>zooplankton</strong> bellow<br />

100 m.<br />

IMBIZO, Crete, Farber Lorda et al.


MOCNESS D03 18:00<br />

50-0 m<br />

Taxa<br />

Piscis eggs<br />

Piscis larvae<br />

Ech<strong>in</strong>odermata larvae<br />

Cirripedia larvae<br />

Cephalopoda larvae<br />

Doliolids Salps<br />

Appendicularia<br />

Chaetognata<br />

Siphonophora<br />

Medusae<br />

Heteropoda<br />

Gasteropoda<br />

Polychaeta<br />

Stomatopoda larvae<br />

Brachyura<br />

Crustacea<br />

Mysidacea<br />

Carida<br />

Euphausiacea<br />

Isopoda<br />

Amphipoda<br />

Ostracoda<br />

Cladocera<br />

Foram Radiolaria<br />

Copepoda<br />

0 2 4 6 8 10 12 14 16<br />

Ln Abundance 100 m -3<br />

IMBIZO, Crete, Farber Lorda et al.


Taxa<br />

Piscis eggs<br />

Piscis larvae<br />

Ech<strong>in</strong>odermata larvae<br />

Cirripedia larvae<br />

Cephalopoda larvae<br />

Doliolids Salps<br />

Appendicularia<br />

Chaetognata<br />

Siphonophora<br />

Medusae<br />

Heteropoda<br />

Gasteropoda<br />

Polychaeta<br />

Stomatopoda larvae<br />

Brachyura<br />

Crustacea<br />

Mysidacea<br />

Carida<br />

Euphausiacea<br />

Isopoda<br />

Amphipoda<br />

Ostracoda<br />

Cladocera<br />

Foram Radiolaria<br />

Copepoda<br />

MOCNESS D03 18:00 Day<br />

50-0 m<br />

0 2 4 6 8 10 12 14 16<br />

Ln Abundance 100 m -3<br />

50-100 m<br />

0 2 4 6 8 10 12<br />

Ln Abundance 100 m -3<br />

100-150 m<br />

150-200m<br />

0 1 2 3 4 5 6<br />

0 1 2 3 4 5 6<br />

Ln Abundance 100 m -3 Ln Abundance 100 m -3<br />

Abundances:<br />

Copepod<br />

50-0m 2’339,943<br />

50-100m 30145<br />

100-150 m 76<br />

Foram<strong>in</strong>ifera and<br />

Radiolaria<br />

50-0 m 10086<br />

50-100m 3289<br />

100-150m 33<br />

Ostracoda<br />

50-0m 32165<br />

50-100 2569<br />

100-150m 16<br />

Chaetognata<br />

50-0m 2091<br />

50-100m 371<br />

100-150m 3<br />

IMBIZO, Crete, Farber Lorda et al.<br />

Euphausiacea<br />

50-0 330<br />

500-100 261<br />

100-150 230<br />

150-200 67<br />

Appendicularia<br />

50-0 330<br />

50-100 0<br />

100-150 0<br />

This hundreth times reduction <strong>of</strong><br />

copepods is related to <strong>the</strong> oxygen<br />

m<strong>in</strong>imum (0.1 ml/l), present <strong>in</strong> this<br />

transect, at around 120 m. OM was<br />

deeper because <strong>of</strong> <strong>the</strong> moderate<br />

2009 El Niño. However Copepods<br />

and Foram<strong>in</strong>ifera and radiolaria<br />

abundances rise moderately aga<strong>in</strong> at<br />

<strong>the</strong> 300-400 and 400-500 m layers.<br />

Euphausiids manta<strong>in</strong>ed <strong>the</strong>ir low<br />

abundance dow to 150 m.


MOCNESS Station D03<br />

Station D03 18:00<br />

27/11/2009<br />

MOCNESS<br />

0<br />

Zooplankton Volume (ml 100 -3 )<br />

0 20 40 60 80 100 120<br />

O [ml/l]<br />

0 1 2 3 4 5 2 γ 21 22 23 24 25 26 27 28 θ [kg/m3 ]<br />

0<br />

-100<br />

200<br />

-200<br />

400<br />

Depth<br />

-300<br />

P [db]<br />

600<br />

-400<br />

800<br />

-500<br />

-600<br />

1000<br />

1200<br />

O 2<br />

Flu<br />

Θ S γ θ<br />

Θ [°C]<br />

4 6 8 10 12 14 16 18 20 22 24 26 28 30<br />

IMBIZO, Crete, Farber Lorda et al.<br />

34 34.2 34.4 34.6 34.8 35 S [ups]<br />

Flu [μg/l]<br />

−1 0 1 2 3


MOCNESS Night<br />

Station D03 04:00<br />

0-50m<br />

50-100m<br />

100-150m<br />

150-200m<br />

Taxa<br />

Piscis eggs<br />

Piscis larvae<br />

Ech<strong>in</strong>odermata larvae<br />

Cirripedia larvae<br />

Cephalopoda larvae<br />

Doliolids Salps<br />

Appendicularia<br />

Chaetognata<br />

Siphonophora<br />

Medusae<br />

Heteropoda<br />

Gasteropoda<br />

Polychaeta<br />

Stomatopoda larvae<br />

Brachyura<br />

Crustacea<br />

Mysidacea<br />

Carida<br />

Euphausiacea<br />

Isopoda<br />

Amphipoda<br />

Ostracoda<br />

Cladocera<br />

Foram Radiolaria<br />

Copepoda<br />

0 2 4 6 8 10 12 14<br />

0 2 4 6 8 10 12<br />

0 1 2 3 4 5 6 7<br />

0 1 2 3 4 5<br />

Ln Abundance 100 m -3<br />

Ln Abundance 100 m -3<br />

Ln Abundance 100 m -3<br />

Ln Abundance 100 m -3<br />

Copepod<br />

50-0 146260<br />

50-100 88736<br />

100-150 133<br />

Foram<strong>in</strong>ifera and Radiolaria<br />

50-0 1574 300-400 533<br />

50-100 1484 400-500 1240<br />

100-150 318<br />

150-200 80<br />

200-300 684<br />

Ostracoda<br />

50-0 65620<br />

50-100 67<br />

100-150 50<br />

Chaetognata<br />

50-50 1544<br />

50-100 652<br />

100-150 7<br />

Euphausiacea<br />

50-0 477<br />

50-100 247<br />

100-150 1<br />

Appedicularia<br />

50-0 606<br />

50-100 67<br />

100-150 0<br />

IMBIZO, Crete, Farber Lorda et al.


Station D03 04:00<br />

28711/2009<br />

MOCNESS<br />

0<br />

Zooplankton Volume (ml 100 m -3 )<br />

0 20 40 60 80 100 120 140<br />

-100<br />

-200<br />

Depth<br />

-300<br />

-400<br />

-500<br />

-600<br />

IMBIZO, Crete, Farber Lorda et al.


MOCNESS<br />

Station D03 01:30<br />

Piscis eggs<br />

Piscis larvae<br />

Ech<strong>in</strong>odermata larvae<br />

Cirripedia larvae<br />

Cephalopoda larvae<br />

Doliolids Salps<br />

Appendicularia<br />

Chaetognata<br />

Siphonophora<br />

Medusae<br />

Heteropoda<br />

Gasteropoda<br />

Polychaeta<br />

Stomatopoda larvae<br />

Brachyura<br />

Crustacea<br />

Mysidacea<br />

Carida<br />

Euphausiacea<br />

Isopoda<br />

Amphipoda<br />

Ostracoda<br />

Cladocera<br />

Foram Radiolaria<br />

Copepoda<br />

0-50 m<br />

0 2 4 6 8 10 12 14<br />

Ln Abundance 100 m -3<br />

Abundances<br />

Copepods<br />

0-50 265151 200-300 173<br />

50-100 83751 300-400 2401<br />

100-150 1825 400-500 3688<br />

150-200 456<br />

Foram<strong>in</strong>ifera, Radiolaria<br />

0-50 29770<br />

50-100 8807<br />

100-150 1105<br />

150-200 261<br />

50-100 m<br />

0 2 4 6 8 10 12<br />

Ln Abundance 100 m -3<br />

100-150 m<br />

0 1 2 3 4 5 6<br />

Ln Abundance 100 m -3<br />

Ostracoda Euphausiacea<br />

0-50 60466 0-50 579<br />

50-100 3755 50-100 369<br />

100-150 159 100-150 7<br />

150-200 86 150-200 1<br />

Chaetognata Appendicularia<br />

0-50 9788 0-50 9266<br />

50-100 738 50-100 686<br />

100-150 5 100-150 5<br />

150-200 m<br />

0 1 2 3 4 5 6<br />

Ln Abundance 100 m -3


Station D03 01:30<br />

MOCNESS<br />

29/11/2009<br />

0<br />

Zooplankton Volume (ml 100 m -3 )<br />

0 20 40 60 80 100 120 140 160<br />

-100<br />

-200<br />

Depth<br />

-300<br />

-400<br />

-500<br />

-600<br />

IMBIZO, Crete, Farber Lorda et al.


0<br />

-100<br />

Station D03 11:30<br />

MOCNESS<br />

29/11/2009<br />

Zooplankton Volume (ml 100 m -3 )<br />

0 20 40 60 80 100<br />

Station D03<br />

-200<br />

Depth (m)<br />

-300<br />

-400<br />

-500<br />

-600<br />

Depth (m)<br />

Low pH follow <strong>the</strong> biovolumes pr<strong>of</strong>iles <strong>of</strong><br />

Zooplankton from <strong>the</strong> MOCNESS net<br />

Samples (M. Hernandez and A. Franco)<br />

D3<br />

IMBIZO, Crete, Farber Lorda et al.<br />

pH <strong>in</strong> situ


0<br />

-100<br />

Station D03 11:30<br />

MOCNESS<br />

29/11/2009<br />

Zooplankton Volume (ml 100 m -3 )<br />

0 20 40 60 80 100<br />

-200<br />

Depth (m)<br />

-300<br />

-400<br />

-500<br />

Depth (m)<br />

-600<br />

There is a co<strong>in</strong>cidence <strong>of</strong> low<br />

<strong>zooplankton</strong> biovolumes with low<br />

Omega Aragonite values. We can<br />

suppose that <strong>the</strong> synergic effect <strong>of</strong><br />

low oxygen with corrosive water,<br />

Will fur<strong>the</strong>r restra<strong>in</strong> <strong>vertical</strong> migration <strong>of</strong><br />

Zooplankton (M. Hernandez and A.<br />

Franco).<br />

IMBIZO, Crete, Farber Lorda et al.<br />

Omega Aragonite<br />

D3


Deep (m)<br />

800<br />

1000<br />

1200<br />

Nitrate + Nitrite (μΜ)<br />

Ammonium (μΜ)<br />

0 5 10 15 20 25 2 3 4 5 6<br />

0<br />

0<br />

200<br />

200<br />

400<br />

400<br />

600<br />

600<br />

Deep (m)<br />

1400<br />

1600<br />

1800<br />

2000<br />

1400<br />

1600<br />

1800<br />

2000<br />

Phosphate (μΜ)<br />

Silicate (μΜ)<br />

0 1 2 3 4 0 10 20 30 40 50 60 70<br />

0<br />

0<br />

800<br />

1000<br />

1200<br />

The two chlorophyll maxima<br />

Co<strong>in</strong>cide with <strong>the</strong> two<br />

ammonia peaks <strong>in</strong> <strong>the</strong> pr<strong>of</strong>ile<br />

for <strong>the</strong> 48 hours D03 station<br />

(A. Olivos).<br />

However, for ammonia, a<br />

strong variability was found<br />

dur<strong>in</strong>g <strong>the</strong> 48 hours sampl<strong>in</strong>g<br />

station<br />

200<br />

400<br />

600<br />

200<br />

400<br />

600<br />

Deep (m)<br />

800<br />

1000<br />

1200<br />

Deep (m)<br />

800<br />

1000<br />

1200<br />

1400<br />

1600<br />

1800<br />

2000<br />

1400<br />

1600<br />

1800<br />

2000<br />

27/ 11/ 2009<br />

28/ 11/ 2009<br />

IMBIZO, Crete, Farber Lorda et al.


Trophic conditions<br />

Particulate Organic<br />

matter(Prote<strong>in</strong>+<br />

carbohydrates+ lipids<br />

=POM) reflect, for both<br />

transects, <strong>the</strong> circulation<br />

and hydrographic<br />

structure, with higher<br />

values at <strong>the</strong> rim <strong>of</strong> <strong>the</strong><br />

gyres present <strong>in</strong> <strong>the</strong> area.<br />

IMBIZO, Crete, Farber Lorda et al.


IMBIZO, Crete, Farber Lorda et al.


IMBIZO, Crete, Farber Lorda et al.


Conclusions<br />

• Oxygen pr<strong>of</strong>iles show a deeper than usual Oxygen m<strong>in</strong>imum dur<strong>in</strong>g<br />

November 2009, due to el N<strong>in</strong>o conditions.<br />

• Two chlorophyll maxima were found, be<strong>in</strong>g more stratified <strong>the</strong><br />

sou<strong>the</strong>rn D transect, for this transect, <strong>the</strong> second peak follows <strong>the</strong><br />

0.1 ml l oxygen layer.<br />

• Zooplankton <strong>vertical</strong> <strong>distribution</strong> shows a dramatic reduction <strong>in</strong> its<br />

abundances and volumes at <strong>the</strong> oxygen m<strong>in</strong>imum layer.<br />

• The Omega Aragonite and pH pr<strong>of</strong>iles follows <strong>the</strong> same trend as<br />

<strong>zooplankton</strong> volumes for <strong>the</strong> MOCNESS tows<br />

• Ammonia pr<strong>of</strong>iles co<strong>in</strong>cide with <strong>the</strong> two chlorophyll maxima at<br />

station D03, but <strong>the</strong>ir values varied dur<strong>in</strong>g <strong>the</strong> 48 hours period.<br />

IMBIZO, Crete, Farber Lorda et al.


Conclusions<br />

• Along transect pr<strong>of</strong>iles <strong>of</strong> Particulate organic matter (prote<strong>in</strong>+<br />

cabohydrates+lipids) showed better trophic conditions at <strong>the</strong> rim <strong>of</strong><br />

a persistent gyre <strong>in</strong> <strong>the</strong> area.<br />

• Our f<strong>in</strong>d<strong>in</strong>gs were determ<strong>in</strong>ed by <strong>the</strong> El N<strong>in</strong>o conditions, we can not<br />

assume that those are <strong>the</strong> “normal” conditions.<br />

• A quite variable <strong>vertical</strong> <strong>distribution</strong> was found, but <strong>the</strong> general<br />

pattern seem to be <strong>the</strong> dramatic reduction <strong>of</strong> <strong>zooplankton</strong> <strong>in</strong> <strong>the</strong><br />

OMZ.<br />

• However <strong>the</strong> presence <strong>of</strong> copepods at deeper waters, with a small<br />

<strong>in</strong>crease <strong>of</strong> certa<strong>in</strong> groups, leave <strong>the</strong> question <strong>of</strong> <strong>the</strong> adaptations to<br />

low oxygen open.<br />

• Our results support <strong>the</strong> Habitat Contraction Hypo<strong>the</strong>sis.<br />

Zooplankton is concentrated <strong>in</strong> <strong>the</strong> first 100m.<br />

IMBIZO, Crete, Farber Lorda et al.


PROCOMEX XI participants<br />

IMBIZO, Crete, Farber Lorda et al.


Phkaristo! Thank you! Gracias<br />

IMBIZO, Crete, Farber Lorda et al.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!