11.01.2015 Views

Dispersion of the luminosity distance as a cosmological probe

Dispersion of the luminosity distance as a cosmological probe

Dispersion of the luminosity distance as a cosmological probe

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Dispersion</strong> <strong>of</strong> <strong>the</strong> <strong>luminosity</strong> <br />

<strong>distance</strong> <strong>as</strong> a <strong>cosmological</strong> <strong>probe</strong> <br />

Ido Ben-­‐Dayan <br />

DESY <br />

Cambridge, Cosmo 2013 <br />

Collaborators: Maurizio G<strong>as</strong>perini, Tigran <br />

Kalaydzhyan, Giovanni Marozzi, Fabien Nugier, <br />

Gabriele Veneziano.


Outline <br />

! Current status <strong>of</strong> power spectrum me<strong>as</strong>urements <br />

! New <strong>probe</strong>: Lensing <strong>of</strong> Supernovae Type Ia <br />

1. Average and dispersion <strong>of</strong> <strong>the</strong> <strong>luminosity</strong> redshift <br />

relation <br />

2. Lensing dispersion (Hui & Green, Dodelson et al., <br />

Amendola et al., Jonsson et al., Kronborg et al., March et <br />

al.) <br />

3. Constraints from current data.


Primordial Power <br />

Spectrum


Planck Me<strong>as</strong>urements <br />

! Even with PLANCK, Ly-­‐alpha, etc. only <strong>probe</strong> ~8.5 e-­folds<br />

out <strong>of</strong> 60. <br />

! Few observables, huge degeneracy between <br />

models. <br />

P prim. (k) =A s<br />

✓ k<br />

k 0<br />

◆ ns (k 0 ) 1+1/2↵(k 0 )ln(k/k 0 )+1/6 (k 0 )(ln(k/k 0 )) 2<br />

The power spectrum is <strong>the</strong> actual obsevrable and we <br />

need to me<strong>as</strong>ure it for <strong>as</strong> many e-­‐folds possible!


Example: “string vs. <br />

field <strong>the</strong>ory” <br />

1.0<br />

0.9<br />

PLANCK<br />

PIXIE<br />

n s<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

Accidental<br />

n⩵3<br />

n⩵4<br />

n⩵6<br />

n⩵10<br />

0 10 20 30 40 50<br />

N<br />

V ( )=⇤ 4 (1 a 1 a n n )<br />

1309.xxxx, IBD, S. Jing <br />

C. Wieck and A. Westphal


Spectral Distortions <br />

! We can me<strong>as</strong>ure deviations <strong>of</strong> <strong>the</strong> CMB from a black <br />

body spectrum – MODEL INDEPENDENT <br />

⇒ Can be used to constrain <strong>the</strong> primordial power <br />

spectrum for ! (1


Current and Future


d L -­‐z relation <br />

• Gauge inv. Light-­‐cone avg. procedure. 2 nd <br />

order pert. <strong>the</strong>ory, NO DIVERGENCES! <br />

• kUV=30h Mpc -­‐1 , WMAP data. <br />

sm<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

PLANCK DATA <br />

• Flux is minimally bi<strong>as</strong>ed. <br />

• The dispersion is large ~ 2-­‐10% ΛCDM, <strong>of</strong> <strong>the</strong> <br />

critical density depending on <strong>the</strong> spectrum. <br />

Scatter is mostly from <strong>the</strong> LC average. It <br />

gives <strong>the</strong>oretical explanation to part <strong>of</strong> <strong>the</strong> <br />

scatter <strong>of</strong> SN me<strong>as</strong>urements. At z>0.3 <br />

dominated by lensing. <br />

IBD, M. G<strong>as</strong>perini, G. Marozzi, F. Nugier, G. <br />

Veneziano <br />

m-m M<br />

0.02<br />

0.00<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

0.6 0.8 1.0 1.2 1.4 1.6<br />

PLANCK DATA <br />

z<br />

0.02 0.05 0.10 0.20 0.50 1.00 2.00<br />

z


Lensing <strong>Dispersion</strong> <strong>of</strong> <br />

SNIa <br />

! Current data h<strong>as</strong> SN up to z~1.3 <br />

total<br />

µ (z apple 1) < 0.12<br />

! Model dependent-­‐ LCDM and HaloFit model. (Smith <br />

et al. 2003, Takah<strong>as</strong>hi et al. 1,2 2012) <br />

! An overall upper bound on dispersion. Any <br />

enhancement <strong>of</strong> <strong>the</strong> power spectrum will incre<strong>as</strong>e <br />

<strong>the</strong> dispersion. WHAT’S THE CORRECT SPECTRUM <br />

s Z dk<br />

µ(z) ' 0.7<br />

˜ ⌘(z) =<br />

Z z<br />

0<br />

✓ ◆ 3 k<br />

k P (k, z) ˜ ⌘(z)<br />

3<br />

H 0<br />

dy<br />

p<br />

⌦m0 (1 + y) 3 +⌦ ⇤0<br />

µ(z = 1) ' 0.47s Z<br />

dkk 2 P (k, 1) ⌘ 0.47 p T 2 (P )


200<br />

100<br />

50<br />

Power spectrum <br />

! HaloFit cannot be trusted for large running or <br />

running <strong>of</strong> running. <br />

! Treat F(k,z)=P NL /P L <strong>as</strong> a transfer function, at z=1. <br />

! 2 methods: 1) step function 2) interpolated function. <br />

Both extremely underestimating. <br />

! kUV=320h. kUV=30h degrades results but still cuts out <br />

parameter space allowed by PLANCK. <br />

P prim. (k) =A s<br />

✓ k<br />

k 0<br />

◆ ns (k 0 ) 1+1/2↵(k 0 )ln(k/k 0 )+1/6 (k 0 )(ln(k/k 0 )) 2<br />

20<br />

10<br />

5<br />

2<br />

1<br />

0.01 0.1 1 10 100<br />

T 2 (P )=<br />

T 2 (P )=<br />

Z kUV<br />

H 0<br />

dkk 2 P L (1 + bH(k k NL ))<br />

Z kUV<br />

H 0<br />

dkk 2 P L (k)(1 b + bH(k k NL )F (k, z))


1-­‐b+b F(k,z) 1309.xxxx <br />

Region <strong>of</strong> constraints Hs m > 0.12L


1+b H(k-­‐k NL ) 1309.xxxx <br />

Region <strong>of</strong> constraints Hs m > 0.12L


Summary <br />

! Demonstrated <strong>the</strong> shortcomings <strong>of</strong> current inflationary <strong>probe</strong>s. <br />

! Calculation <strong>of</strong> <strong>the</strong> d L -­‐z relation, average and dispersion, useful for parameter <br />

estimation. <br />

! 2 New and extremely competitive <strong>probe</strong>s: <br />

1. Spectral Distortions – Model independent, current A


From Interpolation <br />

0.08<br />

Region <strong>of</strong> constraints Hs m > 0.12L<br />

0.06<br />

Running <strong>of</strong> Running d 2 nsêdlnk 2<br />

0.04<br />

0.02<br />

0.00<br />

-0.02<br />

-0.04<br />

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06<br />

Running dn s êdlnk


From Step <br />

0.08<br />

Region <strong>of</strong> constraints Hs m > 0.12L<br />

0.06<br />

Running <strong>of</strong> Running d 2 nsêdlnk 2<br />

0.04<br />

0.02<br />

0.00<br />

-0.02<br />

-0.04<br />

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06<br />

Running dn s êdlnk


Closer Look at <strong>the</strong> <br />

Lensing Integrand


LC Averaging <br />

! Useful for interpreting light-­‐like <br />

signals in <strong>cosmological</strong> <br />

observations. <br />

! Hyper-­‐surfaces using meaningful <br />

physical quantities: Redshift, <br />

temperature etc. <br />

! Observations are made on <strong>the</strong> <br />

light-­‐cone. Volume averaging <br />

give artefacts and <strong>the</strong> matching <br />

with data is not clear. <br />

! P<strong>as</strong>t attempts: Coley 0905.2442; <br />

R<strong>as</strong>anen 1107.1176, 0912.3370


Light Cone Averaging <br />

1104.1167 <br />

! A-­‐priori -­‐ <strong>the</strong> averaging is a geometric procedure, does not <br />

<strong>as</strong>sume a specific energy momentum tensor. <br />

The prescription is gauge inv., {field reparam. A-­‐>A’(A), V-­‐<br />

>V’(V)} and invariant under general coordinate <br />

transformation. A(x) is a time-­‐like scalar, V(x) is null. <br />

This gives a procedure for general space-­‐times.


Prescription Properties <br />

! Dynamical properties: Generalization <strong>of</strong> Buchert-­‐Ehlers <br />

commutation rule: <br />

! For actual physical calculations, use EFE/ energy momentum tensor <br />

for evaluation. Example: which gravitational potential to use in <br />

evaluating <strong>the</strong> dL-­‐z relation. <br />

! Averages <strong>of</strong> different functions give different outcome <br />

F(S) ≠ F S


GLC Metric and Averages <br />

! Ideal Observational Cosmology – Ellis et al. <br />

! Evaluating scalars at a constant redshift for a geodetic observer. <br />

~<br />

I(<br />

S,<br />

w = ∫<br />

I(<br />

S,<br />

w0<br />

, z)<br />

S = ;<br />

I(1,<br />

w , z)<br />

1+<br />

z =<br />

2<br />

a<br />

a<br />

0,<br />

z)<br />

d θ γ ( w0<br />

, z,<br />

θ ) S(<br />

w0<br />

, z,<br />

θ<br />

Υ<br />

Υ<br />

O<br />

S<br />

0<br />

~<br />

~<br />

);


Exact Result -­‐ Flux <br />

LC average <strong>of</strong> flux for any space-­‐time amounts to <strong>the</strong> <br />

area <strong>of</strong> <strong>the</strong> 2-­‐sphere! (JM subleading correction drops <br />

out) <br />

Φ =<br />

L<br />

4πd ; d (z) = (1+ 2 L z)2 d S<br />

; d 2 S<br />

≡ dS =<br />

L<br />

dΩ O<br />

γ<br />

sin θ<br />

γ = ρ 2 sinθ<br />

d s<br />

≡ ρ =<br />

∑<br />

l,m<br />

a lm<br />

(w 0<br />

, z s<br />

)Y lm<br />

(θ,ϕ)<br />

∫ d 2 θ γ = ∫ d 2 θρ 2 sinθ = ∑ a lm<br />

(w 0<br />

, z s<br />

) 2<br />

> a 2 00<br />

Anisotropies always “mimic” acceleration! <br />

l,m

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!