07.01.2015 Views

Band gap, spin orbit splitting and radiative transitions of GaNAsBi ...

Band gap, spin orbit splitting and radiative transitions of GaNAsBi ...

Band gap, spin orbit splitting and radiative transitions of GaNAsBi ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

URHEA<br />

2 nd International Workshop on Bismuth-Containing<br />

Semiconductors : Theory, Simulation <strong>and</strong> Experiment<br />

18 th - 20 th July 2011, Guildford, Surrey, UK<br />

<strong>B<strong>and</strong></strong> <strong>gap</strong>, <strong>spin</strong> <strong>orbit</strong> <strong>splitting</strong> <strong>and</strong><br />

<strong>radiative</strong> <strong>transitions</strong> <strong>of</strong> <strong>GaNAsBi</strong> layers<br />

matched on GaAs substrates<br />

M ed Mourad Habchi*, Ahmed Rebey <strong>and</strong> Belgacem El Jani<br />

Monastir University, Faculty <strong>of</strong> Sciences, Physics Department<br />

Research Unit on Hetero-Epitaxy <strong>and</strong> Applications (URHEA)<br />

TUNISIA<br />

e-mail : mohamedmourad.habchi@fsm.rnu.tn<br />

1


URHEA Outline<br />

‣ Background<br />

‣ Theory & Models<br />

‣ GaAsBi Ternary Alloys<br />

‣ <strong>GaNAsBi</strong> Quaternary Alloys<br />

‣ Conclusion<br />

2


HMAs<br />

URHEA<br />

Background<br />

• Group II-VI based : ZnX 1-y Te y , X = O, S, Se<br />

• Group III-V based : Ternary & Quaternary Alloys<br />

Dilute nitrides : GaN y As 1-y , In x Ga 1-x N y As 1-y<br />

Dilute bismides : GaAs 1-y Bi y , InAs 1-y Bi y<br />

Dilute nitride-bismides : GaN x As 1-x-y Bi y<br />

Dilute Alloys || (eV) || (%) |R co | (pm) |R co | (%)<br />

GaAs - N 0.86 39.4 48 40.3<br />

GaAs - Bi 0.16 7.3 26 21.8<br />

HMAs : Highly Electronegativity Mismatched Alloys<br />

3


GaN x As 1-x-y Bi y Alloys<br />

URHEA<br />

Background<br />

Lattice parameter : (Vegard’s Law)<br />

a =<br />

1 − y − x a GaAs + xa GaN + ya GaBi<br />

(<strong>GaNAsBi</strong>/GaAs) Pseudomophic Structure :<br />

<strong>B<strong>and</strong></strong> Offset :<br />

Δa/a = 0 ⟶ x N = 0. 58 y Bi<br />

Interface CBO (eV) VBO (eV) so Offset (eV)<br />

GaN/GaAs - 0.03 - 1.84 - 1.52<br />

GaBi/GaAs - 2.1 - 2.3 0.8 0.6 - 1.1 - 1.3<br />

4


The k.p Method<br />

URHEA<br />

Theory & Models<br />

k<br />

H = H 0 + H k.p + H k + H so + H so<br />

Applied to GaAs near Γ point :<br />

Valence <strong>B<strong>and</strong></strong> (H 6×6 )<br />

• Luttinger Model<br />

• Six-<strong>B<strong>and</strong></strong> Model<br />

• Group Theory & Crystallo.<br />

VB + CB (H 8×8 )<br />

• Second-Order Kane Model<br />

• Eight-<strong>B<strong>and</strong></strong> Model<br />

• Löwdin Perturbation Theory<br />

• {|J, M J >} Basis, J=1/2; 3/2<br />

• {|U n >} Basis, n= 1..8<br />

5


Différent Situations :<br />

BAC Models<br />

URHEA<br />

Theory & Models<br />

CB<br />

(1) : N in GaAs<br />

Gap<br />

(2) : N in GaP<br />

(3) : Bi in GaP<br />

VB<br />

(4) : Bi in GaAs<br />

BAC : <strong>B<strong>and</strong></strong> Anti-Crossing<br />

6


BAC Models<br />

(GaAsBi)<br />

URHEA<br />

Theory & Models<br />

VB : BAC Model (H 12×12 ) BS : BAC Model (H 14×14 )<br />

[1]<br />

[2]<br />

V 6×6 = diag 6 (V Bi )<br />

V Bi = C Bi<br />

y<br />

[1] Alberi et al, Phys. Rev B 75 (2007) 045203<br />

[2] Imh<strong>of</strong> et al, Semicond. Sci. Technol. 23 (2008) 125009<br />

Reference [1]<br />

E Bi (eV) - 0.4<br />

E Bi-so (eV) - 1.9<br />

C Bi (eV) 1.55 1.6<br />

7


BS : BAC Model (H 16×16 )<br />

BAC Model<br />

(<strong>GaNAsBi</strong>)<br />

URHEA<br />

Theory & Models<br />

H 16×16 =<br />

mod<br />

H 8×8<br />

V N(2×8)<br />

V Bi(6×8)<br />

V N(8×2) V Bi(8×6) H N,Bi(8×8)<br />

V N = C N<br />

V Bi = C Bi<br />

x<br />

y<br />

Reference [1]<br />

E N (eV) 1.65<br />

C N (eV) 2.7<br />

• No interaction between<br />

Bi localized level <strong>and</strong> CB<br />

states.<br />

• No coupling between N<br />

localized level <strong>and</strong> VB<br />

states <strong>of</strong> GaAs.<br />

[1] Wu et al, Semicond. Sci. Technol. 17 (2002) 860<br />

8


E(eV)<br />

E(eV)<br />

URHEA<br />

GaAsBi Ternary Alloys<br />

GaAs .96 Bi .04<br />

<strong>B<strong>and</strong></strong> Structure<br />

@300K<br />

(a) : BAC Model (12x12)<br />

(b) : BAC Model (14x14)<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

E hh+<br />

E lh+<br />

E hh-<br />

E so-<br />

E lh-<br />

E so+<br />

0.1(2/a)<br />

(a)<br />

E Bi<br />

E Bi-so<br />

• E g = 1.145 eV<br />

• so+ = 0.518 eV<br />

-2.5<br />

1.8<br />

1.5<br />

1.2<br />

<br />

E bc<br />

0.1(2/a)<br />

(b)<br />

• E qad = - 0.687 eV<br />

0<br />

E hh+<br />

E lh+<br />

E so+<br />

between E so+ <strong>and</strong> E hh- levels in<br />

direction @ k = 0.175(2π/a).<br />

-1<br />

-2<br />

E hh-<br />

E lh-<br />

E so-<br />

<br />

E Bi<br />

E Bi-so<br />

9


Energy, E(eV)<br />

Energy, E(eV)<br />

0.5<br />

E hh+<br />

(a)<br />

URHEA<br />

GaAsBi Ternary Alloys<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

E so+<br />

<br />

<br />

<br />

E lh+<br />

E lh-<br />

E hh-<br />

BS <strong>of</strong> GaAs .96 Bi .04<br />

@300K along , <br />

<strong>and</strong> directions<br />

-2.0<br />

E so-<br />

-2.5<br />

30.00 0.05 0.10 0.15 0.20<br />

2<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

E so+<br />

E so-<br />

<br />

<br />

<br />

E lh+<br />

E lh-<br />

(b)<br />

Vecteur d'onde, k (2/a)<br />

E hh+<br />

E hh-<br />

0.00 0.05 0.10 0.15 0.20<br />

Wavevector, k (2/a)<br />

E bc<br />

• E c & E so+/- are invariant under high<br />

symmetry direction changes in<br />

the vicinity <strong>of</strong> Γ.<br />

• This isotropic nature results from<br />

the symmetry “s” <strong>of</strong> b<strong>and</strong>s.<br />

• E n+/- (k) has Γ 8 -symmetry <strong>and</strong><br />

depends on k-direction because<br />

<strong>of</strong> the symmetry “p” <strong>of</strong> b<strong>and</strong>s.<br />

10


Energy, E(eV)<br />

URHEA<br />

Energy levels vs Bi content<br />

GaAsBi Ternary Alloys<br />

Using BAC Model (14x14)<br />

2<br />

1<br />

0<br />

-1<br />

E bc<br />

E so+ ↗<br />

• If y Bi ↗ E hh/lh+ ↗<br />

E hh/lh+<br />

E so+<br />

E hh/lh-<br />

• VBM shifts toward the top.<br />

• If y Bi ↗ E cb ↘<br />

E hh/lh- ↘<br />

E so- ↘<br />

-2<br />

E so-<br />

0.00 0.01 0.02 0.03 0.04 0.05<br />

Bi content, y<br />

• Like GaAs, E hh/lh+ & E hh/lh-<br />

Levels are degenerate<br />

@ Γ point.<br />

11


Energy, E (eV)<br />

URHEA<br />

GaAsBi Ternary Alloys<br />

Interb<strong>and</strong> Radiative Transitions<br />

3.5<br />

3.0<br />

T (bc/so-)<br />

Using BAC Model (14x14)<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

• Reduction <strong>of</strong> E g with increase <strong>of</strong> y Bi<br />

with a rate <strong>of</strong> 81 meV/%Bi.<br />

T (bc/hh-)<br />

- Literature : (42-84 meV/%Bi)<br />

T (bc/so+)<br />

- URHEA : 42 meV/%Bi [1]<br />

E <br />

g<br />

so-<br />

so+<br />

0.5<br />

0.00 0.02 0.04 0.06 0.08 0.10 0.12<br />

Bi content, y<br />

• Increase <strong>of</strong> <strong>spin</strong>-<strong>orbit</strong> <strong>splitting</strong> with<br />

a rate <strong>of</strong> 56 meV/%Bi.<br />

- Exp. Val. : 59 meV/%Bi [2]<br />

‣ Resonance <strong>of</strong> E g & so+ for y Bi = 0.12 (with E res = 0.733 eV)<br />

[1] Fitouri et al, Semicond. Sci. Technol. 25 (2010) 065009<br />

[2] Fluegel et al, Phys. Rev. Lett. 97 (2006) 067205<br />

12


E(eV)<br />

URHEA<br />

<strong>GaNAsBi</strong> Quaternary Alloys<br />

BS <strong>of</strong> GaN .023 As .937 Bi .040 @ 300K<br />

Using BAC Model (16x16)<br />

• <strong>GaNAsBi</strong> is matched to GaAs.<br />

2<br />

E bc+<br />

E N<br />

• Each b<strong>and</strong> is divided into two<br />

1<br />

E bc-<br />

0.1(2/a)<br />

sub-b<strong>and</strong>s.<br />

• <strong>B<strong>and</strong></strong><strong>gap</strong> E g = 0.860 eV<br />

0<br />

-1<br />

E hh+<br />

E lh+<br />

E so+<br />

E hh-<br />

E lh-<br />

E Bi<br />

for y Bi = 0.040 then x N = 0.023<br />

• Bismuth reduces the amount <strong>of</strong><br />

Nitrogen to achieve lower <strong>gap</strong><br />

-2<br />

E so-<br />

<br />

E Bi-so<br />

energy.<br />

- In fact, for GaNAs :<br />

E g = 0.860 eV x N > 5%<br />

13


Energy, E(eV)<br />

Energy levels<br />

vs<br />

URHEA<br />

<strong>GaNAsBi</strong> Quaternary Alloys<br />

y Bi coupled to x N<br />

Using BAC Model (16x16)<br />

• Like GaAsBi, E hh/lh+ & E hh/lh-<br />

2<br />

1<br />

0<br />

E bc+<br />

E bc-<br />

E hh/lh+<br />

E so+<br />

Levels are degenerate @ Γ<br />

point <strong>and</strong> VBM shifts toward<br />

the top.<br />

-1<br />

-2<br />

E hh/lh-<br />

E so-<br />

0.00 0.01 0.02 0.03 0.04 0.05<br />

Bismuth composition, y<br />

• If y Bi ↗ <br />

+ E cb+ ↗, E hh/lh+ ↗ <strong>and</strong> E so+ ↗<br />

+ E cb- ↘, E hh/lh- ↘ <strong>and</strong> E so- ↘<br />

14


Energy, E(eV)<br />

URHEA<br />

<strong>GaNAsBi</strong> Quaternary Alloys<br />

Interb<strong>and</strong> Radiative Transitions<br />

4<br />

3<br />

T (bc+/so-)<br />

T (bc+/hh-)<br />

T (bc-/so-)<br />

• Strong reduction <strong>of</strong> E g with<br />

increase <strong>of</strong> y Bi with a rate <strong>of</strong><br />

2<br />

T (bc+/so+)<br />

T (bc+/hh+)<br />

198 meV/%Bi.<br />

1.5<br />

so-<br />

E g<br />

T (bc-/hh-)<br />

T (bc-/so+)<br />

• Like GaAs 1-y Bi y, We note the<br />

1.0<br />

same increase <strong>of</strong> <strong>spin</strong>-<strong>orbit</strong><br />

0.5<br />

so+<br />

0.00 0.02 0.04 0.06 0.08<br />

Bismuth composition, y<br />

<strong>splitting</strong> in GaN .58y As 1-1.58y Bi y<br />

with the rate <strong>of</strong> 56 meV/%Bi.<br />

Resonance <strong>of</strong> :<br />

E g & so+ for y Bi = 0.068 (with E res = 0.604 eV)<br />

E cb+/hh+ & E cb-/so+ for y Bi = 0.005 & (with E res = 1.685 eV)<br />

E cb+/hh+ & E cb-/hh- for y Bi = 0.014 & (with E res = 1.715 eV)<br />

15


Energy, E(eV)<br />

BS <strong>of</strong> GaN .023 As .937 Bi .040<br />

@300K along<br />

, <strong>and</strong> directions<br />

URHEA<br />

<strong>GaNAsBi</strong> Quaternary Alloys<br />

3 <br />

<br />

<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

0.00 0.05 0.10 0.15 0.20<br />

Wavevector, k (2/a)<br />

• Qualitatively, the same<br />

behavior <strong>of</strong> GaAs .96 Bi .04 b<strong>and</strong><br />

structure is observed<br />

(see Slide n.10).<br />

• The symmetries “s” or “p”<br />

affect the CB <strong>and</strong> the<br />

restructured VB near Γ point.<br />

• E hh+ () is the similar tp E hh+ (),<br />

but it’s different to E hh+ ()<br />

16


URHEA<br />

<strong>GaNAsBi</strong> Quaternary Alloys<br />

Emissions 1.3 m & 1.55 m<br />

GaN .027 As .927 Bi .046 & GaN .018 As .951 Bi .031<br />

T 1 = E g<br />

hh/lh+ → bc-<br />

T 2<br />

so+ → bc-<br />

T 3<br />

hh/lh- → bc-<br />

T 4<br />

hh/lh+ → bc+<br />

T 5<br />

so+ → bc+<br />

T 6<br />

hh/lh- → bc+<br />

T 7<br />

so- → bc-<br />

T 8<br />

so- → bc+<br />

Emission 1.55 μm 1.3 μm<br />

GaN x As 1-x-y Bi y (x, y) = (.027, .046) (x, y) = (.018, .031)<br />

E (eV) 0.801 0.955<br />

(nm) 1547.0 ≈ 1.55 μm 1298.4 ≈ 1.3 μm<br />

E 1.339 1.441<br />

925.8 (NIR) 860.5 (NIR)<br />

E 1.597 1.646<br />

776.4 (R) 753.3 (R)<br />

E 1.743 1.737<br />

711.4 (R) 713.9 (R)<br />

E 2.280 2.223<br />

543.9 (G) 557.8 (G)<br />

E 2.538 2.428<br />

488.6 (G-B) 510.7 (G)<br />

E 2.988 3.060<br />

415.0 (V) 405.2 (V)<br />

E 3.929 3.842<br />

315.6 (UV) 322.7 (UV)<br />

17


Energy, E(eV)<br />

URHEA<br />

<strong>GaNAsBi</strong> Quaternary Alloys<br />

<strong>GaNAsBi</strong>/GaAs Mismatched Structures<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

E g<br />

so-<br />

x = 0<br />

0.001<br />

0.005<br />

0.010<br />

0.020<br />

0.030<br />

0.040<br />

0.050<br />

• x N & y Bi are independent.<br />

• E g (y) ↘ x &<br />

E g (x) ↘ y , too<br />

• Nitrogen has no effect on so±<br />

0.8<br />

when Bi content is changing.<br />

0.6<br />

• If y ↗ so+ ↗ & so- ↘<br />

0.4<br />

so+<br />

• Resonance <strong>of</strong> E g & so+ cannot<br />

0.00 0.01 0.02 0.03 0.04 0.05<br />

Bismuth composition, y<br />

be done for different (x, y)<br />

couples where x, y ≤ 0.05.<br />

18


Conclusion<br />

URHEA<br />

Conclusion<br />

We have studied theoretically the electronic b<strong>and</strong> structure <strong>of</strong> GaAsBi <strong>and</strong><br />

<strong>GaNAsBi</strong> within the framework <strong>of</strong> the b<strong>and</strong> anti-crossing model .<br />

Using the valence-BAC, the conduction-BAC <strong>and</strong> the k.p method, BS was<br />

calculated near the Brillouin zone center ( point) for three non-equivalent<br />

directions (, <strong>and</strong> ).<br />

We have determined also the variation <strong>of</strong> energy levels <strong>and</strong> interb<strong>and</strong><br />

<strong>transitions</strong> with Bi content, in particular the b<strong>and</strong> <strong>gap</strong> energy <strong>and</strong> the <strong>spin</strong>-<strong>orbit</strong><br />

<strong>splitting</strong>.<br />

In addition, we have treated the case <strong>of</strong> <strong>GaNAsBi</strong> leading to the wavelength<br />

emissions <strong>of</strong> 1.3 m <strong>and</strong> 1.55 m.<br />

Finally, we note the possibility to obtain the resonance <strong>of</strong> b<strong>and</strong> <strong>gap</strong> <strong>and</strong><br />

<strong>spin</strong>-<strong>orbit</strong> <strong>splitting</strong> when Bi content increases.<br />

19


Thank<br />

You Very<br />

Much<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!