11.11.2012 Views

et al.

et al.

et al.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

How to Empower your Quantum Gas<br />

Tilman Esslinger ETH Zürich<br />

Funding: ETH, EU (ERC, NameQuam, Sc<strong>al</strong>a), QSIT, SNF<br />

www.quantumoptics.<strong>et</strong>hz.ch


Momentum dependent interaction - roton<br />

For dipolar gases: L. Santos, G.V. Shlyapnikov, and M. Lewenstein, PRL 90, 250403 (2003)<br />

Helium


Momentum dependent interaction - roton<br />

For dipolar gases: L. Santos, G.V. Shlyapnikov, and M. Lewenstein, PRL 90, 250403 (2003)


Bose-Einstein condensate<br />

N=150,000 atoms<br />

high-finesse optic<strong>al</strong> cavity<br />

length 178 µm<br />

Finesse 340,000<br />

related experiments: V. Vul<strong>et</strong>ic, D. Stamper-Kurn, J. Reichel, A. Hemmerich, C. Zimmermann


standing-wave pump laser<br />

atomic d<strong>et</strong>uning: far d<strong>et</strong>uned<br />

cavity d<strong>et</strong>uning: near resonant


Phase Transition<br />

K. Baumann <strong>et</strong> <strong>al</strong>., Nature 464, 1301 (2010)<br />

Theory: H. Ritsch, P. Domokos, I. Mekhov Exp. with therm<strong>al</strong> atoms: V. Vul<strong>et</strong>ic


(dynamic<strong>al</strong>)<br />

quantum phase<br />

transition<br />

coupling strength<br />

order param<strong>et</strong>er zero point motion potenti<strong>al</strong> energy<br />

spontaneous symm<strong>et</strong>ry<br />

breaking<br />

even<br />

odd


Cavity-­‐mediated atom-­‐atom interac0on<br />

(�k,�k)<br />

related: Münstermann <strong>et</strong> <strong>al</strong>. PRL 84, 4068 (2000), J. Asboth at <strong>al</strong>. PRA 70, 013414 (2004)


p z<br />

p x , p z = 0, 0<br />

Two-­‐Mode Picture<br />

p x<br />

(�k,�k)<br />

p x , p z<br />

= � ±�k,±�k


Excita0on spectrum – mode soPening<br />

see <strong>al</strong>so: C. Emary <strong>et</strong> <strong>al</strong>. 90, 044101 (2003), D. Nagy <strong>et</strong> <strong>al</strong>. EPJD 48,127 (2008)…


probe beam<br />

Probing the excita0on spectrum<br />

0.5ms<br />

cavity output:<br />

-­‐ probe light<br />

-­‐ Bragg-­‐scaTered light


Probing the excita0on spectrum<br />

probe light<br />

Bragg scaTered<br />

light<br />

R. MoTl, F. Brennecke, K. Baumann, R. Landig, T. Donner, T. Esslinger, arXiv:1203.1322 (to be published in Science)


Excita0on spectrum<br />

norm<strong>al</strong> phase sr. phase<br />

shading: ab-­‐ini,o c<strong>al</strong>cula0on including collisions and trapping


Suscep0bility


Quantum Simulator<br />

Quantum Gases ( 40 K)<br />

+<br />

Optic<strong>al</strong> Lattices<br />

See <strong>al</strong>so: Mainz/Munich, Hamburg, MIT,…


Band structures with topologic<strong>al</strong><br />

defects<br />

Topologic<strong>al</strong> defects: Dirac points<br />

Quantum gases in lattices with topologic<strong>al</strong> defects<br />

Excited bands:<br />

• 1D « Dirac point » (Weitz group, Bonn)<br />

S. Kling <strong>et</strong> <strong>al</strong>., Phys. Rev. L<strong>et</strong>t. 105, 215301 (2010)<br />

T. S<strong>al</strong>ger <strong>et</strong> <strong>al</strong>., Phys. Rev. L<strong>et</strong>t. 107, 240401 (2011)<br />

• Quadratic avoided band crossing (Hemmerich group, Hamburg)<br />

M. Ölschläger <strong>et</strong> <strong>al</strong>., arXiv:1110.3716 (2011)<br />

Honeycomb lattice: Dirac points in the lowest band<br />

• BEC in a honeycomb lattice (Segstock group, Hamburg)<br />

P. Soltan-Panahi <strong>et</strong> <strong>al</strong>., Nature Phys. 7, 434 (2011)<br />

P. Soltan-Panahi <strong>et</strong> <strong>al</strong>., Nature Phys. 8, 71 (2012)<br />

See <strong>al</strong>so: Dan Stamper-Kurn


An optic<strong>al</strong> lattice of tunable geom<strong>et</strong>ry<br />

� = 1064nm<br />

2<br />

2<br />

2<br />

V ( x,<br />

y)<br />

= V cos ( kx + θ / 2)<br />

+ VX<br />

cos ( kx)<br />

+ VY<br />

cos ( ky)<br />

+ 2α<br />

VXVY<br />

X<br />

S<strong>et</strong>up Optic<strong>al</strong> potenti<strong>al</strong><br />

Control displacement � by laser d<strong>et</strong>uning �#<br />

+<br />

X and Y<br />

X and Y<br />

X and Y<br />

cos( kx)<br />

cos( ky)


An optic<strong>al</strong> lattice of tunable geom<strong>et</strong>ry<br />

Chequerboard<br />

Dimer 1D chains<br />

Triangular Honeycomb<br />

V [E ]<br />

X R<br />

V =0<br />

X<br />

Square


Honeycomb lattice<br />

Re<strong>al</strong> space


Honeycomb lattice<br />

Reciproc<strong>al</strong> space<br />

Topologic<strong>al</strong>ly equiv<strong>al</strong>ent to regular hexagon<strong>al</strong> lattice


Probing the Dirac points<br />

vanishing density of states<br />

sm<strong>al</strong>l energy sc<strong>al</strong>es


trajectory 1<br />

trajectory 2<br />

Interband transitions<br />

E<br />

Stay in lowest band<br />

q x<br />

Transfer to 2 nd band<br />

E<br />

q x


q y<br />

Interband transitions: experiment<br />

Starting point: t=0 After a Bloch cycle: t=T B<br />

q x<br />

~60.000 spin-polarized 40 K atoms<br />

Non-interacting gas<br />

Lowest band of a honeycomb lattice<br />

E gap<br />

Transfer to 2 nd band at the<br />

position of the Dirac points<br />

Energy resolution:<br />

L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, arXiv1111.5020,<br />

Nature 483, 302–305 (2012).


Tuning the Dirac points<br />

Dirac points with ultracold atoms<br />

Mass<br />

Tunability<br />

Dirac point<br />

position<br />

Merging<br />

S.-L. Zhu, B. Wang, and L.-M. Duan, Phys. Rev. L<strong>et</strong>t. 98, 260402 (2007).<br />

B. Wunsch, F. Guinea, and F. Sols, New J. Phys. 10, 103027 (2008).<br />

G. Montambaux <strong>et</strong> <strong>al</strong>., Phys. Rev. B 80, 153412 (2009).<br />

K. L. Lee <strong>et</strong> <strong>al</strong>., Phys. Rev. A 80, 043411 (2009).


Breaking inversion symm<strong>et</strong>ry<br />

Higher band<br />

fraction<br />

�( )<br />

� =<br />

�( ) + �( )<br />

Tuning the mass of Dirac fermions


Moving Dirac points<br />

tune tunneling


q y<br />

E<br />

q x<br />

q y<br />

Merging Dirac points<br />

Dirac points Topologic<strong>al</strong> No Dirac points<br />

Transition<br />

Lifshitz transition, Sov. Phys. JETP 11, 1130 (1960)


V =1.8 E<br />

Y R<br />

The topologic<strong>al</strong> transition<br />

Gradient <strong>al</strong>ong x


V =1.8 E<br />

Y R<br />

The topologic<strong>al</strong> transition<br />

Gradient <strong>al</strong>ong y


The topologic<strong>al</strong> transition<br />

Experiment:<br />

L.-K. Lim <strong>et</strong> <strong>al</strong>.,<br />

arXiv:1201.1479 (2012)


S<strong>al</strong>omon, Kasevich, Phillips, Arimondo, Inguscio,…


VV<br />

µ eV<br />

??<br />

I<br />

I<br />

µ<br />

µ - eV µ


Conduction is transmission from one reservoir to another<br />

1927-1999<br />

µ L<br />

Landauer Finite resistance without scattering<br />

µ R


Left Reservoir<br />

N L<br />

30 µm<br />

Right Reservoir<br />

N R<br />

J. - P. Brantut, J. Meineke, D. Stadler, S. Krinner, and T. Esslinger:<br />

Conduction of Ultracold Fermions Through a Mesoscopic Channel<br />

ArXiv e-prints (2012).


Fermi battery<br />

reservoir channel reservoir<br />

N L<br />

N R<br />

J. - P. Brantut, J. Meineke, D. Stadler, S. Krinner, and T. Esslinger:<br />

Conduction of Ultracold Fermions Through a Mesoscopic Channel<br />

ArXiv e-prints (2012).


In-situ observation<br />

reservoir channel reservoir<br />

1 px ≈ 600 nm


Density difference – with/without current<br />

reservoir channel reservoir<br />

1 px ≈ 600 nm


Diffusive Channel<br />

channel<br />

See: Aspect, Inguscio, DeMarco


Conclusions<br />

��������������<br />

� �<br />

����<br />

�����<br />

����������<br />

���������������<br />

� �


Thanks !<br />

Funding: ETH, SNF (QSIT, MaNEP), EU (NameQuam), ERCadv<br />

Quantum Gases in<br />

Optic<strong>al</strong> Lattices<br />

L<strong>et</strong>icia Tarruell<br />

Daniel Greif<br />

Thomas Uehlinger<br />

Gregor Jotzu<br />

Lithium Microscope<br />

Torben Müller<br />

Jakob Meineke<br />

David Stadler<br />

Jean-Philippe Brantut<br />

Sebastian Krinner<br />

Henning Moritz<br />

BEC and Cavity<br />

Ferdinand Brennecke<br />

Kristian Baumann<br />

Rafael Mottl<br />

Tobias Donner<br />

Renate Landig<br />

Impact experiment<br />

Julian Leonard<br />

Laura Corman<br />

Moonjoo Lee<br />

Electronics<br />

Alexander Frank<br />

Administration<br />

Veronica Bürgisser<br />

Former Members:Silvan Leinss, Robert Jördens (NIST), Bruno Zimmermann, Henning Moritz (Hamburg), Christine Guerlin<br />

(Th<strong>al</strong>es), Niels Strohmaier (Hamburg),Thomas Bourdel (Orsay), Tobias Donner (Boulder), Kenn<strong>et</strong>h Günter (ENS, Paris), Michael<br />

Köhl (Cambrigde), Anton Öttl (Berkeley), Stephan Ritter (MPQ), Thilo Stöferle (IBM), Yosuke Takasu (U Kyoto)<br />

Theory: Eugene Demler, Lode Poll<strong>et</strong>, Vito Scarola, Sebastian Huber, Matthias Troyer, Hans-P<strong>et</strong>er Büchler, J. Blatter, E. Altman,<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!