09.01.2015 Views

Calculus Limits Cheat Sheet - Pauls Online Math Notes

Calculus Limits Cheat Sheet - Pauls Online Math Notes

Calculus Limits Cheat Sheet - Pauls Online Math Notes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Calculus</strong> <strong>Cheat</strong> <strong>Sheet</strong><br />

<strong>Limits</strong><br />

Definitions<br />

Precise Definition : We say lim f<br />

x a<br />

( x)<br />

= L if<br />

Æ<br />

for every e > 0 there is a d > 0 such that<br />

whenever 0 x a d f x - L < e .<br />

< - < then ( )<br />

“Working” Definition : We say lim ( )<br />

f x = L<br />

x a<br />

if we can make f ( x ) as close to L as we want<br />

by taking x sufficiently close to a (on either side<br />

of a) without letting x= a.<br />

Right hand limit : lim ( )<br />

+ xÆa<br />

Æ<br />

f x = L. This has<br />

the same definition as the limit except it<br />

requires x> a.<br />

Left hand limit : lim ( )<br />

- xÆa<br />

f x = L. This has the<br />

Limit at Infinity : We say lim ( )<br />

same definition as the limit except it requires negative.<br />

x< a.<br />

Relationship between the limit and one-sided limits<br />

lim f<br />

x a<br />

( x)<br />

= L fi lim f ( x) = lim f ( x)<br />

= L lim f ( x) lim f ( x)<br />

L<br />

+ -<br />

+ -<br />

Æ<br />

xÆa xÆa<br />

lim<br />

( ) ≠ lim ( ) fi lim ( )<br />

f x f x<br />

+ -<br />

xÆa xÆa<br />

Assume lim ( ) and lim ( )<br />

f x<br />

x Æ a<br />

x Æ<br />

a<br />

g x<br />

1. limÈcf ( x) ˘ = clim<br />

f ( x)<br />

Î ˚<br />

xÆa xÆa<br />

2. limÈf ( x) ± g( x) ˘ = lim f ( x) ± lim g( x)<br />

Î ˚<br />

xÆa xÆa xÆa<br />

3. limÈf ( x) g( x) ˘ = lim f ( x) lim g( x)<br />

Î ˚<br />

xÆa xÆa xÆa<br />

Note : sgn( a ) = 1 if a > 0 and ( )<br />

1. lim x<br />

x<br />

e =• & lim e = 0<br />

xƕ<br />

xÆ-•<br />

2. limln ( x)<br />

=• & lim ln ( x)<br />

xƕ<br />

xÆ0<br />

+<br />

xƕ<br />

f x = L if we<br />

can make f ( x ) as close to L as we want by<br />

taking x large enough and positive.<br />

There is a similar definition for lim ( )<br />

xÆ-•<br />

except we require x large and negative.<br />

Infinite Limit : We say lim ( )<br />

f x<br />

x Æ a<br />

f x = L<br />

=• if we<br />

can make f ( x ) arbitrarily large (and positive)<br />

by taking x sufficiently close to a (on either side<br />

of a) without letting x= a.<br />

There is a similar definition for lim ( )<br />

f x<br />

x Æ a<br />

except we make f ( x ) arbitrarily large and<br />

xÆa xÆa<br />

f x<br />

x Æ a<br />

= = fi lim ( )<br />

Does Not Exist<br />

Properties<br />

both exist and c is any number then,<br />

4.<br />

( x)<br />

( )<br />

È f ˘ lim f<br />

xÆa<br />

lim Í ˙ =<br />

xÆa<br />

Îg x ˚ lim g x<br />

xÆa<br />

n<br />

5. limÈf ( x) ˘ lim f ( x)<br />

= È ˘<br />

Î ˚ Î ˚<br />

xÆa xÆa<br />

6. limÈn<br />

f ( x) ˘ = n lim f ( x)<br />

Î<br />

xÆa xÆa<br />

Basic Limit Evaluations at ±•<br />

sgn a =- 1 if a < 0 .<br />

=-•<br />

b<br />

3. If r > 0 then lim<br />

r<br />

= 0<br />

xƕ<br />

x<br />

r<br />

4. If r > 0 and x is real for negative x<br />

b<br />

then lim<br />

r<br />

= 0<br />

xÆ-•<br />

x<br />

5. n even : lim x<br />

n =•<br />

˚<br />

xƱ•<br />

6. n odd : lim x<br />

n =• & lim<br />

xƕ<br />

=-•<br />

f x = L<br />

x a<br />

Æ<br />

( x)<br />

provided ( )<br />

( )<br />

g x<br />

xÆa n<br />

xÆ-•<br />

x<br />

n<br />

lim ≠ 0<br />

=-•<br />

n<br />

7. n even : lim ax L bx c sgn ( a)<br />

xƱ•<br />

+ + + = •<br />

n<br />

8. n odd : limax L bx c sgn ( a)<br />

xƕ<br />

+ + + = •<br />

n<br />

9. n odd : lim ax L cx d sgn ( a)<br />

xÆ-•<br />

+ + + =- •<br />

Visit http://tutorial.math.lamar.edu for a complete set of <strong>Calculus</strong> notes.<br />

© 2005 Paul Dawkins


<strong>Calculus</strong> <strong>Cheat</strong> <strong>Sheet</strong><br />

Continuous Functions<br />

If f ( x)<br />

is continuous at a then ( ) ( )<br />

Continuous Functions and Composition<br />

f ( x ) is continuous at b and lim g<br />

x a<br />

( x)<br />

= b then<br />

Æ<br />

( ) ( )<br />

( ( )) lim ( )<br />

lim f g x = f g x = f b<br />

xÆa xÆa<br />

Factor and Cancel<br />

2<br />

x + 4x-12<br />

x- 2 x+<br />

6<br />

lim<br />

= lim<br />

xÆ2 2<br />

x -2x xÆ2<br />

x x-2<br />

( )( )<br />

( )<br />

x+<br />

6 8<br />

= lim = = 4<br />

xÆ2<br />

x 2<br />

Rationalize Numerator/Denominator<br />

3- x 3- x 3+<br />

x<br />

lim = lim<br />

xÆ9 2<br />

9<br />

2<br />

x -81 xÆ<br />

x - 81 3 + x<br />

9-x<br />

-1<br />

= lim<br />

= lim<br />

xÆ9 2<br />

xÆ9<br />

x - 81 3+ x x+ 9 3+<br />

x<br />

( )( ) ( )( )<br />

-1 1<br />

= =-<br />

18 6 108<br />

( )( )<br />

Combine Rational Expressions<br />

1Ê<br />

1 1ˆ<br />

1Ê<br />

x- ( x+<br />

h)<br />

ˆ<br />

lim Á - ˜= lim<br />

hÆ0 h x h x hÆ0<br />

Ë + ¯ hÁ x( x h)<br />

˜<br />

Ë + ¯<br />

1Ê<br />

-h<br />

ˆ -1 1<br />

= lim<br />

lim<br />

hÆ0 2<br />

hÁ<br />

x( x h) ˜<br />

= =-<br />

hÆ0<br />

Ë + ¯ x( x+<br />

h)<br />

x<br />

Evaluation Techniques<br />

L’Hospital’s Rule<br />

lim f x = f a<br />

f<br />

x Æ a<br />

( x)<br />

0 f x<br />

If lim = or lim<br />

xÆa<br />

g x 0 x Æ a g x<br />

( )<br />

( )<br />

=<br />

( )<br />

( )<br />

( )<br />

f x f¢<br />

x<br />

lim lim<br />

xÆa g x xÆa<br />

g¢<br />

x<br />

( )<br />

( )<br />

±•<br />

= ±•<br />

then,<br />

a is a number, • or -•<br />

Polynomials at Infinity<br />

q x are polynomials. To compute<br />

p( x ) and ( )<br />

p( x)<br />

lim<br />

xƱ•<br />

q( x)<br />

of both p( x ) and ( )<br />

factor largest power of x in q( x)<br />

out<br />

q x then compute limit.<br />

( )<br />

2 4 4<br />

2<br />

3x<br />

-4 x 3 -<br />

2 3 -<br />

x<br />

x2<br />

3<br />

lim = lim = lim<br />

x<br />

2 2<br />

5<br />

=-<br />

Æ-• 5x-2x xÆ-• x<br />

xÆ-•<br />

x<br />

-2 2<br />

5<br />

( x<br />

-2)<br />

Piecewise Function<br />

2<br />

Ï x + 5 if x 0 .<br />

x ≠L, -2 p, -p,0, p,2 p,<br />

L<br />

Intermediate Value Theorem<br />

Suppose that f ( x ) is continuous on [a, b] and let M be any number between f ( a ) and ( )<br />

Then there exists a number c such that a< c< b and f ( c)<br />

= M .<br />

f b .<br />

Visit http://tutorial.math.lamar.edu for a complete set of <strong>Calculus</strong> notes.<br />

© 2005 Paul Dawkins

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!