Recent Results from the LHC

ctc.cam.ac.uk

Recent Results from the LHC

Recent Results from the LHC

Lars Sonnenschein

on behalf of the CMS and ATLAS collaborations

COSMO 2013

Cambridge, 2. - 6. September 2013

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A

Recent Results from the LHC


Overview

LHC, CMS and ATLAS experiments

◮ Detectors, performance, kinematic reach

Forward and low x scale physics

◮ η and leading p T distributions of charged particles

◮ Low p T inclusive jet cross sections

Top quark physics

◮ t¯t cross sections

◮ Jet shapes in t¯t events

◮ Single top production

◮ Top mass combination

Standard Model physics

◮ Differential inclusive jet cross section

◮ Mulit-jet cross section ratios and α s

determination

◮ Vector boson and top (pair) production

◮ ZZ production cross section

Standard Model Higgs boson physics

◮ Production at the LHC and decay modes

◮ Higgs in ZZ → 4l channel

◮ Higgs in H → γγ channel

◮ Properties and projections

Heavy flavour physics

◮ Dimuon triggers and invariant mass spectrum

◮ B s → J/ψφ, ∆Γ s and weak phase ϕ s

◮ B s(d) → µµ

Searches for supersymmetry

◮ SuperSymmetry phenomenology

◮ Search for gluino-mediated ˜b and ˜t production

◮ Search for charginos (∼ LSP mass degenerated)

◮ Exclusion summaries

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 2


Overview (cont.)

Exotic searches for new physics

◮ Search for dark matter in mono-lepton events

◮ Search for dark matter pair production in W /Z events

◮ Search for microscopic black holes

◮ Exclusion summary

Heavy Ion Physics

◮ Two particle correlations

◮ Multi-particle azimuthal correlations

LHC and experiments performance projections

LHC (and beyond) timeline

◮ Trigger upgrades and physics performances

◮ High Luminosity - LHC and physics reach

◮ High Energy LHC

◮ VLHC

Conclusions

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 3


LHC, CMS and ATLAS experiments

LHC tunnel with 8 T superconducting dipole magnets

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 4


Overall view of the LHC experiments and CMS data flow

The CMS experiment data flow

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 5


LHC efficiencies, CMS and ATLAS luminosities

LHC 2012 physics run: Overall availability

Total Integrated Luminosity (fb ¡1 )

25

20

15

10

5

0

1 Apr

CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:21 to 2012-12-16 20:49 UTC

25

2010, 7 TeV, 44.2 pb ¡1

2011, 7 TeV, 6.1 fb ¡1

2012, 8 TeV, 23.3 fb ¡1 £ 100

5

0

1 May

1 Jun

1 Jul

1 Aug

1 Sep

Date (UTC)

1 Oct

1 Nov

1 Dec

20

15

10

Alick Macpherson

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 6


The CMS experiment

∼1.1m 2

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 7


Total weight 7000 t

Overall diameter 25 m

Overall length 44 m

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 8


CMS and ATLAS hardware performance

CMS Active Channels - February 2013

Subsystem

MUON CSC

MUON RPC

MUON DT

HCAL Outer

HCAL Forward

HCAL Endcaps

HCAL Barrel

Preshower

ECAL Endcaps

ECAL Barrel

Strip tracker

Pixel tracker

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Active Fraction

> 96.3%

Detector readout channels

◮ ∼ 80M (160M) readout channels CMS (ATLAS)

◮ ∼ 98% of channels operational

⇒ Easier event reconstruction and comparison to simulation

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 9


Cosmic ray and collider/LHC energies


LHC(p-p)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 10


Kinematic (Q 2 , x) plane and LHC coverage

✛small x


Rapidities ✲

Auger kinematic limit

LHC kinematic limit

large scale✲

LHC coverage:

Q = M

x = (M/14TeV) exp(±y)

◮ Wide range of rapidities

and scales accessible

◮ Auger kinematic limit

100TeV c.m.s.

◮ Cosmic rays:

Large region with small x

(forward proton,

diffractive physics)

and large region with low

scale (underlying event)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 11


p

Diffractive jet production at the LHC

(a) jet jet

p

IP

p

4

Single diffraction

p

p

_

η p

p

(b)

jet

0

jet

η

⇒jet

⇒jet

p

η p

IG. 1: Illustration of event topologies in pseudorapidity,

, and associated Pomeron exchange diagrams for dijet prouction

in (a) single diffraction and (b) double Pomeron exhange.

The shaded areas on the left side represent “underlyg

event” particles not associated with the jets [from Ref. [2]].


p

p

IP

IP

Double Pomeron

exchange

Double diffraction


Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 12


TOTEM acceptance:

T1: 3.1< |η|


η and leading p T distributions of charged particles

CMS PAS FSQ-12-026

η and leading p T distributions of charged particles in pp collisions (at √ s = 8)

◮ Events triggered by TOTEM T2 telescopes, covering 5.3 < |η| < 6.5 for

reconstructed tracks with p T > 40 MeV

◮ Charged particles with p T > 0.1 GeV and p T > 1 GeV

◮ Also Non-Single-Diffractive scenario (tracks in both T2 telescopes)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 14


Low p T inclusive jet cross sections

CMS-PAS-FSQ-12-031

Measurement of low p T inclusive jet cross sections (at √ s = 8)

◮ 5.8 pb −1 of minimum bias data with low pile-up conditions used

◮ Inclusive jet cross section (anti-k T (R=0.7))

◮ In seven rapidity bins up to |y| < 4.7

◮ 21 < p T < 74 GeV/c

◮ Good agreement with NLO QCD predictions

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 15


Standard Model physics

◮ Differential inclusive jet cross section

◮ Multi-jet cross section ratios and α s determination

◮ Vector boson and top (pair) production

◮ ZZ production cross section

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 16


Differential inclusive jet cross section

CMS PAS SMP-12-012

10

10

9

10

s = 8TeV anti-k T

R=0.7

-1

L = 10.71fb

CMS Preliminary

0.0


ATLAS-CONF-2013-041

Mulit-jet cross section ratios and α s determination

lead

Theory/Data

T

p

R 3/2

0.8

0.6

0.4

0.2

0

1.2

1

0.8

0.6

ATLAS Preliminary

s = 7 TeV

anti-k t

jets, R=0.6

2

10

Data 2010

NLO pQCD, PDF

MSTW2008NLO and

non-pert. corrections

α S (M )=0.110

Z

α S (M )=0.130

Z

70 100 200 300 1000

[GeV]

lead

p

T

3

10

α S

(Q)

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

ATLAS Preliminary

Inclusive multi-jet cross section ratios and determination of α s (at √ s = 7)

◮ jet algorithm anti-k T (R = 0.6)

10

ATLAS 2010 N 3/2

DO inclusive jet

DO R ∆ R

H1 inclusive jet

ZEUS inclusive jet

PDG 2012 world average

α s

(M )= 0.1184 ± 0.0007

Z

2

10

3

10

Q [GeV]

◮ α s extracted from ratio R 3/2 three vs. two jet production (210 < p T (jet) < 800 GeV)

◮ Good agreement between measurement and predictions obtained from two-loop RGE

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 18


Vector boson and top (pair) production

[pb]

σ tot

Production Cross Section,

5

10

4

10

3

10

2

10

10

1

Nov 2012

≥1j

≥2j

W

≥3j

jet

E T

≥4j

jet

| η

≥1j

≥2j

> 30 GeV

| < 2.4

-1

36, 19 pb

JHEP10(2011)132

JHEP01(2012)010

Z

≥3j

CMS-PAS-SMP-12-011 (W/Z 8 TeV)

≥4j


γ

E T


> 15 GeV

∆R(γ,l) > 0.7

-1

5.0 fb

CMS EWK-11-009

WW+WZ

-1

5.0 fb

WW

-1

4.9 fb

-1

3.5 fb

WZ

-1

1.1 fb

CMS

7 TeV CMS measurement (stat⊕syst)

8 TeV CMS measurement (stat⊕syst)

7 TeV Theory prediction

8 TeV Theory prediction

CMS-PAS-EWK-11-010 (WZ)

CMS-PAS-SMP-12-005 (WW7),

007(ZZ7), 013(WW8), 014(ZZ8), 015(WV)

ZZ

-1

4.9 fb

-1

5.3 fb

[pb]

σ total

5

10

4

10

3

10

2

10

10

1

-1

35 pb

-1

35 pb

-1

1.0 fb

-1

5.8 fb

-1

1.0 fb

-1

5.8 fb

-1

4.6 fb

ATLAS Preliminary

LHC pp s = 7 TeV

Theory

-1

4.6 fb

-1

Data (L = 0.035 - 4.6 fb )

LHC pp s = 8 TeV

Theory

-1

Data (L = 5.8 - 20 fb )

-1

13 fb

-1

2.1 fb

-1

4.6 fb

t

W Z WW Wt

t t WZ ZZ

-1

20 fb

Vector boson and top (pair) production cross sections (at √ s = 7 and √ s = 8 TeV)

◮ Based on L = 0.035 − 5.0 fb −1 @ √ s = 7 TeV

and up to L = 20 fb −1 @ √ s = 8 TeV

◮ Good agreement between measurements and theory predictions

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 19


ATLAS-CONF-2013-020

ZZ production cross section

Leading Lepton­Pair Mass [GeV]

220

200

180

160

140

120

100

80

60

40

ATLAS Preliminary

Data

ZZ→lllll

­1


L dt = 20 fb

s= 8 TeV

20

20 40 60 80 100 120 140 160 180 200 220

Subleading Lepton­Pair Mass [GeV]

[pb]

σ

ZZ

total

10

ZZ boson production in leptonic final state

◮ Based on L = 20 fb −1 @ √ s = 8 TeV

1

ATLAS Preliminary

NLO QCD (MCFM, CT10.0)

ZZ (pp) (66


Anomalous triple and quartic gauge couplings

Limits on anomalous triple and quartic gauge couplings

◮ So called LEP parametrization used, respecting SU(2) × U(1) gauge

invariance and conserving charge conjugation C and parity P

◮ Parameters are defined to equal zero in SM, e.g. ∆κ γ = κ γ − 1

◮ Limits on anomalous triple gauge couplings (aTGC’s); e.g. in W → W γ

◮ Limits on anomalous quartic gauge couplings (aQGC’s); e.g. in γγ → WW

◮ More limits on aQGC’s available: WZZ, Zγγ, ZZγ, ZZZ

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 21


Heavy flavour physics

◮ Dimuon triggers and invariant mass spectrum

◮ B s → J/ψφ, ∆Γ s and weak phase ϕ s

◮ B s(d) → µµ

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 22


Events per 10 MeV

Dimuon triggers and invariant mass spectrum

Dedicated low pT threshold, narrow mass window, di-muon triggers


❇ ”Quarkonium” dimuon trigger

❇ (collected during the first 220 pb −1 only)

❇ ❇◆

6

10

5

10

10

4

3

10

2

10

10

2011 Run, L = 1.1 fb J/ ψ

CMS s = 7 TeV

ω

φ

-1

ψ'

B s








✄✎

Υ

trigger paths

ψ'

J/ψ

-

B → µ + s µ

Υ

low p double muon

T

high p double muon

T

Z

1

-1

10

1

10

2

10

dimuon mass [GeV]

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 23


JHEP 12 (2012) 072

B s → J/ψφ and extraction of ∆Γ s and weak phase φ s

]

Events / 2.5 MeV

2000

1800

1600

1400

1200

1000

800

600

400

200

ATLAS Preliminary

s = 7 TeV

­1


L dt = 4.9 fb

Data

Total Fit

Signal

0 *0

B d →J/ψK

Background

Events / 0.04 ps

4

10

3

10

2

10

10

Data

Total Fit

Total Signal

B H Signal

B L Signal

Total Background

Prompt J/ψ Background

ATLAS Preliminary


s = 7 TeV

­1

L dt = 4.9 fb

­1

[ps

∆Γ s

0.14 ∆Γ s constrained to > 0

0.12

0.1

0.08

0.06

0.04

ATLAS Preliminary

s = 7 TeV

­1

L dt = 4.9 fb


68% C.L.

90% C.L.

95% C.L.

Standard Model

∆Γ s = 2|Γ 12 |cos(φ )

s

(fit­data)/σ

5.15 2 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6 5.65 ­2 0 2 4 6 8 10 12 0.02

1

0

­1

­2

­2

­10123

­3

­3

0

­4

­1.5 ­1 ­0.5 0 0.5 1 1.5

5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6 5.65 ­2 0 2 4 6 8 10 12

J/ψφ

B s Mass [GeV]

B s Proper Decay Time [ps]

φ [rad]

s

(fit­data)/σ

Flavour tagged time-dependent angular B s → J/ψφ analysis and extraction of ∆Γ s and weak phase φ s

◮ Clean signal: J/ψ → µ + µ − , φ → K + K −

◮ CP violation due to interference between direct decay B s → J/ψφ and Bs 0 − ¯B s

0 mixing

◮ Decay width difference ∆Γ s = Γ L − Γ H between Heavy and Light Bs

0 mass states

◮ In absence of any CP violation B H would be CP-odd eigenstate and B L CP-even

◮ Phase φ s is small in SM (φ s ≃ −2β s = −0.0368 ± 0.0018)

and can be related to CKM matrix: φ s ≃ −2β s = arg[−(V ts V ∗

tb )/(V csV ∗ cb )]

◮ Physics beyond SM can affect φ s significantly

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 24


B s(d) → µ + µ − production








From 1984 to now…

◮ Decay highly suppressed in SM

◮ Indirectly sensitive to new physics

MSSM: BR ∼ tan β 6









!


!







arXiv:1307.5025

CMS BPH 13-004-003

CERN PH EP-2013-129


"




!




!


" #


" ! &

◮ Exploiting low p


T dimuon triggers


% ("


$ !

! ! " ! !

'

◮ Blind analysis


! #


" ! &



% ("


$ !

! ! " ! ! ◮

B + → J/ψK + used for normalisation

'

◮ B 0 → J/ψφ used as control region for

→µµ


efficiency


!



"



#

#




!




"


#








$




#




#


"



!








#

$







#


!








#

#


#


"



!



#

#

#


"


#






→µµ

CMS 5 fb −1 (7 TeV) + 20 fb −1 (8 TeV) results

◮ Br(Bs 0 → µ + µ − ) = 3.0 +1.0

−0.9 × 10−9 4.3 σ

◮ Br(Bd 0 → µ+ µ − ) = 3.5 +2.1

−1.8 × 10−10 2.0 σ

◮ Br(Bd 0 → µ+ µ − ) < 1.1 × 10 −9 @ 95% C.L.

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 25


B s(d) → µ + µ − Result

production

LHCb-CONF-2013-012

Several methods used, giving compatible results CMS PAS BPH-13-007

Preliminary Method based combination on pseudo of CMS experiments, (25 fb −1 ) modelling and LHCb distribution (3 fb −1 ) measurements

with variable-

Several Gaussian methods function used, giving (suggested compatible by R. Barlow results ◮width arXiv:physics/0406120):

◮ Method based on pseudo experiments, modelling distribution with

0

9

variable-width BR(

Gaussian B S

function ) (suggested (2.9 0.7) byR. 10BarlowObservation!!

arXiv:physics/0406120)

0

1.6

10

◮ Br(Bs 0 → µ BR

+ µ − ( B) = (2.9 ± 0.7) ) × 10 (3.6

−9

1.4Observation!

) 10

Not statistically significant

◮ Br(Bd 0 → µ+ µ − ) = 3.6 +1.6

−1.4 × 10−10 Not statistically significant

Br SM (Bs 0 → µ + µ − ) = [3.2 ± 0.2] × 10 −9

Br SM (Bd 0 → µ+ µ − ) = [1.0 ± 0.1] × 10 −10

Bs2MuMu @ LHCb Justine Serrano 35

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 26


t¯t µ+jets event candidate

Top quark physics

◮ t¯t cross sections

◮ Jet shapes in t¯t events

◮ Single top production

◮ Top mass combination

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 27


Top Top quark quark physics physics

Top quark physics

t¯t production

t¯t t¯t production

Single

Single

top

top

production

production

LHC:

LHC:

gg

gg ∼ 90%,

90%,

q¯q

q¯q

∼ 10%

∼ 10%

LHC: gg σ(7TeV) ∼ 90%, ≃≃q¯q 158 158 ∼pb10%

σ(7TeV) [@ NLO ≃(MCFM)]

158 158pb

pb

[@ [@ σ(7TeV) NLO ≃(MCFM)]

≃163 163 pb pb

σ(7TeV) [@ approx. approx. ≃163 163 NNLO]

NNLO]

pb pb

[@ σ(8TeV)

[@ ≃

approx. NNLO] 246 pb

NNLO]

[@ NNLO + NNLL]

Top decay: t → bW

Top Top decay:

t

t → bW

bW

LHC: gg ∼ 90%, q¯q ∼ 10%

t-channel s-channel tW -channel

t-channel s-channel tW -channel

σ(7TeV) ≃ 64 pb σ(7TeV) ≃ 4.6 pb σ(7TeV) ≃ 15.6 15.7 15.6 pb pb pb

(7TeV) ≃ 64 pb σ(7TeV) ≃ 4.6 pb σ(7TeV) 15.6 pb

σ(8TeV) ≃ 87 pb σ(8TeV) ≃ 5.6 pb σ(8TeV) ≃ 22.4 pb




Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A CMS Recent CMS results results Results and and from status status the LHC 2928

29


t¯t production cross section

[pb]

tt

σ

2

10

NLO QCD (pp)

Approx. NNLO (pp)

NLO QCD (pp)

Approx. NNLO (pp)

CDF

D0

Single Lepton (8 TeV) 241 ±

Single Lepton (7 TeV) 179 ±

+17

Dilepton 173 pb

­14

All­hadronic 167 ± 81 pb

Combined 177

+11

pb ­10

32 pb

12 pb

CMS Preliminary, s = 8 TeV

3.8

29

CMS prel. (e/ µ+jets)

228 ± 9 ± 26 ± 10 pb

TOP-12-006 (L=2.8/fb) (val. ± stat. ± syst. ± lumi.)

250

10

200

150

ATLAS Preliminary

7 8

1

1 2 3 4 5 6 7 8

s [TeV]

t¯t pair production cross section (as a function of √ s)

◮ Agreement between all channels at the 5 - 15%

level of experimental uncertainty

◮ Compatible with theory (NNLO approx. prediction

with Scale + PDF uncertainties of order 10%)

◮ Full NNLO prediction is available (∼ 4%

uncertainty)

⇒ can be exploited to probe proton gluon density

CMS prel. (ee, µµ,eµ)

227 ± 3 ± 11 ± 10 pb

TOP-12-007 (L=2.4/fb) (val. ± stat. ± syst. ± lumi.)

CMS prel. combined 227 ± 3 ± 11 ± 10 pb

NNLO+NNLL QCD, Czakon et al., arXiv:1303.6254 (2013)

Approx. NNLO+NNLL QCD, Kidonakis, arXiv:1205.3453 (2012)

(val. ±

stat. ±

syst. ±

-0.5

0 100 200 300 400

lumi.)

Approx. NNLO+NNLL QCD, Cacciari et al., arXiv:1111.5869 (2011)

Approx. NNLO+NNLL QCD, Langenfeld et al., PRD 80 (2009) 054009 (Scale ⊗ PDF uncertainty)

Approx. NNLO+NNLL QCD, Langenfeld et al., PRD 80 (2009) 054009 (Scale uncertainty)

σ(tt) (pb)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 29


J

arXiv:1307.5749

Jets / 1.0

2

10

10

1

3

10

Jet shapes in t¯t events

2

10

0 4

10

5 10 15 20 25

4

ATLAS

Light-quark 1 jets

s = 7 TeV

r = 0.18 0.02

10

3

r = 0.10


­1

L dt = 1.8 fb

r = 0.26

J

Jets / 1.0

2

10

1

0 4

10

5 10 15 20 25

4

3

10

ATLAS

s = 7 TeV

r = 0.18 0.02

2

10

b-quark 1 jets

3

r = 0.10


­1

L dt = 1.8 fb

r = 0.26

2

10

2

2

10

2

10

10

10

10

1

1

1

1

Jets / 1.0

0 5 10 15 20 25

4

40 5 10 15 20 25

10

ρ(r)

3

10

r = 0.18 0.34 Datar = 0.26

3

2

10

tt

W → l ν

2

10

10

Multi­jet

Other EW

1

1 Single top

Jets / 1.0

0 5 10 15 20 25

4

40 5 10 15 20 25

10

ρ(r)

3

10

r = 0.18 0.34 Datar = 0.26

3

2

10

tt

W → l ν

2

10

10

Multi­jet

Other EW

1

1 Single top

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

4

4

0 5 10 15 20 25

10 ρ(r)

10

ρ(r)

ρ(r) ρ(r)

3

10

r = 0.34

3

Jet shapes in pp → t¯t events at √ Data s = 7 TeV

10

r = 0.34 Data

tt

tt

2

2

10 ◮ Resolving internal jet structure (ϱ(r) = jet p 10

W → l ν T fraction in ring r around jet axis)

W → l ν

◮ Multi­jet

Multi­jet

10Good agreement between data and predictions

10


Other EW

Other EW

Light-quark jets have narrower distribution of momentum flow inside jet area than b-quark jets

1

Single top

1

Single top

Jets / 1.0

Jets / 1.0

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 30


Single top production cross section

σ [pb]

2

10

ATLAS Preliminary Single top production

∫ L dt = (0.70 ­ 2.05) fb

­1

t­channel

Wt­channel

10

Theory (approx. NNLO)

stat. uncertainty

s­channel

t­channel, arXiv:1205.3130

Wt­channel, arXiv:1205.5764

s­channel, ATLAS­CONF­2011­118

95% CL limit

1

5 6 7 8 9 10 11 12 13 14

CM energy [TeV]

Single top production as a function of √ s

◮ New measurements of t-channel production at √ s = 8 TeV with 13 - 19%

uncertainty

◮ V tb measurement with 10% uncertainty

◮ and top vs. anti-top quark production tested (CMS-PAS-TOP-12-038,

ATLAS-CONF-2012-056)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 31


­1

= 35 pb

­1

= 2.05 fb

­1

= 4.7 fb

­1

= 4.7 fb

­1

= 1.04 fb

CMS-PAS-TOP-11-018

Top mass

9

CONF­2011­033, L

int

ATLAS m top

ATLAS 2010, l+jets*

summary ­ May 2013, L

int

­1

= 35 pb

­1

­ 4.7 fb

169.30 ±

(*Preliminary)

4.00

±

4.90

ATLAS 2011, l+jets

Eur. Phys. J. C72 (2012) 2046, L

int

ATLAS 2011, all jets*

CONF­2012­030, L

int

ATLAS 2011, dilepton*

CONF­2012­082, L

int

174.53 ±

174.90 ±

175.20 ±

0.61 ±

2.10

1.60

0.43

± 2.27

± 3.80

± 3.00

1

ATLAS 2011, l+jets*

CONF­2013­046, L

int

CMS Average September 2012

173.36 ± 0.38 stat. ± 0.91 JSF⊕syst.

Tevatron Average May 2013

173.20 ± 0.51 stat. ± 0.71 JSF⊕syst.

172.31 ±

0.23 ±

0.27 ±

0.67 ±

155 160 165 170 175 180 185 190 195

m top [GeV]

±

stat.

±

JSF

±

bJSF

stat. uncertainty

stat. ⊕ JSF ⊕ bJSF uncertainty

total uncertainty

ATLAS Preliminary

Tevatron precision has been reached (syst. uncertainties < 1 GeV)

Top mass and related measurements

◮ Determination of top quark pole mass and α s from t¯t production (CMS)

◮ 3D template fit, relative b-jet/light jet JES significantly reduced (ATLAS)

◮ Simultaneous measurement of the top-quark, W-boson, and neutrino masses in t¯t dilepton

events by kinematic endpoints: m t = 173.9 ± 0.9(stat) +1.6

−2.0

(syst) GeV (CMS)

◮ Jet multiplicity measurement in t¯t dilepton events (test for colour reconnection, ISR, FSR,

b-quark kinematics) - excellent stability observed! (CMS)

◮ Top-antitop mass difference: ∆m t = 272 ± 196(stat) ± 122(syst) MeV (CMS)

◮ Several Searches for new physics in top events (mainly ATLAS)

±

1.35

syst.

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 32


Standard Model Higgs boson physics

◮ Production at the LHC and decay modes

◮ Higgs in ZZ → 4l channel

◮ Higgs in H → γγ channel

◮ Properties and projections

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 33


gg fusion

Higgs radiation

SM Higgs boson production at the LHC

t¯t fusion

WZ fusion

SM Higgs boson production mechanisms and rates

◮ Several production mechanisms contribute: gluon fusion

(dominant), Vector Boson Fusion, associated production,

radiation

◮ Associated production via vector boson:

- High rate of multijet background

- Less favourable compared to Tevatron

◮ Associated production in t¯t events:

relatively small cross section (off-shell)

σ(pp → H+X) [pb]

2

10

10

1

pp → H (NNLO+NNLL QCD + NLO EW)

pp → qqH (NNLO QCD + NLO EW)

pp → WH (NNLO QCD + NLO EW)

pp → ZH (NNLO QCD +NLO EW)

s= 8 TeV

LHC HIGGS XS WG 2012

σ(pp → H+X) [pb]

2

10

10

1

pp → H+X at

pp → H+X at

pp → H+X at

s=14 TeV

s=8 TeV

LHC HIGGS XS WG 2012

-1

10

pp → ttH (NLO QCD)

s=7 TeV

­1

10

-2

10

80 100 200 300 400 1000 100 200 300 400 500 600 700 800 900 1000

M H [GeV]

M H [GeV]

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 34


SM Higgs boson decays and σ × BR

Higgs production, decay modes, branching ratios and σ × BR

◮ Higgs boson couples to mass of particles (e.g. preferably

via top quark loop)

◮ Coupling to photons/gluons indirectly

◮ Branching Ratios depend on Higgs mass

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 35


Higgs analysis channels

Decay

channel

H → bb

Signature

two b jets,

Z or W , b¯b

inv. mass

S/B

Mass resolution

@ 126 GeV

low O(0.1) 10%

H → ττ had. τ, l’s, MET low O(0.1) 15%

H → WW l ± l ∓ pair, MET medium O(1) —

H → γγ

H → ZZ

two γ’s, inv.

mass peak

four l’s, with

Z and H mass

peaks

low O(0.1) 2%

high > O(1) 1 - 2%

N events

in 20 fb −1

∼ 10 5

50 selected

∼ 10 4

40 selected

∼ 10 3

120 selected

∼ 800

400 selected

∼ 40

12 selected

Probing

couplings

to fermions

couplings

to fermions

σ, BR, couplings

to V

H mass,

κ V , κ F

couplings,

discovery

H mass,

discovery

Further analysis channels based on full statistics (20 fb −1 )

◮ ttH → γγ (CMS)

◮ WH → WWW → 3l + 3ν (CMS)

◮ H → Zγ (CMS, ATLAS)

◮ H → ZZ → 2l + 2τ, 2l + 2ν (CMS)

◮ H → µµ (ATLAS)

◮ H → WW → lν + jets (CMS)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 36


Pseudoexperiments

Events / 3 GeV

30

20

10

0

0.1

0.08

0.06

0.04

0.02

Higgs boson measurement (in ZZ → 4l channel)

CMS preliminary

Data

m H = 126 GeV

Zγ*, ZZ

Z+X

-1

= 8 TeV: L = 19.6 fb

100 200 400 800

m 4l [GeV]

CMS preliminary

-1

s = 7 TeV, L = 5.1 fb

s

s

-1

= 7 TeV: L = 5.1 fb

-1

s = 8 TeV, L = 19.6 fb

+

0

-

0

CMS data

In final state: electron and muon pairs

◮ Local significance: 6.7σ with mass

m H = 125.8 ± 0.5(stat) ± 0.2(syst)

◮ µ = σ/σ SM = 0.91 + 0.30 − 0.24

CMS PAS HIG-13-002

◮ Signal strength modifiers

µ V = 1.0 + 2.4 − 2.3, µ F = 0.9 + 0.5 − 0.4

◮ Spin-parity: Pure scalar hypothesis favoured

◮ Pure pseudoscalar hypothesis 0 − disfavoured

with CL s = 0.16%

◮ Spin-2 hypothesis with minimal couplings to

vector bosons disfavoured with CL s = 1.5%

◮ No further SM Higgs-like access in range

130-827 GeV @ 95% C.L.

0

-30 -20 -10 0 10 20 30

-2 × ln(L - / L 0 +)

0

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 37


ATLAS-CONF-2013-012

Higgs boson measurement (in H → γγ channel)

0

ATLAS Preliminary

H → γγ

di­photon selection

One­lepton

W(→ lν)H, Z(→ ll)H

In final state: electron and muon pairs

◮ Distinguishing different event categories

(VH, VBF , ggF ) by means of BDT’s

VH enriched

miss

E T significance

W(→ lν)H, Z(→ νν)H

◮ Fit to invariant γγ mass distribution of

√ s = 7 TeV and

√ s = 8 TeV data

combined yields

m H = 126.8 ± 0.2(stat) ± 0.7(syst) GeV

VBF enriched

Low­mass two­jet

W(→ jj)H, Z(→ jj)H

High­mass two­jet

VBF

tight

loose

◮ Observed local p 0 value as function of m H

for √ s = 7 TeV data (blue), √ s = 8 TeV

data (red) and combination (black) yielding

7.4σ at m H = 126.5 GeV

ggF enriched

9 p ­η­conversion

Tt

ggF

Events / 2 GeV

Events ­ Fitted bkg

10000

8000

6000

4000

2000

ATLAS

­1

s = 7 TeV ∫

Ldt = 4.8 fb

­1

s = 8 TeV ∫

Ldt = 20.7 fb

Data 2011+2012

SM Higgs boson m =126.8 GeV (fit)

H

Bkg (4th order polynomial)

H→γγ

500 100 110 120 130 140 150 160

400

300

200

100

0

­100

­200

100 110 120 130 140 150 160

m γγ [GeV]

Local p

3

10

2

10

SM H → γγ expected p

0 ATLAS

10 Observed p

1

0

­1


10

­2


10

­3


10

­4

10


­5

10

­6

10

Data 2011 s = 7 TeV 5σ

­7

10 Obs. 2011

­1

­8

10

­9 Exp. 2011 ∫Ldt = 4.8 fb

10


­10 Obs. 2012

Data 2012 s = 8 TeV

10

­11

10 Exp. 2012

­1

­12

10

∫Ldt = 20.7 fb


­13

10

­14

10

110 115 120 125 130 135 140 145 150

[GeV] m H

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 38


Higgs signal strengths and couplings

-1

s = 7 TeV, L ≤ 5.1 fb

Combined

µ = 0.80 ± 0.14 CMS Preliminary

H → bb (VH tag) p = 0.94

H → bb (ttH tag)

H → γγ (untagged)

H → γγ (VBF tag)

H → γγ (VH tag)

H → WW (0/1 jet)

H → WW (VBF tag)

H → WW (VH tag)

H → ττ (0/1 jet)

H → ττ (VBF tag)

H → ττ (VH tag)

H → ZZ (0/1 jet)

H → ZZ (2 jets)

SM

-1

s = 8 TeV, L ≤ 19.6 fb

= 125.7 GeV

m H

-4 -2 0 2 4

Best fit σ/σ SM

Signal (µ) and coupling strengths (κ) compared to SM

◮ Syst. and theo. (QCD scale, PDF, BR’s)

uncertainties taken into account

◮ Signal strength: µ = σ/σ SM , coupling strengths

(e.g.) to bosons: κ V and to fermions: κ F

◮ Combinations close to SM expectation

B/B SM

×

VBF+VH

µ

10

8

6

4

2

0

­2

m H

= 125.5 GeV

ATLAS

­1

s = 7 TeV ∫Ldt = 4.6­4.8 fb

­1

s = 8 TeV ∫Ldt = 20.7 fb

H → γγ

H → ZZ* → 4l

H → WW* → lνlν

Standard Model

Best fit

68% CL

95% CL

0 0.5 1 1.5 2 2.5 3 3.5 4

µ × B/B

ggF+ttH SM

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 39


Projections of Higgs boson measurements with 300 fb −1 at 14 TeV

CMS-NOTE-2012-006

Projection of expected uncertainty on signal

strength µ for a SM Higgs boson at 125 GeV

◮ Assuming dataset of 300 fb −1 at 14 TeV

◮ Performance estimation based on

extrapolation of ICHEP 2012 performance

◮ Potential to shrink errors by factor of 2 - 4

95% CL

68% CL

Dashed lines w/o syst. uncertainties

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 40


P✷

P✶

Searches for supersymmetry

- ',-'%

2,34 .


&/ 0)-

/ 0 χ


-5 +++

◮ SuperSymmetry phenomenology

◮ Search for gluino-mediated ˜b and ˜t production

◮ Search for charginos (∼ LSP mass degenerated)

◮ Exclusion summaries

-!'($4 ' (

q


q

!5'#+(''%

P✷

+#+

7✤ ✵ ✷

7✤ ✵

✵ 7✤


-)*4 7q

&

7✤

)$+56# '

$ ✵ "



7q

7✤

1 '


7✤

'# ./0 ✵



P✶

q


q

,


7 ,

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 41


Phenomenology of Supersymmetry

SUSY signatures

◮ Sparticles decay into b/c-jets, leptons, taus, photons, invisible (MET), ...

◮ R-parity conservation (RPC)

◮ Sparticle pair production, decays into (WIMP) LSP, mostly lightest neutralino, gravitino

◮ One invisible LSP per decay chain ⇒ MET

◮ R-parity violation (RPV)

◮ Resonances or multijets/multileptons: single sparticle production, LSP decay


q

q u

Displaced vertices from late LSP gdecay

W + C i

+

◮ Long-lived

particles from: q q* d N j



◮ Weak couplings (RPV, gravitino), mass degeneracy (m(˜χ ± ) ∼ m(LSP) in AMSB)

◮ High virtuality from heavy mediator sparticles (heavy squarks in split SUSY)


SUSY particle production cross sections


Search strategies




















[]



[]









◮ Inclusive squark and gluino searches (large

squark/gluino pair production cross section)




◮ Natural SUSY-driven searches for 3rd generation

squarks (˜t/˜b, in direct production or via gluinos)





◮ Natural SUSY-driven searches for electroweak

production of gauginos/sleptons





◮ R-parity violating SUSY (no stable LSP)

◮ Each search area can involve prompt or long-lived

sparticle decays


Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Resultsfrom the LHC 42


0

0

Search for gluino-mediated ˜b and ˜t production

CMS PAS SUS-12-024, arXiv:1305.2390

P 2

b

˜g

¯b

˜χ 0 1

Multi-jet final state + MET

◮ At least three jets

◮ At least one b-tag

(GeV)

m∼

χ

1

800

600

400

200

P 1

˜g

(a)

-1

CMS , L = 19.4 fb , s = 8 TeV

1200

pp →

~

g

~

g,

~

g → b b ∼0 χ NLO+NLL exclusion

1

Observed ± 1 σ

1000

theory

Expected ± 1 σ experiment

0

10

400 600 800 1000 1200 1400

m~

g (GeV)

Simplified model scenarios (pMSSM)

1

¯b

-1

10

-2

10

-3

b

95% CL upper limit on cross section (pb)

˜χ 0 1

(GeV)

m∼

χ

1

-1

CMS , L = 19.4 fb , s = 8 TeV

800

0

pp →

~

g

~

g,

~

g → t t


χ NLO+NLL exclusion

1

700 Observed ± 1 σ theory

Expected ± 1 σ experiment

600

500

400

300

200

100

-1

10

-2

10

0

10

400 600 800 1000 1200 1400

m~

g (GeV)

◮ Exclusion of gluinos with masses below 1170 GeV and 1020 GeV

1

-3

95% CL upper limit on cross section (pb)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 43


Search for charginos (∼ LSP mass-degenerated)

ATLAS-CONF-2013-069

Search for charginos (∼ LSP=˜χ 0 1 mass-degenerated)

◮ Based on disappearing track-signature

◮ Anomaly-mediated supersymmetry breaking (AMSB) model

⇒ m(˜χ + 1 ) ≃ m(˜χ0 1 ) ⇒ long lifetime τ(˜χ+ 1 )

◮ Sensitivity for charginos: 1 < τ < 10 ns (decay in tracking volume)

◮ AMSB scenarios: chargino mass below 270 GeV excluded at 95% C.L.

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 44


0

SUSY exclusion limit summaries

2

1

0

1

2

0

2

1

2

1

0

2

0

1

ATLAS limits on EW gaugino production

[GeV]

CMS limits for direct stop searches

m χ


1

500

450

400

350

300

250

200

150

100

50

ATLAS

m ~

l L /


τ L / ν ∼

Preliminary L

int

0 ~

pp→


χ

±∼

χ , via l L /

1 2

- ~

pp→


χ

+∼

χ , via l L /

1 1

-1

= 20.3-20.7 fb ,


ν, 3e/µ, ATLAS-CONF-2013-035


ν, 2e/µ, ATLAS-CONF-2013-049

0

pp→


χ

±∼

χ , via


τ


ν τ , 2τ, ATLAS-CONF-2013-028

L /

1 2

-

pp→


χ

+∼

χ , via


τ


ν τ , 2τ, ATLAS-CONF-2013-028

L /

1 1

0

pp→


χ

±∼

χ , via WZ, 3e/µ, ATLAS-CONF-2013-035

1 2

0

pp→


χ

±∼

χ , via Wh, e/µbb, ATLAS-CONF-2013-093

1 2

m χ

∼ 0

= 0.5(m ∼

χ

< m χ

∼ 0

m χ

∼ 0

+ m ∼

χ

= m χ

∼ 0

)

+ m Z

s=8 TeV Status: SUSY 2013

+ m h

Expected limits

Observed limits

0

100 200 300 400 500 600

m χ

∼ 0

= m χ

∼ 0

m∼

χ

= 2m∼ χ

m ±

χ


1

(=m 0

χ

∼ ) [GeV]

2

CMS limits for gluino pair production (˜g →t¯t ˜χ 0 1 )

ATLAS MSUGRA/CMSSM limits

[GeV]

m 1/2

1000

900

800

700

600

500

400

300

MSUGRA/CMSSM: tan( ) = 30, A = -2m 0 , µ > 0

Status: SUSY 2013

0



LSP

h (122 GeV)

ATLAS Preliminary

-1


L dt = 20.1 - 20.7 fb , s = 8 TeV

~

g (1000 GeV)

q~ (1600 GeV)

h (124 GeV)

q~ (2000 GeV)

h (126 GeV)

SUSY

95% CL limits. theory

Expected

Observed

Expected

Observed

Expected

Observed

Expected

Observed

Expected

Observed

Expected

Observed

~

g (1400 GeV)

not included.

0-lepton, 2-6 jets

ATLAS-CONF-2013-047

0-lepton, 7-10 jets

arXiv: 1308.1841

0-1 lepton, 3 b-jets

ATLAS-CONF-2013-061

1-lepton + jets + MET

ATLAS-CONF-2013-062

1-2 taus + jets + MET

ATLAS-CONF-2013-026

2-SS-leptons, 0 - 3 b-jets

ATLAS-CONF-2013-007

0 1000 2000 3000 4000 5000 6000

m 0 [GeV]

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 45


ATLAS SUSY exclusion limits summary

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

ATLAS Preliminary

∫ √ L dt = (4.6 - 22.9) fb −1 s = 7, 8 TeV

Model

e, µ, τ, γ Jets E miss ∫

L dt[fb −1 ]

T

Mass limit Reference

Inclusive Searches

3 rd gen.

˜g med.

MSUGRA/CMSSM 0 2-6 jets Yes 20.3 ˜q, ˜g

1.7 TeV m(˜q)=m(˜g) ATLAS-CONF-2013-047

MSUGRA/CMSSM 1 e, µ 3-6 jets Yes 20.3 ˜g

1.2 TeV

any m(˜q) ATLAS-CONF-2013-062

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 ˜g

1.1 TeV

any m(˜q) 1308.1841

˜q˜q, ˜q→q˜χ 0 1 0 2-6 jets Yes 20.3 ˜q

740 GeV

m(˜χ 0 1)=0 GeV ATLAS-CONF-2013-047

˜g ˜g, ˜g→q¯q˜χ 0 1 0 2-6 jets Yes 20.3 ˜g

1.3 TeV m(˜χ 0 1)=0 GeV ATLAS-CONF-2013-047

˜g ˜g, ˜g→qq˜χ ± 1 →qqW ±˜χ0 1 1 e, µ 3-6 jets Yes 20.3 ˜g

1.18 TeV

m(˜χ 0 1)50 GeV 1209.0753

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 ˜g

619 GeV

m(˜χ 0 1)>50 GeV ATLAS-CONF-2012-144

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 ˜g

900 GeV

m(˜χ 0 1)>220 GeV 1211.1167

GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 ˜g

690 GeV

m( ˜H)>200 GeV ATLAS-CONF-2012-152

Gravitino LSP 0 mono-jet Yes 10.5 F 1/2 scale

645 GeV

m(˜g)>10 −4 eV ATLAS-CONF-2012-147

˜g→b¯b˜χ 0 1 0 3 b Yes 20.1 ˜g

1.2 TeV

m(˜χ 0 1)


Exotic searches for new physics

◮ Search for dark matter in mono-lepton events

◮ Search for dark matter pair production in mono-W /Z events

◮ Search for microscopic black holes in like-sign dimuon events

◮ Exclusion summary

Bunch crossing with 40 pp collisions and reconstructed vertices

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 47


CMS PAS EXO-13-004

Search for dark matter in mono-lepton events

B(W→ lν) (pb)

σ ×

1

-1

10

-2

10

-3

10

-4

10

-5

10

Λ = 600 GeV

V ξ= +1

V ξ= 0

V ξ= -1

AV ξ= +1

AV ξ= 0

AV ξ= -1

1 10

CMS Simulation

2

10

3

10

M χ (GeV)

Lepton + MET signature

Events / 1 GeV

miss

-1

CMS Preliminary µ + E ∫ L dt = 20 fb s = 8 TeV

T

6

10 M χ = 300 GeV Λ = 200 GeV

W → l ν tt +single top

Spin Independent

5

10

DM ξ = +1

DY

QCD

4

DM ξ = -1

10

Diboson data

3

DM ξ = 0

10

2

syst uncer.

10

10

1

-1

10

-2

10

-3

10

-4

10

-5

10

(data -MC)

MC

0

-0.5

-1

500 1000 1500 2000 2500

(GeV)

3

10

M T

1 CMS Preliminary miss

-1

µ + E ∫ L dt = 20 fb s = 8 TeV

T

syst uncer.

0.5

◮ Different interference (ξ = −1, 0, +1)

and (axial-)vector (AV), (V) scenarios assumed

◮ Limits transformed to effective parameter Λ and

DM-nucleon cross sections

(GeV) M T

Λ (GeV)

)

2

χ-nucleon σ (cm

1000

800

-32

10

-33

10

-34

10

-35

10

-36

10

-37

10

-38

10

-39

10

-40

10

-41

10

-42

10

-1

CMS Preliminary 2012 20 fb

-43

10

1 10

2

10

s = 8 TeV

600 Spin Dependent (aixial-vector-like)

electron + muon ξ = 0

Limit in 95 C.L.

400 Observed limit

Expected CL limit

Expected CL ± 1 σ

200 Expected CL ± 2 σ

Λ=M χ /(2π)

0

Λ=2M χ

2

1 10

10

M χ

-30

10

-1

CMS preliminary 2012 20 fb s = 8 TeV

-31

10

Observed limit

Expected limit

Expected ±

Expected ±

1 σ

2 σ

Limit in 90 C.L.

Spin Independent

electron + muon

(vector-like)

ξ = +1

M χ

3

10

(GeV)

CMS monojet 2012

Xenon 100 2012

COUPP 2012

SIMPLE 2012

CoGeNT 2011

CDMSII 2011

CDMSII 2010

3

10

(GeV)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 48


]

Search for dark matter pair production in W /Z eve

u

d

Events / 10GeV

350

250

200

150

100

50


+

W

⇒ jet

χ

χ

­1

L dt = 20.3 fb s = 8 TeV

300

ATLAS Preliminary

miss

SR: E T

> 350 GeV

u

d

Data

Z(νν)+jet

W/Z(e/µ/τ)+jet

Top

Diboson

uncertainty

D5(u=d) x100

D5(u=­d) x1

0

50 60 70 80 90 100 110 120

[GeV] m jet

χ

+

W

χ

⇒ jet

Search for dark matter pair production in events with a

hadronically decaying W or Z boson and MET at 8 TeV

◮ Limits on eff. mass scale M ∗ for different operators

(D1-9, C1) and on DM nucleon cross sections

◮ In case of constructive interference more powerful than

mono-jet channel

2

[GeV]

χ­N cross­section [cm

*

M

5

10

4

10

3

10

2

10

10

­36

10

­38

10

­40

10

­42

10

­44

10

­46

10


­1

L dt = 20.3 fb

ATLAS Preliminary

90% CL

ATLAS Preliminary

spin dependent

90%CL

s = 8 TeV

1 10

ATLAS-CONF-2013-073

1

0 200 400 600 800 1000 1200

­1


L dt = 20.3 fb

D9:obs COUPP 2011

SIMPLE 2011 Picasso 2012

+ ­

IceCube W W

IceCube bb

D9: ATLAS 7TeV j(χχ)

2

10

D9:obs

D5(u=­d):obs

D5(u=d):obs

D1:obs

C1:obs

m χ [GeV]

s = 8 TeV

3

10

m χ [GeV]

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 49


Search for microscopic black holes

Events / 2

ATLAS

3

10 ­1 Data

∫Ldt = 20.3 fb

µ+fake

2

10

s=8 TeV tt

Diboson

Signal

10

arXiv:1308.4075

1

­1

10

Data / bkg

2

1

0

10 20 30 40 50 60

N trk

Search for microscopic black holes in like-sign dimuon events using track multiplicity at 8 TeV

◮ Like-sign muons reduce important SM backgrounds (multi-jet, t¯t and diboson production)

◮ Low energy scale gravity with large flat spatial extra dimensions (ADD model)

◮ Several number of extra-dimension scenarios (n = 2 − 6) considered (MC: BlackMax)

◮ Limits are obtained for non-rotating (see plot), rotating black holes and string balls

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 50


CMS Exotica exclusion limits summary

CMS EXOTICA 95% CL EXCLUSION LIMITS (TEV)

q* (qg), dijet

q* (qW)

q* (qZ)

q* , dijet pair

q* , boosted Z

e*, Λ = 2 TeV

μ*, Λ = 2 TeV

Z’SSM (ee, µµ)

Z’SSM (ττ)

Z’ (tt hadronic) width=1.2%

Z’ (dijet)

Z’ (tt lep+jet) width=1.2%

Z’SSM (ll) fbb=0.2

G (dijet)

G (ttbar hadronic)

G (jet+MET) k/M = 0.2

G (γγ) k/M = 0.1

G (Z(ll)Z(qq)) k/M = 0.1

W’ (lν)

W’ (dijet)

W’ (td)

W’→ WZ(leptonic)

WR’ (tb)

WR, MNR=MWR/2

WKK μ = 10 TeV

ρTC, πTC > 700 GeV

String Resonances (qg)

s8 Resonance (gg)

E6 diquarks (qq)

Axigluon/Coloron (qqbar)

gluino, 3jet, RPV

gluino, Stopped Gluino

stop, HSCP

stop, Stopped Gluino

stau, HSCP, GMSB

hyper-K, hyper-ρ=1.2 TeV

neutralino, cτ


Heavy Ion Physics

◮ Two particle correlations

◮ Multi-particle azimuthal correlations

High-multiplicity pPb collision at 5.02 TeV with about 420 tracks produced

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 52


Two particle correlations

Long-range near-side angular correlations

◮ Angle between two particle tracks in longitudinal

(∆η) and transverse (∆φ) plane

◮ Future: Long range correlation studies à la CMB

◮ Findings might help to get a clearer picture of

the earliest moments of our Universe

◮ Present understanding: Consequence of

explosion of a “droplet” of quark-gluon plasma

Lead - lead collisions

Proton - lead collisions

Phys. Lett. B 718 (2013) 795

arXiv:1305.0609

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 53


Multi-particle azimuthal correlations

Number of events

c 2 {4}

5

10 ATLAS

p+Pb s NN = 5.02 TeV

4

-1

10

L int = 1 µb

3

10

2

10

10

1

0

-0.02

-3

×10

0 50 100 150 200

data

HIJING

HIJING, detector simulation

Pb

ΣET

[GeV]

ATLAS Internal

-1

p+Pb, s NN = 5.02 TeV, L = 1 µb

int

0.3 < p < 5 GeV, |η| < 2.5

T

-0.04

0 20 40 60 80 100

Pb

〈ΣE 〉 [GeV]

T

c 2 {2}

v 2

0.02

0.015

0.01

ATLAS

p+Pb s NN = 5.02 TeV

-1

L int = 1 µb

0.3 < p < 5 GeV, |η| < 2.5

T

0.005

data

HIJING

HIJING, detector simulation

0

0 20 40 60 80 100

Pb

〈ΣE 〉 [GeV]

T

0.1

ATLAS

-1

p+Pb, s NN = 5.02 TeV, L = 1 µb

int

0.05

v 2 {2}

v 2 {4}

0.3 < p < 5 GeV

v 2 {2PC}

T

|η| < 2.5

v 2 {2}

hydro

0

20 40 60 80 100 120

Pb

〈ΣE 〉 [GeV]

T

Variables used

Multi-particle azimuthal correlations in p − Pb collisions at √ s NN = 5.02 TeV

Phys. Lett. B 725 (2013)

◮ Two particle cumulant:

c 2 (2) = 〈 e i2(φ1−φ2)〉

◮ Four particle cumulant:

c 2 (4) = 〈 e i2(φ1+φ2−φ3−φ4)〉

◮ Second order harmonic:

v 2 = 〈cos 2(φ − Ψ 2 )〉

φ = azimuthal particle angle

Ψ 2 ∼ collision IP direction

Hydrodynamic model

◮ Similarity to hydrodynamic

predictions observed

◮ 6 activity regions, defined by transverse energy sum in the Pb beam direction (3.1 < η < 4.9)

◮ Large v 2 ⇒ Evidence for importance of final-state effects in pPb reactions

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 54


LHC and experiments performance projections

LHC (and beyond) timeline

◮ Trigger upgrade and physics performance

◮ High Luminosity - LHC and physics reach

◮ High Energy LHC

◮ VLHC

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 55


LHC timeline (and beyond)

Phase1

LS1

LHC and HL­LHC timeline

LS2

Phase2

LS3 ... LS4 ...

3 years

50fb ­1 per year

High Luminosity LHC

3 years

>~ 50fb ­1 per year

End of Phase1

300­500 fb ­1

HL­LHC:

L=5 ·10 34 cm ­2 s ­1

250 fb ­1 per year by 2035 3000 fb ­1

(rare phenomena need to be produced more copious)

~140 events per bunch­crossing spread in z over ~ 5 cm

◮ L = 5 × 10 34 cm −2 s −1

◮ ∼ 140 events per bunch crossing, spread along the beamline over z = 5 cm

◮ High luminosity to improve discovery potential

◮ Radiation ∼ 10 times higher than originally forseen in the CMS design

◦ Tracker and endcap calorimeters will have to be changed

A ◦new Trigger machine, needs to befor upgraded high luminosity, ideal to search for

rare phenomena.

HL­LHC

HL-LHC

250

◮ 250 fb­1 fb/year

−1 /

year

◮ L = By 3000 2035 fb −1

by3000 2035fb ­1

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 56


Level-1 Trigger upgrade Higgs physics performance

50 ns

√ s = 14 TeV, L = 1.1 × 10 34 cm 2 s 1

N pile-up = 50

25 ns

√ s = 14 TeV, L = 2.2 × 10 34 cm 2 s 1

N pile-up = 50

Expected Higgs physics performance of Phase 1 Upgrade of CMS Level-1 Trigger

◮ Signal efficiency improvements for

WH → lνbb,

VBF H → ττ and

H → WW → 2l2ν channels

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 57


Future prospects: High Luminosity - LHC

HL-LHC in LHC tunnel (∼ 2022-2030)

will deliver ∼ 9× more H bosons

√ s = 14 TeV, L = 5 × 10 34 cm −2 s −1

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 58


HL-LHC Higgs and Vector Boson Scattering reach

Events / GeV

300 ATLAS Preliminary (Simulation) ttH

s = 14 TeV

ZH

-1

WH

250 ∫ L dt = 3000 fb

VBF

gg

200

diphoton

ttbar

Events / 0.5 GeV

10

10 ATLAS Preliminary (Simulation)

9 s = 14 TeV

10

-1

Z → µµ

∫ L dt = 3000 fb

8

tt → µνX µνX

10

WW→ µνµν

7

10

gg → H → µµ, m =125 GeV

H

150

6

10

100

50

0

100 110 120 130 140 150

diphoton mass [GeV]

5

10

4

10

3

10

2

10

Events - Bkg / 2 GeV

5000

-5000

100 110 120 130 140 150

80 100 120 140 160 180 200

0

m µµ [GeV]

Rare signal channels at 14 TeV with 3000 fb −1



ttH, H → γγ in one lepton channel

H → µµ inclusive channel

◮ Vector boson scattering VV → VV (e.g.ZZ → 4l)

◮ Amplitude grows with energy for longitudinally

polarised bosons ⇒ unitarity violation

◮ Damped by Higgs and/or new physics

⇒ checking for heavy resonances at TeV scale

Entries

50

40

30

20

10

ATLAS Preliminary

-1

∫ (Simulation)

L dt = 3000 fb

0.2 0.3 0.4 0.5 0.6 1

SM VV

Non-VV

Diboson

SM VV +

1.0 TeV Res

(g = 1.75)

[TeV] m 4l

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 59


High Luminosity - LHC Higgs reach

ATLAS Preliminary (Simulation)

s = 14 TeV:

H→µµ

ttH,H→µµ

VBF,H→ττ

H→ ZZ

VBF,H→ WW

H→ WW

VH,H→γγ

ttH,H→γγ

VBF,H→γγ

H→γγ (+j)

H→γγ

-1

∫ Ldt=300 fb ;

-1

∫Ldt=300 fb

-1

∫Ldt=3000 fb

extrapolated from 7+8 TeV

❳2❳ ❳❳

❳ ❳❳

0 0.2 0.4 0.6 0.8

∆µ

µ

ττ channels

/ Γ g Γ Z

Γ t / Γ g

Γ τ / Γ µ

✘ ✘ ✘ ✘✘ ✘ ✘ ✘✿

❳❳ ❳❳

❳ ❳❳

Γ µ / Γ Z

❳3

◮ Brown bars are

extrapolation of

ττ channels from

current 7 TeV and

8 TeV analyses

◮ Dedicated HL

studies are based

on VBF H → ττ

channels only

ATLAS Preliminary (Simulation)

s = 14 TeV:

/ Γ Z Γ τ

Γ W / Γ Z

/ Γ Z Γ γ

Γ g •Γ / Γ

Z H

-1

∫ Ldt=300 fb ;

-1

∫Ldt=300 fb

-1

∫Ldt=3000 fb

extrapolated from 7+8 TeV

0 0.2 0.4 0.6 0.8

∆(Γ /Γ Y ) ∆(κ /κ Y )

X

X

~ 2

Γ X /Γ Y κ X /κ Y

Expected measurement precision on the signal strength µ = (σ × BR)/(σxBR) SM and

decay widths, assuming SM Higgs with m H = 125 GeV

◮ Theoretical errors: QCD scale and PDF variations included (dashed areas)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 60


Future prospects: High Energy - LHC

20 T dipole magnets

HE-LHC in LHC tunnel (2035-)

√ s = 33 TeV, L = 5 × 10 34 cm −2 s −1

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 61


Future prospects: VLHC

16 or 20 T magnets

80 km tunnel

√ s = 84 − 104 TeV, L = 5 × 10 34 cm −2 s −1

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 62


Conclusions

◮ Excellent performance of LHC and experiments,

Maintenance and upgrades are on track

◮ Standard Model confirmed, precision

measurements refined, a Higgs-like boson found,

highest collider energy frontier explored

◮ B 0 s → µµ observed (CMS + LHCb)

◮ Search for evidence of new physics in many

channels

◮ More LHC data at √ s = 13 − 14 TeV in 2015

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 63


Backup slides

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 64


CMS envisioned upgrades

Phase I:

◮ 2013: Smaller diameter beampipe

◮ 2013: HO replacement of HPDs with SiPMs

◮ 2018: Pixel Detector with 4 Layers and smaller mass

◮ 2018: HB/HE photo-detectors and readout electronics

◮ 2018: HF photo-detectors and readout electronics

◮ 2018: ME1/1 CSC Electronics

◮ 2018: ME4/2 CSC Chambers

◮ 2018: ME4/2 RPC Chambers

◮ 2018: Calorimeter Trigger

◮ 2018: Muon Track Finder Trigger

◮ 2018: Global Trigger

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 65


CMS envisioned upgrades

Phase II:

◮ 2020: Forward Calorimeter

◮ 2020: Full Tracker

◮ 2020: Tracker in Level-1 Trigger

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 66


CMS envisioned upgrades

Benefits of Phase I Upgrade:

◮ HO becomes functional and provides jet tail catcher functionality that it is designed for. It can also

provide additional layers for identifying muons at trigger level when included with RPC trigger system.

◮ Pixel detector upgrade provides an opportunity to improve b-jet tagging capability, especially when the

inner most layer is installed at the smallest radius possible. The addition of fourth layer provides highly

efficient pixel track seeds and can be used independently in the high level trigger system. It may be

particularly useful for electron and tau triggers at HLT.

◮ HB/HE upgrades fix the noise problems in the calorimeters. In addition improved quantum efficiency of

new devices and additional longitudinal segmentation can improve resolution, for example by

appropriately weighting the different readout layers.

◮ ME1/1 electronics upgrades improves the muon trigger by eliminating the ganging of strips in the

region |η| > 2.1

◮ ME4/2 CSC and RPC chambers improves the trigger capability in the intermediate eta region,

especially, in the high pileup environment.

◮ Calorimeter trigger upgrade improves the tau trigger algorithm and provide higher position resolution of

all trigger objects.

◮ Muon Track Finder Triggger upgrade includes new ME1/1 and ME4/2 signals and improves the muon

track finding at Level-1

◮ Global trigger upgrade exploits the new information available for calorimeter and muon triggers and

also provide ability to deploy more complex triggers, e.g., based on invariant mass cuts on trigger object

pairs.

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 67


CMS detector: 30 ◦ sector and particle detection

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 68


CMS detector and pseudorapidity coverage

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 69


Detector and reconstructed object resolutions

Object energy and momentum resolutions

◮ anit-k T (R = 0.5) energy resolution:

∆E/E = 100%/ √ E [GeV] ⊕ 5%

◮ e + unconverted γ’s: p T > 100 GeV: ∆E/E 0.5%

For 2011 data, E T > 35(40) GeV: barrel(endcap) ∆E/E = 1%(3%)

• Jets :

◮ global muon p T res.: 1 − 10% up to 1 TeV

Calorimeter transverse energy resolutions

◮ ECAL (|η| < 3): ∼ 2%/ √ E T

◮ HCAL (|η| < 5): ∼ 100%/ √ E T

Inner tracker resolutions

◮ transverse momentum: res(p T ) =

1 , 2 , 5%@p T = 10, 100, 500 GeV

◮ impact parameter: res(IP) = 15 µm

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 70


High number of Pileup events ( ≃ 9

≃ 21 )

29 distinct vertices reconstructed in a single LHC beam crossing

Compromise between high luminosity and clean events ⇒ Optimised discovery potential

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 71


Pileup distributions of pp collisions

Pileup distributions of 2012 (8 TeV) and 2011 (7 TeV) pp collision data

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 72


Color coherence effects in 3-jet cross section

MC/Data

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

-1

CMS Preliminary L = 36 pb

|η | < 0.8

2

Pythia6 Tune Z2

s = 7 TeV

1.4

1.3

1.2

1.1

0.9

0.8

Pythia8 Tune 4C

Herwig++ Tune 2.3 0.7

Madgraph + Pythia6 Tune D6T

Statistical Uncertainty 0.6

Systematic Uncertainty

0.5 1 1.5 2 2.5 3

β

1

-1

CMS Preliminary L = 36 pb

0.8 < |η | < 2.5

2

Pythia6 Tune Z2

Pythia8 Tune 4C

Herwig++ Tune 2.3

Madgraph + Pythia6 Tune D6T

Statistical Uncertainty

Systematic Uncertainty

0.5 1 1.5 2 2.5 3

β

s = 7 TeV

1/N dN/dβ

MC/Data

0.1

0.08

0.06

0.04

0.02

-1

CMS Preliminary L = 36 pb

|η | < 0.8

2

Pythia6 D6T

= 7 TeV

0 0.5 1 1.5 2 2.5 3

1.3

β

1.2

1.1

1

0.9

0.8

0.7

s

Color Coherence On

Color Coherence Off

Unfolded Data

Color Coherence On

Color Coherence Off

0 0.5 1 1.5 2 2.5 3

β

1/N dN/dβ

MC/Data

0.1

0.08

0.06

0.04

0.02

-1

CMS Preliminary L = 36 pb

0.8 < |η | < 2.5

2

Pythia6 D6T

= 7 TeV

0 0.5 1 1.5 2 2.5 3

1.3

β

1.2

1.1

1

0.9

0.8

0.7

s

Color Coherence On

Color Coherence Off

Unfolded Data

Color Coherence On

Color Coherence Off

0 0.5 1 1.5 2 2.5 3

β

Color coherence effects in 3-jet production (at √ s = 7)

◮ Sensitive observable β = | arctan(∆φ 23 , ∆η 23 )|

◮ Pronounced back-to-back topology of 2 leading jets

◮ Herwig++ describes distribution well in central region

◮ Pythia color coherence effects less pronounced than in data

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 73


W boson + 2 b-jets production cross section

Events / 0.04

6

10

5

10

4

10

3

10

2

10

-1


L dt = 5 fb

CMS Preliminary

stack

s= 7 TeV

Data

W+bb

W+cc

W+c

W+jj

tt

t / t

QCD

Z+jets/VV

0 0.2 0.4 0.6 0.8 1

CSV b-Discriminator

Events / 20 GeV

220

200

180 4

160

140

3

120

100

2

80

60

120

0

40

0

1.5

1.4

1.3

1.2

1.1

0.9 1

0.8

0.7

0.6

0.5

-1


L dt = 5 fb

CMS Preliminary

s= 7 TeV

Data

W+bb

W+cc

W+c

W+jj

tt

t / t

QCD

Z+jets/VV

MC Uncertainty

50 100 150 200 250

M(J +J 2

) [GeV]

1

50 100 150 200 250

Wbb production in W → µν (+ exactly 2 b-tagged jets) decay channel

◮ Based on L = 5 fb −1 @ √ s = 7 TeV

◮ Important as irreducible background to WH production

◮ σ ×BR(W → µν) = 0.53±0.05(stat)±0.09(syst)±0.06(theo)±0.01(lumi) pb

consistent with SM expectation

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 74


WZ production cross section

Events / 2 GeV

data / prediction - 1

80

60

40

20

0

2

1

0

-1

CMS Preliminary

-1

L = 4.9 fb

s

= 7 TeV

WZ

ZZ

Data

all channels

data-driven


70 80 90 100 110

[GeV] m ll

WZ production cross section and σ(W + Z)/σ(W − Z) cross section ratio

at 7 TeV and 8 TeV (for 71 < m Z < 111 GeV)

◮ Leptonic boson decays (eee, eeµ, eµµ and µµµ) and combination

◮ Combination at 7 TeV:

σ(pp → WZ + X ) = 20.76 ± 1.32(stat) ± 1.13(syst) ± 0.46(lumi) pb

σ(W + Z)/σ(W − Z) = 1.94 ± 0.25(stat) ± 0.04(syst)

◮ Combination at 8 TeV:

σ(pp → WZ + X ) = 24.61 ± 0.76(stat) ± 1.13(syst) ± 1.08(lumi) pb

σ(W + Z)/σ(W − Z) = 1.81 ± 0.12(stat) ± 0.03(syst)

CMS Preliminary

s

-1

= 8 TeV, L = 19.6 fb

CMS Preliminary

-1

s = 7 TeV, L = 4.9 fb

CMS Preliminary

-1

s = 8 TeV, L = 19.6 fb

data (1480)

ZZ (15)

300

all (1395)

WZ (1184)

data-driven (149)

Zγ (7)

VVV (38)

WV (3)

stat.

theory

syst.

lumi.

stat.

theory

syst.

lumi.

Events / 1 GeV

200

eee 1.29 ± 0.19

1.29 ± 0.17 ± 0.08 ± 0.03

eeµ 1.11 ± 0.18

1.11 ±

0.15 ±

0.08 ±

0.02

eee 1.14 ± 0.11

1.14 ± 0.08 ± 0.06 ± 0.05

eeµ 1.07 ± 0.10

1.07 ±

0.07 ±

0.05 ±

0.05

100

µµe 1.11 ± 0.17

1.11 ±

0.15 ±

0.09 ±

0.02

µµe 1.11 ± 0.10

1.11 ±

0.07 ±

0.06 ±

0.05

data / prediction - 1

0

1

0

-1

70 80 90 100 110

70 80 90 100 110

m ll

[GeV]

µµµ 1.18 ± 0.16

1.18 ±

0.13 ±

0.08 ±

0.03

combined 1.17 ± 0.10

1.17 ± 0.07 ± 0.06 ± 0.03

0 0.5 1 1.5 2

exp theory

σ ± / σ ±

W Z W Z

µµµ 1.17 ± 0.10

1.17 ±

0.06 ±

0.06 ±

0.05

combined 1.12 ± 0.08

1.12 ± 0.03 ± 0.05 ± 0.05

0 0.5 1 1.5 2

exp theory

σ W

± / σ W

±

Z Z

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 75


Many more Standard Model analyses available

Further recent analyses

◮ Z + b, bb jet cross sections at 7 TeV (CMS)

◮ W + c differential cross section at 7 TeV (CMS + ATLAS)

◮ High-mass Drell-Yan differential cross-section at 7 TeV

◮ W γ and Zγ production at 7 TeV (ATLAS)

◮ Photon+jets differential cross section at 7 TeV (CMS)

◮ Z + jets production cross section at 7 TeV (ATLAS)

◮ Z + 1 jet and photon+1 jet rapidity distributions at 7 TeV (CMS)

◮ Z/γ ∗ → l + l − forward backward asymmetry in l = e, µ final state at 7 TeV

(ATLAS)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 76


X(3872) exotic charmonium: a charming puzzle

Discovered by Belle and Babar in B decays

Illustration of proposed interpretations for how

quarks fit together to form an X(3872) state

J/ψπ + π − invariant mass spectrum with prominent

J/ψ (2S) peak and and strong X(3872) signal

• Prompt production rate at Tevatron and LHC

higher than through B decays (∼ 26%)

• Prediction including re-scattering effects too high,

but p T dependence is reasonably well modelled

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 77


B s(d) → µµ implications for new physics

◮ Severe constraints on phase space of supersymmetry and other theories

◮ D. Straub [arxiv:1205.6094] exploits LHCb and CMS limits to produce

plot below

◮ Most BSM models are able to cope with SM BR(B s,d )

but new physics could have well shown up already

+

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 78


Many more B physics analyses available

Further recent analyses

◮ Angular analysis of B 0 d → K ∗0 µ + µ − at 7 TeV (ATLAS)

◮ Associated production of prompt J/ψ mesons and W boson at 7 TeV (ATLAS)

◮ Limit on B 0 s → µµ branching fraction based on 4.9 fb −1 at 7 TeV (ATLAS)

◮ Parity violating asymmetry parameter α b and helicity amplitudes for the decay

Λ 0 b → J/ψΛ0 at 7 TeV (ATLAS)

◮ Production cross section of B + at 7 TeV (ATLAS)

◮ Search for a new bottomonium state decaying into Υ(1S)ππ at 8 TeV (CMS)

◮ Prompt J/ψ and ψ(2S) polarization in pp collisions at 7 TeV (CMS)

◮ Λ b : Invariant mass distribution of Λ b to J/ψΛ at 7 TeV (CMS)

◮ Observation of the χ c states with 1.1 fb −1 at 7 TeV (CMS)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 79


9 GeV would have been a boring value: everybody OK

5 GeV would Implications be a devastating to MSSM value: mass extinction.

6BSM GeVandisSUSY Darwinian: implications of (natural) M H ≈ 126 GeV selection among models

rum heavy; except maybe for weakly interacting

◮ Heavy SUSY spectrum except eventually for weakly

interacting sparticles and stops

⇒ enhanced focus in SUSY searches

◮ MSSM Higgs searches have to be refined:

◮ gg, bb → H/A → ττ, µµ

◮ t → H + b, gg → tH −

◮ H → WW , ZZ (SM like)

◮ gg, H/A → tt (Z ′ , KK like)

◮ H → hh, A → Zh, ...

◮ 7-8 TeV for lightest h,

13-14 TeV for H/A/H +

nd also stops ⇒ more focus on them in SUSY searche

efine all other MSSM Higgs searches in particular:

H/A → ττ, µµ

gg → tH −

, ZZ as in SM

tt (as for Z’, KK..)

→ Zh....

sparticle searches...

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 80 +


Higgs signal strengths

-1

s = 7 TeV, L ≤ 5.1 fb

Combined

µ = 0.80 ± 0.14 CMS Preliminary

H → bb (VH tag) p = 0.94

H → bb (ttH tag)

H → γγ (untagged)

H → γγ (VBF tag)

H → γγ (VH tag)

H → WW (0/1 jet)

H → WW (VBF tag)

H → WW (VH tag)

H → ττ (0/1 jet)

H → ττ (VBF tag)

H → ττ (VH tag)

H → ZZ (0/1 jet)

H → ZZ (2 jets)

SM

-1

s = 8 TeV, L ≤ 19.6 fb

= 125.7 GeV

m H

-4 -2 0 2 4

Best fit σ/σ SM

Measured production strengths norm. to SM exp.

◮ Systematic uncertainties taken into account

◮ Theory uncertainties (QCD scale, PDF, BR’s)

taken into account

◮ Combinations close to SM expectation

ATLAS

m H = 125.5 GeV

H → γγ

±0.23

+0.33 ±0.15

µ = 1.55

­0.28 ±0.15

Low p

Tt

+0.5

µ = 1.6

­0.4 ± 0.3

High p

Tt

+0.7

µ = 1.7

­0.6 ± 0.5

2 jet high

mass (VBF)

+0.8

µ = 1.9

­0.6 ±0.6

+1.2

VH categories µ = 1.3

­1.1 ± 0.9

H → ZZ* → 4l

VBF+VH­like

categories

Other

categories

±0.33

+0.40 ±0.17

µ = 1.43

­0.35 ±0.14

+1.6

µ = 1.2

­0.9

H → WW* → lνlν

­1

s = 7 TeV ∫Ldt = 4.6­4.8 fb

­1

s = 8 TeV ∫Ldt = 20.7 fb

+ 1.6

­ 0.9

+0.43

µ = 1.45

­0.36 ±0.35

±0.21

+0.31 ±0.21

µ = 0.99

­0.28 ±0.12

0+1 jet

+0.33

µ = 0.82

­0.32 ± 0.22

2 jet VBF

+0.7

µ = 1.4

­0.6 ± 0.5

Comb. H→γγ, ZZ*, WW* ±0.14

+0.21 ±0.15

µ = 1.33

­0.18 ±0.11

σ(stat)

σ(sys)

σ(theo)

Total uncertainty

± 1σ on µ

0 1 2 3

Signal strength (µ)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 81


Higgs properties: mass

m H = 125.7 ± 0.3(stat) ± 0.3(syst) GeV

m H = 125.5 ± 0.2(stat) ± 0.6(syst) GeV

- 2 ∆ ln L

10

9

8

7

6

5

4

3

2

1

0

CMS Preliminary -1

s = 7 TeV, L ≤ 5.1 fb

-1

s = 8 TeV, L ≤ 19.6 fb

H → γγ + H → ZZ

µ , µ

ZZ

µ

(ggH,ttH),

γγ

(VBF,VH)

γγ

Combined

H → γγ

H → ZZ

124 126 128

m X

(GeV)

-2lnΛ

7

6

5

4

3

2

1

ATLAS Preliminary

s = 7 TeV: ∫Ldt = 4.6-4.8 fb

-1

s = 8 TeV: ∫Ldt = 20.7 fb

-1

Combined (stat+sys)

Combined (stat only)

H → γγ

(*)

H → ZZ

→ 4l

0

121 122 123 124 125 126 127 128 129

m H [GeV]

◮ Compatibility of the two measurements

(H → γγ & H → ZZ → 4l) at the 1.5%

(2.4σ) level.

◮ Compatibility increases to 8% with

alternative treatment of syst. uncertainties



Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 82


Higgs properties: σ × BR and couplings

σ × BR and coupling strengths

◮ Production cross sections × Branching ratios

considered for different analysis channels

◮ Relative coupling strength to bosons (κ V ) and

fermions (κ F )

◮ Measurements are consistent with SM

◮ More statistics and higher LHC energy

(13-14 TeV) in 2015 will provide more severe

constraints

× B/B SM

µ

VBF+VH

10

8

6

4

2

0

­2

m H

= 125.5 GeV

ATLAS

­1

s = 7 TeV ∫Ldt = 4.6­4.8 fb

­1

s = 8 TeV ∫Ldt = 20.7 fb

H → γγ

H → ZZ* → 4l

H → WW* → lνlν

Standard Model

Best fit

68% CL

95% CL

0 0.5 1 1.5 2 2.5 3 3.5 4

µ × B/B

ggF+ttH SM

s

= 7 TeV, L ≤

-1

5.1 fb

s

= 8 TeV, L ≤

-1

19.6 fb

κ V

CMS Preliminary

68% CL

95% CL

κ f

λ WZ

λ du

λ lq

κ g

p

SM

p

SM

p

SM

p

SM

= 0.37

= 0.41

= 0.39

= 0.49

κ γ

p

SM

= 0.23

BR BSM

p

SM

= 0.41

0 0.5 1 1.5 2 2.5

parameter value

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 83


Phenomenology of Supersymmetry

Supersymmetric extension of the Standard Model

+#1

◮ To each SM particle corresponds a supersymetric particle with identical gauge

quantum numbers but spin differing by 1/2

◮ Elegant way to solve fine tuning problem (allows unification of gauge couplings)

◮ Offers & a dark matter candidate ' () (LSP)


& ) &*+)

$,"

SM particles

Supersymmetric particles


Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 84


Phenomenology of Supersymmetry


Production of supersymmetric particles


◮ Highest cross sections:


gluino and squark pair production


◮ Subdominant cross sections:


Chargino/neutralino #$%

production !&"

(electroweak production)

#$) 0( 7 0% " '(


%

Natural

"

solution


of hierarchy

'( '%' 2 65


' '( problem via 78%6% SUSY requireslight

2 '% 5

3rd generation sparticles


% '()

'% )0( !" #

*+


12&3415

High E

T jets

Neutralino decay into

$!"

SM , '(- fermion -. pair + LSPν






E,(*9

T

miss due to undetected LSP’s




% !

" '()

6 '% )


Chargino

υ *+

decay into

1+(

& ' & ()

, SM'(- fermion-/-&

pair

+ LSP

Lars Sonnenschein, RWTH Aachen, III. ,1 Phys. Inst. '% A Recent Results % from the '% LHC

85


Search for new physics in same-sign dilepton and jet events

Same sign dileptons

+ jets at 8 TeV

◮ High and low l

p T regions

◮ Multiple MET

search regions

◮ b-tagged jet

event classes

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 86


Search for electroweak production of ˜χ ± , ˜χ 0 , and ˜l

Search for electroweak production of charginos, neutralinos, and sleptons

using leptonic final states at 8 TeV

(

◮ Model slepton mass parameterisation: m˜l

= m˜χ 0 + ±

1

x˜l

m˜χ

− m˜χ 0

),

0

1

x˜l

= 0.5

◮ Different lepton categories: 3l, 4l, SS, OS l’s + jets

◮ Opposite-Sign Same-Flavour Z veto

WZ/ZZ + MET final state with 2 l and 2 jets

˜χ ± , ˜χ 0 production limits summary

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 87


Many more SUSY analyses available

Further recent analyses

◮ Search for pair-produced top squarks decaying into charm quarks and the lightest

neutralinos at 8 TeV (ATLAS)

◮ Searches for direct scalar top pair production in final states with two leptons using the

stransverse mass variable and a multivariate analysis technique at 8 TeV (ATLAS)

◮ Search for stop in R-parity-violating supersymmetry with three or more leptons and

b-tags at 8 TeV (CMS)

◮ Search for supersymmetry using the shape of the HT and MET, and b-jet multiplicity

distributions at 8 TeV (CMS)

◮ Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, 3,

or 4 b jets at 8 TeV (CMS)

◮ Search for new physics in events with same-sign dileptons and jets in pp collisions at

8 TeV (CMS)

◮ Search for electroweak production of charginos, neutralinos, and sleptons using leptonic

final states in pp collisions at 8 TeV (CMS)

◮ Search for New Physics in Multijets and Missing Momentum Final State at 8 TeV (CMS)

◮ Interpretation of Searches for Supersymmetry at 7 TeV (CMS)

◮ Inclusive search for supersymmetry using the razor variables at 7 TeV (CMS)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 88


CMS SUSY exclusion limits summary

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 89


ATLAS vector-like quark exclusion limits summary

BR(T → Ht)

1

0.8

0.6

0.4

0.2

Forbidden

= 350 GeV

m T

1

0.8

0.6

0.4

0.2

Forbidden

= 400 GeV

m T

1

0.8

0.6

0.4

0.2

Forbidden

= 450 GeV

m T

ATLAS Preliminary

Status: Lepton­Photon 2013

s

= 8 TeV,


­1

L dt = 14.3 fb

95% CL exp. excl. 95% CL obs. excl.

Ht+X [ATLAS­CONF­2013­018]

Same­Sign [ATLAS­CONF­2013­051]

Zb/t+X [ATLAS­CONF­2013­056]

0

0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8 1

Wb+X [ATLAS­CONF­2013­060]

SU(2) (T,B) doub.

SU(2) singlet

1

0.8

Forbidden

= 500 GeV

m T

1

0.8

Forbidden

= 550 GeV

m T

1

0.8

Forbidden

= 600 GeV

m T

1

0.8

Forbidden

= 650 GeV

m T

0.6

0.6

0.6

0.6

0.4

0.4

0.4

0.4

0.2

0.2

0.2

0.2

0

0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8 1

1

0.8

Forbidden

= 700 GeV

m T

1

0.8

Forbidden

= 750 GeV

m T

1

0.8

Forbidden

= 800 GeV

m T

1

0.8

Forbidden

= 850 GeV

m T

0.6

0.6

0.6

0.6

0.4

0.4

0.4

0.4

0.2

0.2

0.2

0.2

0

0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8 1

BR(T → Wb)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 90


Search for excited electrons and muons

Search for excited electrons and muons at 8 TeV

◮ Electron and muon channels:

pp → ll ∗ → llγ (l ∗ → lγ, l = e, µ)

◮ Production via contact interactions

◮ Limits on production cross section ×BR

◮ Probing m l ∗ up to 2.2 TeV

◮ and compositeness scale Λ up to 10 TeV

pairs / 50 GeV


4

10

3

10

2

10

10

ATLAS

­1

L dt = 13 fb


s = 8 TeV

Data 2012

Z + γ

Z + jets, diboson, tt, W+γ+jets

Bkg. uncertainty

(m , Λ) = (0.2, 10) TeV

e*

(m , Λ) = (0.5, 10) TeV

e*

(m , Λ) = (0.8, 10) TeV

e*

σ B(e* → eγ) [fb]

2

10

10

ATLAS

­1


L dt = 13 fb

s = 8 TeV

Observed limit

Expected limit

Expected ±1 σ

Expected ±2 σ

Λ = 2.5 TeV

Λ = 5 TeV

Λ = 10 TeV

Λ [TeV]

20

18

16

14

12

10

8

ATLAS

­1


L dt = 13 fb

s = 8 TeV

Observed limit

Expected limit

Expected ±1σ

m e*

> Λ

­1

ATLAS 2 fb ,

­1

CMS 5 fb ,

s

s

= 7 TeV

= 7 TeV

1

­1

10

1

6

4

2

100 200 300 400 500 600 700 800 900

m eγ

[GeV]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

[TeV] m e*

0.5 1 1.5 2 2.5 3

[TeV] m e*

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 91


T

T

Search for dijet resonance associated with W /Z

Entries / 10 GeV

Data/Bkg

100

50

3

×10


­1

L dt = 20.3 fb

s = 8 TeV

ATLAS Preliminary

W→ l(e, µ)ν + ≥ 2 jets

Data

W/Z + jets

Multijet

tt+single­t

ρ (400) → W π T (240) X10

T

ρ (290) → W π T (160) X10

T

0

0 100 200 300 400

1.1

1.0

0.9

Search for a dijet resonance produced in association

with a leptonically decaying W or Z boson at 8 TeV

◮ ϱ T → W π T , ϱ T → Zπ T ; π T → q¯q

◮ W , Z electron and muon channels

◮ Low Scale TechniColor interpretation

◮ Probed dijet resonance 130 < m πT

< 300 GeV

0 100 200 300 400

m jj [GeV]

σ × BR [pb]

6

4

2

±,0

LSTC ρ

T

0,±

→ W π

T

assuming m

ρ

Observed 95% Upper Limit

Expected 95% Upper Limit

+1 Sigma Uncertainty

+2 Sigma Uncertainty

­1

∫ L dt = 20.3 fb

s = 8 TeV

ATLAS Preliminary

=3/2*m πT +55 GeV

σ × BR [pb]

1

0.8

0.6

0.4

LSTC ρ±

T


±

→ Z π T

assuming m

ρ

Observed 95% Upper Limit

Expected 95% Upper Limit

+1 Sigma Uncertainty

+2 Sigma Uncertainty

=3/2*m π +55 GeV

T

­1

L dt = 20.3 fb

s = 8 TeV

ATLAS Preliminary

0.2

0

150 200 250 300

M πT

[GeV]

0

150 200 250 300

M πT

[GeV]

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 92


Search for WW resonances in l + ν + jet final state

Search for new resonances decaying

to WW → lνq¯q at 8 TeV

◮ Exploiting jet sub-structure to

discriminate signal from background of

highly boosted W → (q¯q) jet

◮ Requiring invariant jet mass close to m W

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 93


Many more exotic analyses available

Further recent analyses

◮ Search for excited electrons and muons at 8 TeV (ATLAS)

◮ Search for a dijet resonance produced in association with a leptonically decaying W or Z

boson at 8 TeV (ATLAS)

◮ Search for New Phenomena in Events with Three Charged Leptons at 8 TeV (ATLAS)

◮ Search for high-mass ditau resonances decaying in the fully hadronic final state at 8 TeV

(ATLAS)

◮ Search for Heavy Stable Charged Particles at 8 TeV (CMS)

◮ Search for long-lived neutral particles decaying to dijets at 8 TeV (CMS)

◮ Search for Three-Jet Resonances In Multijet Final States at 8 TeV (CMS)

◮ Search for heavy resonances in the W /Z-tagged dijet mass spectrum at 8 TeV (CMS)

◮ Search for a W or techno-rho decaying into W + Z at 8 TeV (CMS)

◮ Search for New Physics in the Paired Dijet Mass Spectrum at 7 TeV (CMS)

◮ Inclusive search for top partners in single- and multiple-lepton final states at 8 TeV

(CMS)

◮ Search for baryon number violating top-quark decay at 8 TeV (CMS)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 94


ATLAS exotics exclusion limits summary

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)

LQ V' CI Extra dimensions

New

quarks

Other Excit.

ferm.

Large ED (ADD) : monojet + E T ,miss

Large ED (ADD) : monophoton + E T ,miss

Large ED (ADD) : diphoton & dilepton, m γ γ / ll

UED : diphoton + E T ,miss

1

S /Z 2 ED : dilepton, m ll

RS1 : dilepton, m ll

RS1 : WW resonance, m T ,lν lν

Bulk RS : ZZ resonance, m lljj

RS g → tt (BR=0.925) : tt → l+jets, m

KK

tt

ADD BH (M TH /M D =3) : SS dimuon, N ch. part.

ADD BH (M TH /M D =3) : leptons + jets, Σp

T

Quantum black hole : dijet, F χ

(m jj )

qqqq contact interaction : χ(m )

jj

qqll CI : ee & µµ, m

ll

uutt CI : SS dilepton + jets + E T ,miss

Z' (SSM) : m ee/µµ

Z' (SSM) : m ττ

Z' (leptophobic topcolor) : tt → l+jets, m

tt

W' (SSM) : m T,e/µ

W' (→ tq, g =1) : m R tq

W' R (→ tb, LRSM) : m

tb

Scalar LQ pair (β=1) : kin. vars. in eejj, eνjj

Scalar LQ pair (β=1) : kin. vars. in µµjj, µνjj

Scalar LQ pair (β=1) : kin. vars. in ττjj, τνjj

th

4 generation : t't'→ WbWb

4th generation : b'b' → SS dilepton + jets + E

T ,miss

Vector-like quark : TT→ Ht+X

Vector-like quark : CC, m lν q

Excited quarks : γ-jet resonance, m

Excited quarks : dijet resonance, m γ jet

jj

Excited b quark : W-t resonance, m Wt

Excited leptons : l-γ resonance, m


Techni-hadrons (LSTC) : dilepton, m ee/µµ

Techni-hadrons (LSTC) : WZ resonance (lνll), m

WZ

Major. neutr. (LRSM, no mixing) : 2-lep + jets

±

Heavy lepton N (type III seesaw) : Z-l resonance, m

±±

±±

Zl

HL

(DY prod., BR(H →ll)=1) : SS ee (µµ), m

L

ll

Color octet scalar : dijet resonance, m jj

Multi-charged particles (DY prod.) : highly ionizing tracks

Magnetic monopoles (DY prod.) : highly ionizing tracks

-1

L=4.7 fb , 7 TeV [1210.4491]

-1

L=4.6 fb , 7 TeV [1209.4625]

-1

L=4.7 fb , 7 TeV [1211.1150]

-1

L=4.8 fb , 7 TeV [1209.0753]

-1

L=5.0 fb , 7 TeV [1209.2535]

-1

L=20 fb , 8 TeV [ATLAS-CONF-2013-017]

-1

L=4.7 fb , 7 TeV [1208.2880]

-1

L=7.2 fb , 8 TeV [ATLAS-CONF-2012-150]

-1

L=4.7 fb , 7 TeV [1305.2756]

-1

L=1.3 fb , 7 TeV [1111.0080]

-1

L=1.0 fb , 7 TeV [1204.4646]

-1

L=4.7 fb , 7 TeV [1210.1718]

-1

L=4.8 fb , 7 TeV [1210.1718]

-1

L=5.0 fb , 7 TeV [1211.1150]

-1

L=14.3 fb , 8 TeV [ATLAS-CONF-2013-051]

-1

L=20 fb , 8 TeV [ATLAS-CONF-2013-017]

-1

L=4.7 fb , 7 TeV [1210.6604]

-1

L=14.3 fb , 8 TeV [ATLAS-CONF-2013-052]

-1

L=4.7 fb , 7 TeV [1209.4446]

-1

L=4.7 fb , 7 TeV [1209.6593]

-1

L=14.3 fb , 8 TeV [ATLAS-CONF-2013-050]

-1

L=1.0 fb , 7 TeV [1112.4828]

-1

L=1.0 fb , 7 TeV [1203.3172]

-1

L=4.7 fb , 7 TeV [1303.0526]

-1

L=4.7 fb , 7 TeV [1210.5468]

-1

L=14.3 fb , 8 TeV [ATLAS-CONF-2013-051]

-1

L=14.3 fb , 8 TeV [ATLAS-CONF-2013-018]

-1

L=4.6 fb , 7 TeV [ATLAS-CONF-2012-137]

-1

L=2.1 fb , 7 TeV [1112.3580]

-1

L=13.0 fb , 8 TeV [ATLAS-CONF-2012-148]

-1

L=4.7 fb , 7 TeV [1301.1583]

-1

L=13.0 fb , 8 TeV [ATLAS-CONF-2012-146]

-1

L=5.0 fb , 7 TeV [1209.2535]

-1

L=13.0 fb , 8 TeV [ATLAS-CONF-2013-015]

-1

L=2.1 fb , 7 TeV [1203.5420]

-1

L=5.8 fb , 8 TeV [ATLAS-CONF-2013-019]

245 GeV

-1

L=4.7 fb , 7 TeV [1210.5070]

-1

L=4.8 fb , 7 TeV [1210.1718]

-1

L=4.4 fb , 7 TeV [1301.5272]

-1

L=2.0 fb , 7 TeV [1207.6411]

1.93 TeV

4.37 TeV

M D (δ=2)

(δ=2)

4.18 TeV M S (HLZ δ=3, NLO)

-1

1.40 TeV Compact. scale R

-1

4.71 TeV M KK ~ R

2.47 TeV Graviton mass (k/M Pl = 0.1)

1.23 TeV Graviton mass (k/M Pl = 0.1)

850 GeV Graviton mass (k/M Pl = 1.0) ∫ Ldt

2.07 TeV g mass

KK

1.25 TeV M D (δ=6)

1.5 TeV M D (δ=6)

4.11 TeV M D (δ=6)

7.6 TeV Λ

13.9 TeV Λ (constructive int.)

3.3 TeV Λ (C=1)

2.86 TeV Z' mass

1.4 TeV Z' mass

1.8 TeV Z' mass

2.55 TeV W' mass

430 GeV W' mass

1.84 TeV W' mass

st

660 GeV 1 gen. LQ mass

nd

685 GeV 2 gen. LQ mass

rd

534 GeV 3 gen. LQ mass

656 GeV t' mass

720 GeV b' mass

790 GeV T mass (isospin doublet)

1.12 TeV VLQ mass (charge -1/3, coupling κ qQ = ν/m Q )

2.46 TeV q* mass

3.84 TeV q* mass

870 GeV b* mass (left-handed coupling)

2.2 TeV l* mass (Λ = m(l*))

850 GeV ρ T

/ω T mass (m(ρ /ω T ) - m(π T ) = M )

T

W

920 GeV ρ mass (m(ρ ) = m(π T ) + m W, m(a ) = 1.1 m(ρ ))

T

T

T

T

1.5 TeV N mass (m(W ) = 2 TeV)

R

±

N mass (|V | = 0.055, |V µ | = 0.063, |V τ | = 0)

e

±±

409 GeV HL

mass (limit at 398 GeV for µµ)

1.86 TeV Scalar resonance mass

490 GeV mass (|q| = 4e)

862 GeV mass

M D

ATLAS

Preliminary

-1

= ( 1 - 20) fb

s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena shown

-1

10 1 10

2

10

Mass scale [TeV]

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 95


Many more heavy ion analyses available

Further recent analyses

◮ Azimuthal angle dependence of inclusive jet yields in Pb − Pb collisions

at √ s NN = 2.76 TeV (ATLAS)

◮ Distributions of event-by-event flow harmonics in Pb − Pb collisions

at √ s NN = 2.76 TeV (ATLAS)

◮ Z → e + e − /µ + µ − production in Pb − Pb collisions

at √ s NN = 2.76 TeV (CMS)

◮ Dijet momentum balance and pseudorapidity distributions in p − Pb

collisions at √ s NN = 5.02 TeV (CMS)

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 96


Phase 1 Upgrade of CMS Level-1 Trigger

bunch spacing = 50 ns

√ s = 14 TeV, L = 1.1 × 10 34 cm 2 s 1

bunch spacing = 25 ns

√ s = 14 TeV, L = 2.2 × 10 34 cm 2 s 1

N pile-up = 50

N pile-up = 50

Expected performance of Phase 1 Upgrade of CMS Level-1 Trigger

◮ Original LHC design goal: L = 1 × 10 34 cm −2 s −1 , 25 ns bunch spacing,

∼25 simultaneous collisions (pile-up)

LHC luminosity and pile-up will more than double

⇒ L1 trigger performance needs to be improved

⇒ Replacement of calorimeter electronics, muon and global trigger systems

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 97


Level-1 Trigger upgrade SUSY physics performance

50 ns

√ s = 14 TeV, L = 1.1 × 10 34 cm 2 s 1

N pile-up = 50

25 ns

√ s = 14 TeV, L = 2.2 × 10 34 cm 2 s 1

N pile-up = 50

Expected SUSY physics performance of Phase 1 Upgrade of CMS Level-1 Trigger

◮ Signal efficiency improvements for

direct stop-quark production,

decaying through both R-parity conserving and

R-parity violating channels

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 98


High Luminosity - LHC Higgs self coupling

Higgs Self-­‐Coupling

Probing trilinear Higgs self-coupling λ HHH by means of Higgs pair production

◮ Destructive interference with HH pair production via top loop

• Derive trilinear self-­‐coupling λ HHH from Higgs pair produc:on

◮ HH cross – Destruc:ve section increases interference from with34HH fb pair to produc:on 71 fb if λ HHH via top = loop 0

◮ Can be – probed HH crossinsec:on manyincreases channels from since 34 to m H 71= Y 126 if λ HHH

GeV =0

• Many channels to pursue, since m H =125 GeV

pp → HH HH → b¯bγγ ! b¯bγγ

◮ Tight

Tight

m γγ

m

cut

γγ cut

and

and

b-tag

b-­‐tag

p T

pT

cut

cut



All backgrounds

leave mostly

highly

H background

reduced

except t¯tH

◮ S/ √ S/√B~3 B ≃ 3 for for3000 3000 fb> −1 -­‐1

◮ Expecting additional channels (e.g.

b¯bττ) • Expect that addi:onal channels

◮ 2 experiments (bbττ) andcombined 2 experiments ⇒ 30%

uncertainty combined on λcould HHH measurement lead to 30%

couldmeasurement be reached at of HL-LHC λ HHH at HL-­‐LHC





J. Nielsen (UCSC) Snowmass Energy Fron:er -­‐-­‐ 2013/07/01 18

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 99





ATL-­‐PHYS-­‐PUB-­‐2013-­‐001


High Luminosity - LHC SUSY reach

χ

∼ 0

2

1

χ

∼ 0

2

1

HL-LHC 300 fb −1 and 3000 fb −1 SUSY projections:

Expected 95% C.L. limits and 5σ discovery reach

◮ Simplified squark-gluino model with massless

neutralino


˜χ ± → W (∗) and neutralinos ˜χ 0 2 → ˜χ0 1 + Z

◮ ˜t/˜χ 0 1 mass plane assuming ˜t → t ˜χ 0 1 or

˜t → b ˜χ ± 1 , ˜χ± 1 → W ˜χ0 1


[GeV]

m g ~



Mass [GeV]

χ

∼0

1

4000

3500

✲3000

2500

2000

Squark­gluino grid, m

LSP

= 0.

1/2

s = 14 TeV MET/ HT>15GeV

1500

2000 2500 3000 3500 4000

❅ ❅❘

700

600

500

400

300

200

100

Z axis

Zn, sys=30%

ATLAS Preliminary (simulation)

σ

[pb]

­1

3000 fb discovery reach

­1

300 fb discovery reach

­1

3000 fb exclusion 95% CL

­1

300 fb exclusion 95% CL

m~

q [GeV]

ATLAS Preliminary (simulation)

s=14 TeV

7e­03

­1

3000 fb , 95% exclusion limit

1e­02 7e­03

­1

3000 fb , 5σ discovery reach

1e­02 1e­02 7e­03

­1

300 fb , 95% exclusion limit

­1

2e­02 1e­02 1e­02 7e­03

300 fb , 5σ discovery reach

3e­02 2e­02 1e­02 1e­02 7e­03

4e­02 3e­02 2e­02 1e­02 1e­02 7e­03

7e­02 4e­02 3e­02 2e­02 1e­02 1e­02 7e­03

1e­01 7e­02 4e­02 3e­02 2e­02 1e­02 1e­02 7e­03

2e­01 1e­01 7e­02 4e­02 3e­02 2e­02 1e­02 1e­02 7e­03

4e­01 2e­01 1e­01 7e­02 4e­02 3e­02 2e­02 1e­02 1e­02 7e­03

7e­01 4e­01 2e­01 1e­01 7e­02 4e­02 3e­02 2e­02 1e­02 1e­02 7e­03

2e+00 7e­01 4e­01 2e­01 1e­01 7e­02 4e­02 3e­02 2e­02 1e­02 1e­02 7e­03

5e+00 2e+00 7e­01 4e­01 2e­01 1e­01 7e­02 4e­02 3e­02 2e­02 1e­02 1e­02 7e­03

100 200 300 400 500 600 700 800

∼±

∼0

χ and χ Mass [GeV]

1 2

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 100

­2

10

­3

10

­4

10

­5

10

­6

10

1

­1

10

­2

10

­3

10

σ [pb]

­> WZ = 100%

cross section (pb), χ

∼ +

pp ­> χ

∼ +


Events / Bin

HL-LHC dilepton and t¯t resonances

9

10

8

10

7

10

6

10

5

10

4

10

3

10

2

10

10

1

ATLAS Preliminary

­1

∫ (Simulation)

L dt = 3000 fb

*

Z/γ →ll

5 TeV Z’

­1

10

0.06 0.1 0.2 0.3 1 2 3 4 5 6 7

σ B [pb]

Probing Z ′ (assuming SM coupling)

at highest scales

ll events

10

1

­1

10

­2

10

­3

10

­4

10

­5

10

­6

10

­7

10


­1

L dt = 3000fb

ATLAS Preliminary

(Simulation)

Z’→ ll

[TeV] m ll

Expected limit

Expected ± 1σ

Expected ± 2σ

s = 14 TeV

4000 6000 8000 10000

m Z’ [GeV]

◮ Direct search for

resonances in ll

inv. mass

spectrum

◮ Muon channel

shown here.

Electron channel

is similar

t¯t events

◮ Top quark

signature tagged

with hadronic

top jet (anti-k T ,

R = 1.0)

◮ Resonance mass

from leptons +

jets channel

Events / 400 GeV

Probing g KK or topcolor Z ′ (narrow)

at highest scales

7

10

ATLAS Preliminary

t t

6

10

­1

L dt = 3000 fb W+jets

∫ (Simulation)

σ B [pb]

5

10

4

10

3

10

2

10

10

1

5

10

4

10

3

10

2

10

­1

10

­2

10

­3

10

­4

10

4 TeV g

kk

0 1 2 3 4 5 6

10

1


­1

L dt = 3000fb

ATLAS Preliminary

(Simulation)

m [TeV]

tt

g /g = ­0.20

qqg s

KK

Expected limit

Expected ± 1σ

Expected ± 2σ

g → t t

KK

s = 14 TeV

3000 4000 5000 6000 7000 8000 9000 10000

m g [GeV]

KK

Lars Sonnenschein, RWTH Aachen, III. Phys. Inst. A Recent Results from the LHC 101

More magazines by this user
Similar magazines