22.01.2015 Views

Combining Fluid Loops in Electric Drive Vehicles - Department of ...

Combining Fluid Loops in Electric Drive Vehicles - Department of ...

Combining Fluid Loops in Electric Drive Vehicles - Department of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Integrated Vehicle Thermal Management –<br />

<strong>Comb<strong>in</strong><strong>in</strong>g</strong> <strong>Fluid</strong> <strong>Loops</strong> <strong>in</strong> <strong>Electric</strong> <strong>Drive</strong> <strong>Vehicles</strong><br />

John P. Rugh<br />

National Renewable Energy Laboratory<br />

May 15, 2013<br />

Project ID: APE052<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential, or otherwise restricted <strong>in</strong>formation.<br />

NREL is a national laboratory <strong>of</strong> the U.S. <strong>Department</strong> <strong>of</strong> Energy, Office <strong>of</strong> Energy Efficiency and Renewable Energy, operated by the Alliance for Susta<strong>in</strong>able Energy, LLC.


Overview<br />

Timel<strong>in</strong>e<br />

Project Start Date: FY11<br />

Project End Date: FY14<br />

Percent Complete: 50%<br />

Budget<br />

Total Project Fund<strong>in</strong>g (to date): $ 1225 K *<br />

Fund<strong>in</strong>g received prior to FY13: $ 750 K *<br />

Fund<strong>in</strong>g for FY13: $ 475 K *<br />

Partner In-K<strong>in</strong>d Cost Share: $ 300 K **<br />

* Shared fund<strong>in</strong>g between VTO programs: VSST, APEEM, ESS<br />

** Not <strong>in</strong>cluded <strong>in</strong> total<br />

Barriers (to EDVs)<br />

• Cost – cool<strong>in</strong>g loop components<br />

• Life – thermal effects on energy<br />

storage system (ESS) and advanced<br />

power electronics and electric<br />

motors (APEEM)<br />

• Weight – additional cool<strong>in</strong>g loops <strong>in</strong><br />

electric drive vehicles (EDVs)<br />

Partners<br />

• Interactions/ collaborations<br />

– Delphi<br />

– Halla Visteon Climate Control<br />

– Magna Powertra<strong>in</strong> - Eng<strong>in</strong>eer<strong>in</strong>g<br />

Center Steyr<br />

– Ford<br />

• Project Lead<br />

– National Renewable Energy<br />

Laboratory<br />

2


Relevance - The PHEV/EV Thermal Challenge<br />

1<br />

• Plug-<strong>in</strong> hybrid electric vehicles (PHEVs) and<br />

electric vehicles (EVs) have <strong>in</strong>creased vehicle<br />

thermal management complexity<br />

o Separate coolant loop for advanced power electronics<br />

and electric motors (APEEM)<br />

o Thermal requirements for energy storage systems<br />

(ESS)<br />

• Additional thermal components result <strong>in</strong> higher<br />

costs<br />

• Multiple cool<strong>in</strong>g loops lead to reduced range<br />

due to<br />

o Increased weight<br />

o Energy required to meet thermal<br />

requirements<br />

2<br />

3


Relevance<br />

• Support broad VTO efforts<br />

o<br />

o<br />

DOE VTO MYPP<br />

– “…..development <strong>of</strong> advanced vehicles and components to maximize vehicle<br />

efficiency …..”<br />

– This projects seeks to maximize vehicle efficiency by develop<strong>in</strong>g comb<strong>in</strong>ed<br />

cool<strong>in</strong>g loop solutions to reduce parasitic power, improved battery<br />

temperature, and <strong>in</strong>crease range.<br />

President’s EV-Everywhere Grand Challenge<br />

– A goal <strong>of</strong> EV Everywhere is to have automobile manufacturers produce a car<br />

with sufficient range that meets consumer’s daily transportation needs.<br />

– This project is research<strong>in</strong>g techniques to reduce vehicle thermal management<br />

power and improve range.<br />

• Task Objective<br />

o<br />

o<br />

Collaborate with <strong>in</strong>dustry partners to research the synergistic benefits<br />

<strong>of</strong> comb<strong>in</strong><strong>in</strong>g thermal management systems <strong>in</strong> vehicles with electric<br />

powertra<strong>in</strong>s<br />

Solve vehicle-level heat transfer problems, which will enable<br />

acceptance <strong>of</strong> electric drive vehicles<br />

4


Approach/Strategy<br />

• Research benefits <strong>of</strong> comb<strong>in</strong><strong>in</strong>g EV<br />

thermal management systems<br />

• Develop solutions to comb<strong>in</strong>e<br />

vehicle-level cool<strong>in</strong>g systems<br />

• Improve vehicle performance (fuel<br />

use or EV range) and reduce cost<br />

• Reduce APEEM coolant loop<br />

temperature (to less than 105°C)<br />

without requir<strong>in</strong>g a dedicated<br />

system<br />

3<br />

4<br />

5<br />

5


Overall Approach<br />

• Build a 1-D thermal model<br />

(us<strong>in</strong>g KULI s<strong>of</strong>tware)<br />

• Conduct bench tests to verify<br />

performance and identify<br />

viable hardware solutions<br />

• Collaborate with automotive<br />

manufacturers and suppliers<br />

on a vehicle-level project<br />

6<br />

6


Approach/Strategy - Integration Between Vehicle<br />

Technology Programs<br />

Hybrid <strong>Electric</strong> Systems<br />

Dave Howell – Team Lead<br />

Vehicle Systems<br />

Lee Slezak<br />

David Anderson<br />

Energy Storage<br />

Tien Duong<br />

Brian Cunn<strong>in</strong>gham<br />

Peter Faguy<br />

Power Electronics<br />

& <strong>Electric</strong> Motors<br />

Susan Rogers<br />

Steven Boyd<br />

7<br />

<strong>Electric</strong> range and fuel consumption<br />

Battery temperature and life<br />

APEEM temperatures<br />

7


Approach - Milestones<br />

Month<br />

/ Year<br />

Sept/12<br />

Sept/13<br />

Description<br />

Milestone<br />

• Identified advantages <strong>of</strong> comb<strong>in</strong><strong>in</strong>g fluid loops and strategies for<br />

bench test<strong>in</strong>g<br />

Go/No-Go<br />

• Based on the successful outcome <strong>of</strong> analysis <strong>of</strong> the thermal<br />

management system concepts, build a bench test facility to<br />

evaluate comb<strong>in</strong>ed cool<strong>in</strong>g loop strategies<br />

Milestone<br />

• Evaluate comb<strong>in</strong>ed cool<strong>in</strong>g loop system performance dur<strong>in</strong>g<br />

cool<strong>in</strong>g mode us<strong>in</strong>g bench test<strong>in</strong>g<br />

Go/No-Go<br />

• Based on bench test results, design a vehicle-level test that can<br />

demonstrate vehicle system level performance us<strong>in</strong>g a comb<strong>in</strong>ed<br />

cool<strong>in</strong>g loop system<br />

8


Accomplishments<br />

Improvements to Basel<strong>in</strong>e Models (March/12 – March/13)<br />

• Improved air condition<strong>in</strong>g (A/C) compressor control<br />

– Blower speed<br />

– Compressor rpm<br />

– The control state is determ<strong>in</strong>ed by the ambient environment, target<br />

temperatures, and the component temperatures.<br />

– Developed control logic with anti-w<strong>in</strong>dup<br />

• Added <strong>in</strong>verter model (based on feedback from <strong>Electric</strong>al<br />

and Electronics Technical Team)<br />

• Updated battery thermal model based on review with the NREL ESS<br />

group (battery properties and thermal performance)<br />

• Added ability to heat battery coolant to improve warmup<br />

• Created component models for cab<strong>in</strong> heater core and electrical fluid<br />

heater for cab<strong>in</strong> heat<strong>in</strong>g<br />

• Built a cab<strong>in</strong> heat<strong>in</strong>g loop<br />

• Added controls for battery temperature<br />

– Pump speed<br />

– Valve position<br />

– Developed control logic with anti-w<strong>in</strong>dup proportional <strong>in</strong>tegrator controllers<br />

9


EV Basel<strong>in</strong>e Thermal Management System<br />

Air<br />

Air<br />

<strong>Electric</strong><br />

Heater<br />

Air<br />

Comp<br />

Air<br />

ESS Heat Exchanger<br />

Condenser<br />

PEEM Heat Exchanger<br />

Heater Core<br />

Evaporator<br />

Vehicle Cab<strong>in</strong><br />

Heat Exchanger<br />

Liquid to Refrigerant<br />

• Multiple operat<strong>in</strong>g modes<br />

Bypass<br />

Battery Case<br />

Power<br />

Electronics<br />

and Motor<br />

Heater<br />

Cells<br />

10


EV Basel<strong>in</strong>e Thermal Management System<br />

• Hot Cooldown<br />

Air<br />

Air<br />

<strong>Electric</strong><br />

Heater<br />

Comp<br />

Air<br />

ESS Heat Exchanger<br />

Condenser<br />

PEEM Heat Exchanger<br />

Heater Core<br />

Evaporator<br />

Vehicle Cab<strong>in</strong><br />

Heat Exchanger<br />

Liquid to Refrigerant<br />

• Battery or ESS cooled with<br />

chiller<br />

Bypass<br />

Battery Case<br />

Power<br />

Electronics<br />

and Motor<br />

• Cab<strong>in</strong> cool<strong>in</strong>g provided with<br />

conventional A/C system<br />

Heater<br />

Cells<br />

11


EV Basel<strong>in</strong>e Thermal Management System<br />

• Mild Cooldown<br />

Air<br />

Air<br />

<strong>Electric</strong><br />

Heater<br />

Comp<br />

Air<br />

ESS Heat Exchanger<br />

Condenser<br />

PEEM Heat Exchanger<br />

Heater Core<br />

Evaporator<br />

Vehicle Cab<strong>in</strong><br />

Heat Exchanger<br />

Liquid to Refrigerant<br />

• Battery or ESS cooled with<br />

radiator<br />

Bypass<br />

Battery Case<br />

Power<br />

Electronics<br />

and Motor<br />

Heater<br />

Cells<br />

12


EV Basel<strong>in</strong>e Thermal Management System<br />

• Cold Warmup<br />

Air<br />

Air<br />

<strong>Electric</strong><br />

Heater<br />

Air<br />

Comp<br />

Air<br />

ESS Heat Exchanger<br />

Condenser<br />

PEEM Heat Exchanger<br />

Heater Core<br />

Evaporator<br />

Vehicle Cab<strong>in</strong><br />

Heat Exchanger<br />

Liquid to Refrigerant<br />

• <strong>Electric</strong> heater for cab<strong>in</strong> heat<strong>in</strong>g<br />

(5-7 kW for small vehicle)<br />

Bypass<br />

Battery Case<br />

Power<br />

Electronics<br />

and Motor<br />

• <strong>Electric</strong> heater for battery or<br />

ESS heat<strong>in</strong>g (1 kW)<br />

Heater<br />

Cells<br />

13


Basel<strong>in</strong>e EV Thermal Management System<br />

EV Test Case at Four Ambient Temperatures<br />

• 24-kWh EV<br />

• Environment<br />

– 43 o C, 35 o C, 30 o C, 25 o C<br />

– 25% relative humidity<br />

– 850 W/m 2<br />

• 0% recirculation<br />

• US06 drive cycle<br />

• Cooldown simulation<br />

from a hot soak<br />

• ESS – cool<strong>in</strong>g loop<br />

with chiller and low<br />

temperature radiator<br />

• Waste heat load from<br />

FASTSim simulations<br />

8<br />

14


Basel<strong>in</strong>e System<br />

Total Vehicle Thermal Management Power Includ<strong>in</strong>g Compressor, Fans, Blowers, Pumps<br />

Hotter ambient temperatures<br />

require more power<br />

Power drops <strong>of</strong>f when battery cell<br />

temperature reaches control level<br />

A/C evaporator antifreeze control<br />

limits A/C compressor power<br />

Less power required with radiator cool<strong>in</strong>g <strong>of</strong> the battery<br />

15


Comb<strong>in</strong>ed System<br />

<strong>Comb<strong>in</strong><strong>in</strong>g</strong> APEEM and ESS Cool<strong>in</strong>g <strong>Loops</strong><br />

Radiator<br />

WEG Coolant Loop Distribution System<br />

Liquid<br />

Condenser<br />

Refrigerant<br />

Refrigerant<br />

Liquid<br />

Comp<br />

Evaporator<br />

<strong>Electric</strong> <strong>Drive</strong> WEG<br />

Cool<strong>in</strong>g System<br />

Power<br />

Electronics and<br />

Motor<br />

Battery<br />

Vehicle Cab<strong>in</strong><br />

Cab<strong>in</strong><br />

Cooler<br />

Cab<strong>in</strong><br />

Heater<br />

Air<br />

Air<br />

Cells<br />

<strong>Electric</strong> Heater<br />

WEG = Water/Ethylene Glycol<br />

16


Comb<strong>in</strong>ed System – Configuration 1<br />

<strong>Comb<strong>in</strong><strong>in</strong>g</strong> APEEM and ESS Cool<strong>in</strong>g <strong>Loops</strong><br />

Radiator<br />

WEG Coolant Loop Distribution System<br />

Liquid<br />

Condenser<br />

Refrigerant<br />

Refrigerant<br />

Liquid<br />

Comp<br />

Evaporator<br />

<strong>Electric</strong> <strong>Drive</strong> WEG<br />

Cool<strong>in</strong>g System<br />

Power<br />

Electronics and<br />

Motor<br />

Battery<br />

• Enables use <strong>of</strong> APEEM<br />

waste heat for ESS<br />

heat<strong>in</strong>g<br />

Vehicle Cab<strong>in</strong><br />

Cab<strong>in</strong><br />

Cooler<br />

Cab<strong>in</strong><br />

Heater<br />

Air<br />

Air<br />

Cells<br />

<strong>Electric</strong> Heater<br />

WEG = Water/Ethylene Glycol<br />

17


Comb<strong>in</strong>ed System – Configuration 2<br />

<strong>Comb<strong>in</strong><strong>in</strong>g</strong> APEEM and Cab<strong>in</strong> Heat<strong>in</strong>g <strong>Loops</strong><br />

Radiator<br />

WEG Coolant Loop Distribution System<br />

Liquid<br />

Condenser<br />

Refrigerant<br />

Refrigerant<br />

Liquid<br />

Comp<br />

Evaporator<br />

<strong>Electric</strong> <strong>Drive</strong> WEG<br />

Cool<strong>in</strong>g System<br />

Power<br />

Electronics and<br />

Motor<br />

Battery<br />

• Enables use <strong>of</strong> APEEM<br />

waste heat for ESS<br />

heat<strong>in</strong>g or cab<strong>in</strong> heat<strong>in</strong>g<br />

Vehicle Cab<strong>in</strong><br />

Cab<strong>in</strong><br />

Cooler<br />

Cab<strong>in</strong><br />

Heater<br />

Air<br />

Air<br />

Cells<br />

<strong>Electric</strong> Heater<br />

WEG = Water/Ethylene Glycol<br />

18


Warmup: Auxiliary Load Power<br />

VTM Power Reduced by Us<strong>in</strong>g APEEM Waste Heat<br />

Configuration 1 (APEEM and ESS)<br />

Basel<strong>in</strong>e:<br />

• 7-kW cab<strong>in</strong> heater<br />

• 1-kW ESS auxiliary electric heater<br />

APEEM and ESS:<br />

• 7-kW cab<strong>in</strong> heater<br />

• 1-kW ESS auxiliary electric heater <strong>of</strong>f<br />

• ESS warmup supplemented by APEEM waste heat<br />

19


Warmup: Auxiliary Load Power<br />

VTM Power Reduced by Us<strong>in</strong>g APEEM Waste Heat<br />

Configuration 1 (APEEM and ESS) and Configuration 2 (APEEM and Cab<strong>in</strong> Heat<strong>in</strong>g)<br />

Basel<strong>in</strong>e:<br />

• 7-kW cab<strong>in</strong> heater<br />

• 1-kW ESS auxiliary electric heater<br />

APEEM and ESS:<br />

• 7-kW cab<strong>in</strong> heater<br />

• 1-kW ESS auxiliary electric heater <strong>of</strong>f<br />

• ESS warmup supplemented by APEEM waste heat<br />

APEEM and Cab<strong>in</strong>:<br />

• 5.8-kW cab<strong>in</strong> heater<br />

• 1-kW ESS auxiliary electric heater<br />

• Cab<strong>in</strong> warmup supplemented by APEEM waste heat<br />

20


Warmup: Cab<strong>in</strong> Heater <strong>Fluid</strong> Temperature<br />

Cab<strong>in</strong> Heater <strong>Fluid</strong> Temperatures Are Very Similar<br />

Configuration 1 (APEEM and ESS) and Configuration 2 (APEEM and Cab<strong>in</strong> Heat<strong>in</strong>g)<br />

21


Warmup: Average Cab<strong>in</strong> Air Temperature<br />

Cab<strong>in</strong> Air Temperatures Are the Same While Us<strong>in</strong>g Less <strong>Electric</strong>al Power<br />

Configuration 1 (APEEM and ESS) and Configuration 2 (APEEM and Cab<strong>in</strong> Heat<strong>in</strong>g)<br />

Passenger comfort was not degraded<br />

22


Warmup: Battery Temperature<br />

Battery Is Warmer with APEEM Waste Heat<br />

Configuration 1 (APEEM and ESS) and Configuration 2 (APEEM and Cab<strong>in</strong> Heat<strong>in</strong>g)<br />

Better battery performance<br />

23


Warmup: APEEM Coolant Temperature<br />

APEEM Coolant Temperature Is Under The Limit (


Comb<strong>in</strong>ed System – Configuration 3<br />

Liquid Cooled Condenser<br />

Radiator<br />

WEG Coolant Loop Distribution System<br />

Liquid<br />

Condenser<br />

Refrigerant<br />

Refrigerant<br />

Liquid<br />

Comp<br />

Evaporator<br />

<strong>Electric</strong> <strong>Drive</strong> WEG<br />

Cool<strong>in</strong>g System<br />

Power<br />

Electronics and<br />

Motor<br />

Battery<br />

• Enables use <strong>of</strong> APEEM<br />

waste heat for ESS<br />

heat<strong>in</strong>g or cab<strong>in</strong> heat<strong>in</strong>g<br />

• Reduces front heat<br />

exchangers from 3 to 1<br />

us<strong>in</strong>g shared lowtemperature<br />

radiator<br />

Vehicle Cab<strong>in</strong><br />

Cab<strong>in</strong><br />

Cooler<br />

Cab<strong>in</strong><br />

Heater<br />

Air<br />

Air<br />

Cells<br />

<strong>Electric</strong> Heater<br />

WEG = Water/Ethylene Glycol<br />

25


Comb<strong>in</strong>ed System – Configuration 4<br />

Refrigerant to Liquid Evaporator (Secondary Loop)<br />

Radiator<br />

WEG Coolant Loop Distribution System<br />

Vehicle Cab<strong>in</strong><br />

Cab<strong>in</strong><br />

Cooler<br />

Cab<strong>in</strong><br />

Heater<br />

Liquid<br />

Condenser<br />

Refrigerant<br />

Refrigerant<br />

Liquid<br />

Air<br />

Air<br />

Comp<br />

Evaporator<br />

<strong>Electric</strong> <strong>Drive</strong> WEG<br />

Cool<strong>in</strong>g System<br />

Power<br />

Electronics and<br />

Motor<br />

Battery<br />

Cells<br />

<strong>Electric</strong> Heater<br />

• Enables use <strong>of</strong> APEEM<br />

waste heat for ESS<br />

heat<strong>in</strong>g or cab<strong>in</strong> heat<strong>in</strong>g<br />

• Reduces front heat<br />

exchangers from 3 to 1<br />

us<strong>in</strong>g shared lowtemperature<br />

radiator<br />

• S<strong>in</strong>gle chilled-liquid loop<br />

• Compatible with heat<br />

pump operation<br />

• Compact refrigerant loop<br />

WEG = Water/Ethylene Glycol<br />

26


Cooldown: Cab<strong>in</strong> Air Temperature<br />

Slightly Warmer Cab<strong>in</strong> Air (A/C Performance Not Significantly Impacted)<br />

Configurations 3 & 4 (Liquid-Cooled Condenser and Refrigerant to Liquid Evaporator – Secondary Loop)<br />

27


Cooldown: Battery Temperature<br />

Slightly Warmer Battery (But Still a Reasonable Cooldown)<br />

Configurations 3 & 4 (Liquid-Cooled Condenser and Refrigerant to Liquid Evaporator – Secondary Loop)<br />

A reasonably sized front<br />

heat exchanger can handle<br />

the APEEM, cab<strong>in</strong>, and ESS<br />

heat loads<br />

Battery cool<strong>in</strong>g performance<br />

is adequate with heat<br />

exchanger located<br />

downstream <strong>of</strong> the cab<strong>in</strong><br />

cool<strong>in</strong>g heat exchanger<br />

28


Cooldown: APEEM Coolant Temperature<br />

Lower APEEM Coolant Because Refrigerant to Air Condenser Is Elim<strong>in</strong>ated<br />

Configurations 3 & 4 (Liquid-Cooled Condenser and Refrigerant to Liquid Evaporator – Secondary Loop)<br />

Lower coolant temperature<br />

enables higher electric drive<br />

power<br />

29


Accomplishments – Bench Test<br />

• Developed prelim<strong>in</strong>ary comb<strong>in</strong>ed cool<strong>in</strong>g loop concept for test<strong>in</strong>g<br />

– Maximizes operat<strong>in</strong>g configurations and total system energy efficiency<br />

while m<strong>in</strong>imiz<strong>in</strong>g valves, pumps, and heat exchangers<br />

– Thermally conditions vehicle cab<strong>in</strong>, PE, EM, and ESS<br />

– Recovers PE, EM, and ESS waste heat when advantageous<br />

– Enables heat pump operation to reduce electrical resistance load<br />

• Significance<br />

– Unique vehicle thermal<br />

system configuration that<br />

focuses on maximiz<strong>in</strong>g<br />

vehicle range, occupant<br />

comfort, and component<br />

lifetime<br />

30


Accomplishments – Bench Test<br />

• Inventoried current test<strong>in</strong>g capabilities to determ<strong>in</strong>e what can be achieved<br />

– Maximized use <strong>of</strong> exist<strong>in</strong>g equipment and <strong>in</strong>frastructure<br />

• Designed prelim<strong>in</strong>ary bench test facility<br />

– Simulation <strong>of</strong> vehicle cab<strong>in</strong> response via a mathematical model, which controls<br />

<strong>in</strong>let air conditions to cab<strong>in</strong> heat exchangers<br />

– Replication <strong>of</strong> PE, EM, and ESS responses via mathematical models, which control<br />

component outlet coolant temperatures<br />

• Significance<br />

– Initiated bench-test<strong>in</strong>g phase <strong>of</strong><br />

task while m<strong>in</strong>imiz<strong>in</strong>g test<br />

facility upgrade cost<br />

31


Collaboration and Coord<strong>in</strong>ation with Other Institutions<br />

• Delphi<br />

• Halla Visteon Climate Control<br />

– Data<br />

– Eng<strong>in</strong>eer<strong>in</strong>g support<br />

• Magna Powertra<strong>in</strong> – Eng<strong>in</strong>eer<strong>in</strong>g Center Steyr<br />

– KULI s<strong>of</strong>tware<br />

– Eng<strong>in</strong>eer<strong>in</strong>g support<br />

• Ford<br />

– <strong>Electric</strong> Focus (loaned to NREL for the <strong>Electric</strong> <strong>Drive</strong> Vehicle<br />

Climate Control Load Reduction Task)<br />

• VTO Tasks<br />

– Advanced Power Electronics and <strong>Electric</strong> Motors<br />

– Vehicle Systems<br />

– Energy Storage<br />

32


Proposed Future Work<br />

• Rema<strong>in</strong>der <strong>of</strong> FY13<br />

– F<strong>in</strong>alize comb<strong>in</strong>ed cool<strong>in</strong>g loop design <strong>in</strong> conjunction with <strong>in</strong>dustry<br />

o<br />

Coord<strong>in</strong>ate with Delphi and Visteon on configuration and components<br />

– Construct bench test<strong>in</strong>g facility<br />

– Conduct bench test<strong>in</strong>g to evaluate comb<strong>in</strong>ed cool<strong>in</strong>g loop system<br />

performance dur<strong>in</strong>g cool<strong>in</strong>g mode<br />

– Validate previously built KULI models <strong>of</strong> comb<strong>in</strong>ed cool<strong>in</strong>g loop<br />

• FY14<br />

– Utilize exist<strong>in</strong>g bench test<strong>in</strong>g facility and experimental system to<br />

conduct heat<strong>in</strong>g mode test<strong>in</strong>g<br />

– Work with <strong>in</strong>dustry partners to design a vehicle-level test that can<br />

demonstrate vehicle system level performance when us<strong>in</strong>g a<br />

comb<strong>in</strong>ed cool<strong>in</strong>g loop system<br />

– Install experimental system and measurement equipment <strong>in</strong> a test<br />

EDV<br />

– Experimentally evaluate EDV performance to demonstrate the<br />

effect that the comb<strong>in</strong>ed cool<strong>in</strong>g loop has on electric vehicle<br />

range<br />

33


Summary<br />

• DOE Mission Support<br />

– <strong>Comb<strong>in</strong><strong>in</strong>g</strong> cool<strong>in</strong>g systems <strong>in</strong> EDVs may reduce costs and improve<br />

performance, which would accelerate consumer acceptance,<br />

<strong>in</strong>crease EDV usage, and reduce petroleum consumption.<br />

• Overall Approach<br />

– Build a thermal 1-D model (us<strong>in</strong>g KULI s<strong>of</strong>tware)<br />

o<br />

o<br />

APEEM, energy storage, eng<strong>in</strong>e, transmission, and passenger<br />

compartment thermal management systems<br />

Identify the synergistic benefits from comb<strong>in</strong><strong>in</strong>g the systems<br />

– Select the most promis<strong>in</strong>g comb<strong>in</strong>ed thermal management<br />

system concepts and perform a detailed performance assessment<br />

and bench top tests<br />

– Collaborate with automotive manufacturers and suppliers on a<br />

vehicle-level project<br />

– Solve vehicle-level heat transfer problems, which will enable<br />

acceptance <strong>of</strong> vehicles with electric powertra<strong>in</strong>s<br />

34


Summary (cont.)<br />

• Technical Accomplishments<br />

– Completed basel<strong>in</strong>e EV thermal systems model<br />

– Investigated comb<strong>in</strong>ed cool<strong>in</strong>g loop strategies<br />

– Identified advantages <strong>of</strong> comb<strong>in</strong><strong>in</strong>g fluid loops<br />

– Identified strategies for bench test<strong>in</strong>g<br />

• Collaborations<br />

– Collaborat<strong>in</strong>g closely with Delphi, Halla Visteon Climate Control, Magna<br />

Powertra<strong>in</strong> - Eng<strong>in</strong>eer<strong>in</strong>g Center Steyr, and Ford<br />

– Leverag<strong>in</strong>g previous DOE research<br />

o Battery life/thermal model<br />

o Vehicle cost/performance model<br />

o Lumped parameter motor thermal model<br />

– Co-fund<strong>in</strong>g by three VTO tasks demonstrates cross-cutt<strong>in</strong>g<br />

35


Acknowledgments:<br />

David Anderson<br />

Steven Boyd<br />

Brian Cunn<strong>in</strong>gham<br />

David Howell<br />

Susan Rogers<br />

Lee Slezak<br />

Vehicle Technologies Office<br />

U.S. <strong>Department</strong> <strong>of</strong> Energy<br />

Team Members:<br />

Kev<strong>in</strong> Bennion<br />

Daniel Leighton<br />

Jeff Tomerl<strong>in</strong><br />

For more <strong>in</strong>formation, contact:<br />

Pr<strong>in</strong>cipal Investigator<br />

John Rugh<br />

john.rugh@nrel.gov<br />

Phone: (303)-275-4413<br />

APEEM Task Leader:<br />

Sreekant Narumanchi<br />

Sreekant.Narumanchi@nrel.gov<br />

Phone: (303)-275-4062


Photo Credits<br />

1. Matt Jeffers, NREL<br />

2. John Rugh, NREL<br />

3. Matt Jeffers, NREL<br />

4. John Rugh, NREL<br />

5. Michelle Rugh, Amateur Photographer<br />

6. Charlie K<strong>in</strong>g, NREL<br />

7. John Rugh, NREL<br />

8. John Rugh, NREL<br />

37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!