05.01.2015 Views

Lect. 13: Dielectric Waveguide (2)

Lect. 13: Dielectric Waveguide (2)

Lect. 13: Dielectric Waveguide (2)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lect</strong>. <strong>13</strong>: <strong>Dielectric</strong> <strong>Waveguide</strong> (2)<br />

E(y) profile: n 1 =1.5, n 2 =1.495, d=10μm, λ=1μm<br />

TE 1<br />

TE<br />

1 TE 2<br />

Optoelectronics (10/2)<br />

W.-Y. Choi


<strong>Lect</strong>. <strong>13</strong>: <strong>Dielectric</strong> <strong>Waveguide</strong> (2)<br />

E(y) profile: n 1 =1.5, n 2 =1.495, d=10μm, λ=1μm<br />

TE 1<br />

TE 3<br />

TE<br />

1 TE 2<br />

Optoelectronics (10/2)<br />

W.-Y. Choi


<strong>Lect</strong>. <strong>13</strong>: <strong>Dielectric</strong> <strong>Waveguide</strong> (2)<br />

Wave is not entirely confined within core: Confinement factor<br />

Power inside core<br />

Γ= =<br />

Total Power<br />

d<br />

y= 2<br />

2<br />

∫<br />

d<br />

y=−<br />

2<br />

y=∞<br />

∫<br />

y=−∞<br />

E( y)<br />

E( y)<br />

2<br />

dy<br />

dy<br />

For higher modes, how does Γ change<br />

Optoelectronics (10/2)<br />

W.-Y. Choi


<strong>Lect</strong>. <strong>13</strong>: <strong>Dielectric</strong> <strong>Waveguide</strong> (2)<br />

Partitioning of input field into different guided modes.<br />

n 2<br />

E ( ) in<br />

y<br />

n 1<br />

+ +<br />

Ein( y) ≅ ∑ amEm( y)<br />

n 2<br />

For a , use the fact that E ( y)'s are orthogonal.<br />

m<br />

∫ ∫∑<br />

E ( y ) E ( y ) dy ≈<br />

a E ( y ) ⋅<br />

E ( y )<br />

dy<br />

in m n n m<br />

n<br />

= ∫<br />

∫ in m<br />

∴ am<br />

=<br />

2<br />

∫ E y dy<br />

a E<br />

m<br />

E ( y) E ( y)<br />

dy<br />

m<br />

( )<br />

m<br />

2<br />

m<br />

( y)<br />

dy<br />

m<br />

Optoelectronics (10/2)<br />

W.-Y. Choi


<strong>Lect</strong>. <strong>13</strong>: <strong>Dielectric</strong> <strong>Waveguide</strong> (2)<br />

ω<br />

Slope = c/n 2<br />

Sl / Slope = c/n 1<br />

TE 3<br />

TE 2<br />

TE 2<br />

ω cut-off<br />

TE 1<br />

β m<br />

Schematic dispersion diagram, ω vs. β for the slab waveguide for various TE m . modes.<br />

ω cut–off Group corresponds velocities to V are = π/2. different The group for velocity different v g modes at any => ω is modal the slope dispersion of the ω vs. β<br />

curve at Need that frequency. a single-mode waveguide in order to avoid signal distortion.<br />

How do you design a single mode waveguide<br />

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

Optoelectronics (10/2)<br />

W.-Y. Choi


<strong>Lect</strong>. <strong>13</strong>: <strong>Dielectric</strong> <strong>Waveguide</strong> (2)<br />

n 3<br />

cladding<br />

b-V diagram for TE mode<br />

d<br />

n 1<br />

core<br />

n 2<br />

1<br />

2 2 2<br />

0<br />

(<br />

1 2<br />

)<br />

V = kd( kdn − n )<br />

(Normalized k)<br />

b =<br />

⎛β<br />

⎜<br />

⎝ k<br />

n<br />

2<br />

⎞<br />

⎟ − n<br />

⎠<br />

0<br />

2 2<br />

1<br />

−<br />

n<br />

2<br />

2<br />

2<br />

(Normalized β )<br />

b<br />

a =<br />

n<br />

− n<br />

2 2<br />

2 3<br />

2 2<br />

n1 − n2<br />

(Asymmetry factor)<br />

V<br />

Optoelectronics (10/2)<br />

W.-Y. Choi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!