08.01.2015 Views

NPP - APRSAF

NPP - APRSAF

NPP - APRSAF

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Net Primary Production of<br />

Tropical Forest: A modeling<br />

approach<br />

Tania June<br />

SEAMEO BIOTROP, BOGOR INDONESIA<br />

taniajune@biotrop.org


Increasing atmospheric CO 2 and<br />

Global warming<br />

• Demand for more accurate ecosystems<br />

carbon budgets for projecting how these<br />

ecosystems will be affected by climatic and<br />

atmospheric change<br />

• Better modelling of canopy photosynthesis is<br />

needed An extrapolation of result from point<br />

modeling to become spatial information is<br />

needed<br />

• Challenging research area


CENTRAL KALIMANTAN<br />

Study Site<br />

Palangkaraya<br />

• 3 million ha peatlands<br />

(Mega rice project<br />

started in 1995)<br />

• Drainage of peatsoil<br />

through channel<br />

development of 4000<br />

km long<br />

• Very vulnerable to fire<br />

The area is Abandoned in 1999<br />

Source: Parish (1995)<br />

Source: Landsat ETM+ 118/062<br />

Date: 2004-06-25


CHANNELS DEVELOPMENT<br />

FROM THE MRP<br />

(MEGA RICE PROJECT)<br />

• Illegal logging occurs all over<br />

the area:<br />

1991-1997 = 1.9% per year<br />

1997-2000 = 6.5% per year<br />

1991-2001 = 3.3% per year<br />

• Disturb hydrology of the peat land<br />

• Drought and low water tables<br />

(Boehm et al, 2003)<br />

INCREASING FIRE RISK


PEATLAND FOREST FIRES IN<br />

INDONESIA<br />

• 1982-1983 : 500.000<br />

ha burned<br />

• 1988: 1.5 million ha<br />

burned<br />

• 1997 forest fire: 60% of<br />

haze-SE Asia<br />

• > 500 million t CO 2<br />

emitted


HUGE AMOUNT OF CARBON<br />

(CO2) INTO THE ATMOSPHERE<br />

FOREST FIRE<br />

1997 AND 2002<br />

CONTRIBUTES TO GLOBAL<br />

WARMING<br />

TRANSBOUNDARY POLLUTION<br />

LOSS OF FOREST AS CARBON SINK<br />

LOSS OF BIODIVERSITY<br />

NEED TO ESTIMATE HOW MUCH CARBON IS ABSORB BY<br />

THE REMAINING VEGETATION AND BY VEGETATION<br />

REGROWTH AFTER FIRE


Tower<br />

site<br />

Study Site:<br />

Kalampangan Area<br />

Channels development from the MRP<br />

(Mega Rice Project) = 4,000 km


Continous measurement of<br />

CO2, H2O and microclimate<br />

in Central Kalimantan<br />

Height 50 m<br />

Lat.: 2 o 20’41.6”<br />

Long.: 114 o 02’11.3”


Method to estimate CO 2<br />

sequestration by vegetation<br />

Remote sensing<br />

<strong>NPP</strong><br />

=<br />

365<br />

∑<br />

i=<br />

1<br />

e*<br />

fAPAR*<br />

PAR<br />

Meteorology<br />

station<br />

Semi-mechanistic<br />

modelling<br />

<strong>NPP</strong> = net CO2 assimilation rate per year (g m -2 year -1 )<br />

e = radiation use efficiency (g MJ -1 )<br />

fAPAR = fraction of absorbed PAR<br />

PAR = Photosynthetically active<br />

radiation


Definitions for CO 2 Release/uptake by<br />

Vegetation<br />

• Gross Primary Production (GPP):<br />

Uptake of C by plants<br />

• Net Primary Production (<strong>NPP</strong>):<br />

<strong>NPP</strong>=GPP-R<br />

• Net Ecosystem Production (NEP):<br />

NEP=<strong>NPP</strong>- R H<br />

• Net Biosphere Production (NBP):<br />

NBP=NEP-D<br />

• R: Plant respiration<br />

• R H<br />

: Heterotrophic respiration<br />

• D: Disturbance effects


The Model<br />

c a<br />

Temperature<br />

I. H 2 O g supply<br />

II. N<br />

k<br />

c i<br />

V<br />

J<br />

demand<br />

Light<br />

reduced<br />

carbon<br />

temperature


Outline of the C3 Photosynthesis Model to estimate canopy efficiency, e and <strong>NPP</strong>: Equations (1) and (2) showing<br />

the effect CO2 concentration on leaf assimilation rate; Equations (3) showing the light effect; Equations (4)<br />

showing the temperature effects on model parameters.; Equation (5) showing supply of CO2 and Equations (6)<br />

and (7) showing e and <strong>NPP</strong>.


Light use efficiency (e)<br />

• Light use efficiency, or canopy efficiency, in this simulation<br />

is defined as mol CO 2<br />

assimilated per mol of absorbed light,<br />

i.e A c<br />

divided by I c<br />

.<br />

e =<br />

A<br />

I<br />

c<br />

c<br />

<strong>NPP</strong><br />

=<br />

365<br />

∑<br />

e*<br />

fAPAR<br />

*<br />

PAR<br />

i=<br />

1


Software used and Data Input for NetPro v. 1.0<br />

Sofware used are:<br />

• Visual Basic 6.0<br />

• ERMapper 6.4<br />

• ArcView 3.3<br />

• MapObject 2.1.<br />

Data input includes:<br />

• Shapefile of NDVI class<br />

• Daily averaged climate<br />

data (Global radiation,<br />

maximum and minimum<br />

temperature).


NDVI ANALYSIS<br />

(NIR – R)<br />

(NIR + R)<br />

LANDSAT<br />

ORIGINAL IMAGE<br />

LANDSAT<br />

NDVI IMAGE


Calculation of <strong>NPP</strong>


LAI - NDVI<br />

LandSat TM<br />

LAI = NDVI*1.71+ 0.4(Asrar et al,<br />

1985 for grass-land)<br />

LAI= (NDVI / 0.31)0.2 (Spancer et al,<br />

1990 for conifer/needle-leaf)<br />

LAI= (NDVI / 0.26)2 (Priece et al, 1993<br />

for broad leaf)<br />

NOAA AVHRR


f APAR -NDVI<br />

Ochi and Shibasaki (1999) for some<br />

type of asian vegetation ;<br />

fAPAR = - 0.08 +1.075 NDVI<br />

(r2 = 0.75) using NOAA/AVHRR<br />

Knorr, et al. (1999)


LAI,f APAR, and <strong>NPP</strong>


Study site


Flux Measurement<br />

LoreLindu National<br />

Park, Central<br />

Sulawesi<br />

Height 70 m<br />

Lat. 1 o 39′-1 o 42′ S<br />

Long. 120 o 10′-120 o 12′ E


Model Output<br />

3000<br />

<strong>NPP</strong> (gC m -2 year -1 )<br />

2900<br />

2800<br />

2700<br />

2600<br />

2500<br />

2400<br />

2300<br />

CO 2<br />

700,<br />

0 o C temp. increase<br />

CO 2<br />

700,<br />

6 o C temp. increase<br />

2200<br />

CO 2<br />

350,<br />

0 o C temp. increase<br />

2100<br />

110 115 120 125 130 135 140 145 150 155<br />

Leaf Nitrogen (mmol m -2 )


Model Output<br />

2900<br />

2800<br />

2700<br />

LowN<br />

CO 2<br />

700<br />

3000<br />

2900<br />

2800<br />

High N<br />

CO 2<br />

350<br />

<strong>NPP</strong> (gCm -2 year -1 )<br />

2600<br />

2500<br />

2400<br />

2300<br />

2200<br />

2100<br />

2000<br />

1900<br />

1800<br />

LowN<br />

CO 2<br />

350<br />

0 1 2 3 4 5 6<br />

<strong>NPP</strong> (gCm -2 year -1 )<br />

2700<br />

2600<br />

2500<br />

2400<br />

2300<br />

2200<br />

2100<br />

2000<br />

1900<br />

High N<br />

CO 2<br />

700<br />

0 1 2 3 4 5 6<br />

Increase in Temperature ( o C)<br />

Increase in Temperature ( o C)


RESEARCH NEEDED<br />

• Site specific parameterisation<br />

–Vcmax<br />

• Site variable measurement and estimation<br />

– Leaf Nitrogen, LAI, f APAR<br />

• Climate data: diurnal global radiation, min<br />

and max temperature, diffuse radiation.<br />

•CO 2 flux data and e from tower for<br />

validation of model<br />

• Develop specific site equations for<br />

NDVI-LAI and NDVI-f APAR

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!