31.12.2014 Views

Download full presentation (pdf, 4MB) - Students.sgthome.co.uk ...

Download full presentation (pdf, 4MB) - Students.sgthome.co.uk ...

Download full presentation (pdf, 4MB) - Students.sgthome.co.uk ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Glass Doping through Sol-Gel Chemistry :<br />

a little something<br />

can make a big difference<br />

Jean-Marie Nedelec<br />

Laboratoire des Matériaux Inorganiques, CNRS UMR 6002 ,<br />

Université Blaise Pascal, Clermont-Ferrand 2<br />

& E<strong>co</strong>le Nationale Supérieure de Chimie de Clermont-Ferrand<br />

FRANCE<br />

Society of Glass Technology Annual meeting, (10-12 September, Cambridge, UK)


PARIS<br />

CLERMONT-FERRAND<br />

MONTPELLIER


Port Doctoral position<br />

opening – 1 year<br />

J-marie.nedelec@univ-bpclermont.fr


Outline<br />

Introduction<br />

Silica xerogels : Effect of doping on the densification<br />

pathway<br />

Bioceramics : Improved bioactivity of doped ceramics<br />

Conclusions


Introduction<br />

Doping = atoms, ions, molecules,…<br />

= FUNCTION<br />

Optical, magnetic, biological,<br />

electrical,…<br />

= STRUCTURE<br />

Phase, hardness,<br />

microstructure


Introduction<br />

Sol-Gel Chemistry<br />

Nanoparticles<br />

Gel<br />

Powder<br />

Doping<br />

Thin films<br />

Very versatile route, high homogeneity,<br />

good dispersion of doping ions


Doped Silica xerogels<br />

Doping with rare earth ions, TM ions, dyes, biomolecules,…<br />

No effect of doping on the structure of the gels


2,2<br />

2,0<br />

1,8<br />

SiO 2<br />

SiO 2<br />

: Ag +<br />

SiO 2<br />

: Ce 3+<br />

Density (g/cm 3 )<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

800 850 900 950 1000 1050 1100 1150<br />

Annealing Temperature (°C)


D 1<br />

δ Si-O-Si<br />

D 2<br />

ν Si-OH<br />

1100°C<br />

Intensity (a.u.)<br />

1050°C<br />

1000°C<br />

950°C<br />

900°C<br />

850°C<br />

800°C<br />

0 200 400 600 800 1000 1200<br />

Raman shift (cm -1 )


Normalized Raman Intensity<br />

0,060<br />

0,055<br />

0,050<br />

0,045<br />

0,040<br />

0,035<br />

0,030<br />

0,025<br />

750 800 850 900 950 1000 1050 1100 1150 1200<br />

0,04<br />

0,03<br />

0,02<br />

D1<br />

Si-OH<br />

0,12<br />

0,10<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

0,00<br />

750 800 850 900 950 1000 1050 1100 1150 1200<br />

0,84<br />

0,80<br />

0,76<br />

0,72<br />

Si-O-Si<br />

D2<br />

0,01<br />

0,68<br />

0,00<br />

750 800 850 900 950 1000 1050 1100 1150 1200<br />

0,64<br />

750 800 850 900 950 1000 1050 1100 1150 1200<br />

Annealing Temperature (°C)<br />

J. Sol-Gel Sci. Techn. 32 (2004) 345-348<br />

J. Non-Cryst. Solids, 345-346, (2004), 570-574.


Low-frequency Raman spectra<br />

SiO 2 : Mn 2+<br />

Suprasil<br />

Intensity (a.u.)<br />

0 ppm<br />

200 ppm<br />

500 ppm<br />

-100 -50 0 50 100<br />

Raman shift (cm -1 )<br />

J. Non-Cryst. Solids, 243, (1999), 209


Duval et al., Phil. Mag. B 77 (1998)<br />

2.24 nm<br />

11.1 nm<br />

2.9 nm<br />

Suprasil<br />

undoped<br />

Mn 2+ 500 ppm<br />

0 20 40 60 80<br />

ω (cm -1 )


Bioactive Ceramics<br />

Need for improved bone replacement materials<br />

Bioactive ceramics<br />

Crystalline : HAP Amorphous : Bioglass ®<br />

Control of bioactivity and new functions through<br />

- doping<br />

- <strong>co</strong>ntrol of porosity


Bioglass ® (L.L. Hench et al.)<br />

bioactive<br />

Inert/fibrous<br />

capsule<br />

Resorbable<br />

10-30 d<br />

Na 2 O-CaO-P 2 O 5 -SiO 2<br />

Bioactivity = function (<strong>co</strong>mposition)<br />

Sr – doped glasses


Sol-Gel elaboration of doped bioactive glasses<br />

Ca(NO 3 ) 2 ,4H 2 O<br />

Si(OEt) 4<br />

O=P(OEt) 3<br />

Monolith<br />

(Ca,P,Si) sol<br />

Gel<br />

Doping : + Sr(NO 3 ) 2<br />

Reflux @ 85 °C Drying @ 60°C<br />

Powder<br />

Treatment<br />

24 h @ 700 °C


Mesoporous Bioactive glass<br />

monoliths<br />

250,00<br />

Adsorption<br />

Desorption<br />

200,00<br />

Volume (cc.g -1 )<br />

150,00<br />

100,00<br />

50,00<br />

1.5 cm<br />

0,00<br />

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00<br />

P/P0<br />

SSA between 70 and 150 m 2 /g


150 °C<br />

450 °C<br />

10 nm 15 nm<br />

600 °C<br />

700 °C<br />

20 nm 15 nm


In vitro assays<br />

└►In vitro assays allow important evaluation for the bioactivity of glasses<br />

Immersion in<br />

biological fluids<br />

(DMEM) for<br />

varying periods<br />

:<br />

up to 4 days<br />

soaking<br />

Glass particles<br />

are embedded in<br />

resin<br />

Samples are cut into thin<br />

sections 1 µm thick<br />

Micro-PIXE-RBS<br />

characterization


Ion and electron beams methods<br />

Ion beam analysis at the micrometer scale<br />

Micro-beam lines<br />

PIXE : Particles Induced X-ray Emission – Multi-elementary analysis<br />

Resolution : 1 µm at 50 pA<br />

Experimental set-up<br />

Si(Li) diode at 135°<br />

Data Treatment<br />

Gupix <strong>co</strong>de<br />

Concentrations measurements : Z > 11 (Na), sensitivity ≈ 1 µg/g<br />

Elemental maps : 10x10 µm 2 –2x2 mm 2<br />

Major elements<br />

Trace elements<br />

Ca, P, Mg, Si, Zn, Sr, K, Na, S …


Ion and electron beams methods<br />

Ion beam analysis at the micrometer scale<br />

Micro-beam lines<br />

RBS : Rutherford Backscattering Spectros<strong>co</strong>py<br />

Elastic diffusion of the incident ion by nucleus in the target (Coulomb interaction)<br />

Experimental set-up<br />

Si diode at 135°<br />

Data Treatment<br />

SimNRA <strong>co</strong>de<br />

Rumpin <strong>co</strong>de<br />

Resolution : 1 µm at 50 pA<br />

Stoechiometric : Z > 5 (B) ; C, N, O….<br />

Sample weight, irradiation damages<br />

Deposited charge (to calculate <strong>co</strong>ncentrations with PIXE)


Experimental device: the CENBG microbeam line<br />

Ion source<br />

H + , He +<br />

Singletron electrostatic accelerator<br />

Proton beam of 1.5 MeV energy; ∆E/E = 2.5x10<br />

500 pA intensity<br />

Size of the spot: 1 µm m x 1µm1<br />

10 ─5<br />

Experimental set up<br />

Collimator<br />

Russian quadruplet<br />

PIXE<br />

STIM<br />

Switching magnet<br />

Collimator<br />

Electrostatic<br />

scanning plates<br />

RBS


PIXE-RBS study of interactions<br />

SiO 2 75 % -CaO 25 % glass<br />

Si<br />

Ca<br />

P<br />

After 15 minutes of interaction


Si<br />

Ca<br />

P<br />

Mg<br />

After 1 hour of interaction


Influence of doping 5 % Sr<br />

Si<br />

Ca<br />

P<br />

4 days<br />

Sr<br />

Mg<br />

-Doped glass reacts more slowly<br />

-The Ca/P peripherical phase is still present after 4 days


Evolution of Ca/P ratio in the periphery<br />

Un-doped glass<br />

5 % Sr-doped glass<br />

Time (days)<br />

Time (days)<br />

Chem. Mat. 20 (2008) 4969


SiO 2 -CaO 5 days


SiO 2 -CaO-P 2 O 5<br />

5 days<br />

J. Phys. Chem C 112, (2008) 9418


Sr 2+ delivery in solution<br />

15<br />

Concentration (ppm)<br />

10<br />

5<br />

0<br />

0 2 4<br />

Interaction time in DMEM (days)


Conclusions<br />

Flexibility of the process<br />

NEW MATERIALS<br />

Better dispersion<br />

HIGH HOMOGENEITY<br />

Doping<br />

STRUCTURAL MODIFICATION<br />

Doping species<br />

NEW FUNCTIONALITIES


Acknowledgements<br />

Université Clermont-Ferrand<br />

E. Jallot<br />

J. Lao<br />

L. Courthéoux<br />

J. Soulie<br />

Université Lille<br />

S. Turrell<br />

C. Kinowski<br />

M. Bouazaoui<br />

B. Capoen<br />

Université Paris 7<br />

J.M. sautier<br />

S. Loty<br />

University Trento<br />

M. Ferrari<br />

Université Bordeaux<br />

CENBG<br />

P. Moretto<br />

FNS & FRT LuminiX and LuNaTIC, ANR PNANO 2005 & 2006, INSERM Pro A for funding

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!