06.01.2015 Views

Electricity Storage Versus Energy Sector Coupling in Germany

Electricity Storage Versus Energy Sector Coupling in Germany

Electricity Storage Versus Energy Sector Coupling in Germany

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

Technische Universität München<br />

Manag<strong>in</strong>g Temporary Oversupply from Renewables<br />

Efficiently:<br />

<strong>Electricity</strong> <strong>Storage</strong> <strong>Versus</strong> <strong>Energy</strong> <strong>Sector</strong> <strong>Coupl<strong>in</strong>g</strong> <strong>in</strong><br />

<strong>Germany</strong><br />

Katr<strong>in</strong> Schaber* (Technische Universität München)<br />

Florian Ste<strong>in</strong>ke (Siemens Corporate Technology, Munich)<br />

Thomas Hamacher (Technische Universität München)<br />

International <strong>Energy</strong> Workshop, Paris, 20 June 2013<br />

Lehrstuhl für Energiewirtschaft und Anwendungstechnik<br />

Prof. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher<br />

*k.schaber@tum.de


Structure of this presentation<br />

1. Introduction<br />

2. Scenario def<strong>in</strong>ition and model<strong>in</strong>g approach<br />

3. Results<br />

4. Conclusion<br />

Schaber, Ste<strong>in</strong>ke, Hamacher<br />

2


Introduction (1): high shares variable renewable energies<br />

(VREs) lead to large temporary excess electricity<br />

Share of w<strong>in</strong>d<br />

<strong>Electricity</strong> <strong>Storage</strong><br />

(pumped hydro, CAES, batteries,<br />

but ma<strong>in</strong>ly hydrogen)<br />

<strong>Energy</strong> sector coupl<strong>in</strong>g<br />

(supply/replace other energy demand<br />

like heat, natural gas, hydrogen)<br />

Schaber, Ste<strong>in</strong>ke, Hamacher<br />

3


Introduction (2): Non-trivial <strong>in</strong>teraction of different options to<br />

manage temporary oversupply<br />

‣ Jo<strong>in</strong>t analysis of all options <strong>in</strong> a detailed energy system model<br />

Schaber, Ste<strong>in</strong>ke, Hamacher<br />

4


Scenario def<strong>in</strong>ition:<br />

<strong>Germany</strong>, 2020 and 2050<br />

Reference<br />

technology<br />

<strong>Storage</strong> size<br />

Gas<br />

reformation<br />

unlimited<br />

Gas price<br />

25 €/MWh<br />

2020 2050<br />

Solar PV 60 GW 129 GW<br />

W<strong>in</strong>d Onshore 42 GW 75 GW<br />

W<strong>in</strong>d Offshore 16 GW 43 GW<br />

Reference<br />

technology<br />

<strong>Storage</strong> size<br />

Gas<br />

heat<strong>in</strong>g<br />

1h<br />

‣ Sensitivity analyses: conversion paths, gas price, electrolysis costs<br />

Schaber, Ste<strong>in</strong>ke, Hamacher<br />

5


Method (1): URBS model generator for detailed energy<br />

system model of German power, heat and H2 system<br />

Input parameter<br />

Techno-economic<br />

parameters (costs, fuel<br />

prices, efficiencies<br />

load and renewable<br />

supply profiles (per model<br />

region and timestep)<br />

exist<strong>in</strong>g <strong>in</strong>frastructure (per<br />

model region)<br />

Limits to <strong>in</strong>trastructure<br />

extension (potential,<br />

political circumstances)<br />

<strong>Energy</strong> system<br />

model generator URBS<br />

L<strong>in</strong>ear Optimization (GAMS, CPLEX Solver)<br />

properties<br />

of<br />

generation<br />

processes<br />

M<strong>in</strong>imization of total costs<br />

under boundary condidtions:<br />

supply ≥ demand<br />

properties<br />

of<br />

storage<br />

processes<br />

properties<br />

of<br />

transport<br />

processes<br />

Results<br />

Power plant dispatch<br />

and additions<br />

Grid capacity usage and<br />

extension<br />

<strong>Storage</strong> dispatch and<br />

extension<br />

<strong>Energy</strong> price and total<br />

costs<br />

Emissions per region<br />

and source<br />

Schaber, Ste<strong>in</strong>ke, Hamacher<br />

6


Method (2): distributed generation implemented URBS<br />

model and regional resolution<br />

• Distributed generation follows local demand (relevant for space heat<strong>in</strong>g<br />

technologies, after Richter (2004))<br />

• Detailed model<strong>in</strong>g of CHP technology<br />

Input<br />

commodity<br />

Secondary<br />

commodity<br />

Secondary<br />

commodity<br />

Output<br />

commodities<br />

chp<br />

plb<br />

f prod =0.4<br />

hp<br />

pp<br />

lg=1<br />

generic<br />

Gas<br />

Generic<br />

f prod =0.6<br />

Local heat<br />

Heat<br />

<strong>Electricity</strong><br />

• Regional resolution accord<strong>in</strong>g to dena II (2010),<br />

regions reflect well connected areas <strong>in</strong> electricity grid.<br />

Schaber, Ste<strong>in</strong>ke, Hamacher<br />

7


Results: System wide effects of coupl<strong>in</strong>g (1)<br />

Base scenario 2020<br />

Schaber, Ste<strong>in</strong>ke, Hamacher


Results: System wide effects of coupl<strong>in</strong>g (2)<br />

Base scenario 2050<br />

Schaber, Ste<strong>in</strong>ke, Hamacher


Results: System wide effects of coupl<strong>in</strong>g (3)<br />

Excess electricity and coupl<strong>in</strong>g<br />

2020 2050<br />

Excess electricity<br />

and coupl<strong>in</strong>g (TWh)<br />

Excess electricity<br />

and coupl<strong>in</strong>g (TWh)<br />

• Heat sector acts as s<strong>in</strong>k for excess electricity<br />

• Hydrogen sector plays a m<strong>in</strong>or role only<br />

• Role of transmission grid extension changes<br />

Schaber, Ste<strong>in</strong>ke, Hamacher


Results: Role of hydrogen sector is crowded out by large<br />

s<strong>in</strong>k for excess electricity provided by the heat sector<br />

2020 2050<br />

Excess electricity<br />

and coupl<strong>in</strong>g (TWh)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Excess electricity<br />

and coupl<strong>in</strong>g (TWh)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

50<br />

-<br />

-<br />

-50<br />

No Grid,<br />

<strong>Coupl<strong>in</strong>g</strong><br />

Grid,<br />

<strong>Coupl<strong>in</strong>g</strong><br />

(Base)<br />

Grid,<br />

No Heat<br />

<strong>Coupl<strong>in</strong>g</strong><br />

75€ gas<br />

price<br />

-50<br />

No Grid,<br />

<strong>Coupl<strong>in</strong>g</strong><br />

Grid,<br />

<strong>Coupl<strong>in</strong>g</strong><br />

(Base)<br />

Grid,<br />

No Heat<br />

<strong>Coupl<strong>in</strong>g</strong><br />

Elec. Overproduction H2 to Elec. Elec Overproduction H2 to Gas H2 Elec. to to H2 Elec. H2 to to GasHeat<br />

75€ gas<br />

price<br />

75€ gas<br />

price,<br />

No Grid,<br />

No Heat<br />

<strong>Coupl<strong>in</strong>g</strong><br />

• Relative costs of technologies leads to dom<strong>in</strong>ant role of heat sector<br />

• Methanation is only part of cost-optimal mix with high gas price and no<br />

other option<br />

Schaber, Ste<strong>in</strong>ke, Hamacher


Results: Cost-optimal heat<strong>in</strong>g technologies are<br />

complementary to VRE sources<br />

Regional mix of heat supply (2050: Grid, <strong>Coupl<strong>in</strong>g</strong>)<br />

Share of heat supply<br />

from electricity<br />

Share of heat supply<br />

from CHP<br />

• High variability of w<strong>in</strong>d energy <strong>in</strong> the north fits well with electric heater<br />

• Solar PV and CHP electricity generation are anticorrelated on a<br />

seasonal timescale<br />

Schaber, Ste<strong>in</strong>ke, Hamacher


Results:<br />

<strong>Sector</strong> coupl<strong>in</strong>g gives value to excess electricity<br />

Histogram of electricity prices (marg<strong>in</strong>al costs)<br />

2050, No Grid, No <strong>Coupl<strong>in</strong>g</strong> 2050, Grid, <strong>Coupl<strong>in</strong>g</strong><br />

cost of replaced fuel<br />

• <strong>Electricity</strong> prices become lower bounded by cost of the replaced fuel,<br />

natural gas (plus emission allowances)<br />

Schaber, Ste<strong>in</strong>ke, Hamacher<br />

13


Conclusion<br />

F<strong>in</strong>d<strong>in</strong>gs:<br />

• power-to-heat coupl<strong>in</strong>g displaces long term electricity storage and<br />

the power-to-gas option.<br />

• Heat sector acts as cost-efficient s<strong>in</strong>k for excess electricity.<br />

• Regional heat<strong>in</strong>g technologies are complementary to VRE technologies.<br />

• Role of transmission grid changes.<br />

• Zero price events are reduced thanks to energy sector coupl<strong>in</strong>g.<br />

Future Work<br />

• 100% renewables scenario for all sectors<br />

• Include transport sector<br />

• More detailed model<strong>in</strong>g of heat and hydrogen sector<br />

Schaber, Ste<strong>in</strong>ke, Hamacher<br />

14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!