27.01.2015 Views

Climate change impact on recurrence and regime of ... - BALTEX

Climate change impact on recurrence and regime of ... - BALTEX

Climate change impact on recurrence and regime of ... - BALTEX

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g> <strong>on</strong><br />

<strong>recurrence</strong> <strong>and</strong> <strong>regime</strong> <strong>of</strong> run<strong>of</strong>f<br />

extremes: floods <strong>and</strong> droughts<br />

An example <strong>of</strong> the Middle Daugava River<br />

Dāvis GRUBERTS, Dr.biol.<br />

Daugavpils University<br />

Parādes str. 1, Daugavpils, LV‐5401<br />

e‐mail: davis.gruberts@du.lv


Introducti<strong>on</strong><br />

Aim <strong>of</strong> the study:<br />

• to evaluate l<strong>on</strong>g-term <str<strong>on</strong>g>change</str<strong>on</strong>g>s in the reoccurence<br />

(probability) <strong>and</strong> <strong>regime</strong> <strong>of</strong> the run<strong>of</strong>f extremes (floods<br />

<strong>and</strong> droughts) <strong>of</strong> the Middle Daugava River in c<strong>on</strong>text <strong>of</strong><br />

climate <str<strong>on</strong>g>change</str<strong>on</strong>g>.


Study site<br />

Helsinki<br />

Helsinki<br />

Stockholm<br />

St.-Petersburg<br />

Stockholm Tallinn St.-Petersburg<br />

Tallinn<br />

ESTONIA<br />

ESTONIA<br />

RUSSIA<br />

RUSSIA<br />

SWEDEN<br />

SWEDEN LATVIA<br />

LATVIA<br />

Riga<br />

Riga<br />

Wisla<br />

Wisla<br />

Baltic Sea<br />

Baltic Sea<br />

Warszawa<br />

Warszawa<br />

Daugava<br />

Daugava<br />

LITHUANIA<br />

LITHUANIA Vilnius<br />

Vilnius Minsk<br />

Minsk<br />

Pripyat<br />

Pripyat<br />

Dnepr Dnepr<br />

B E L A R U S<br />

B E L A R U S<br />

P O L A N D<br />

P O L A N D<br />

Krakov<br />

Krakov Lvov<br />

Lvov<br />

Kiev<br />

Kiev<br />

100 km<br />

100 km<br />

A false‐colour image <strong>of</strong> the<br />

Middle Daugava <strong>and</strong> its<br />

floodplain from the<br />

LANDSAT‐2 satellite at the<br />

peak <strong>of</strong> the spring floods<br />

(April 10, 1979).<br />

Hydrological<br />

stati<strong>on</strong> “Daugava<br />

at Daugavpils”<br />

Daugavpils<br />

University


The Daugava River upstream from Daugavpils City during the summer low‐flow<br />

period (photo by Ivars Druvietis, July 28, 2004)


The Daugava River downstream from Daugavpils (at Nīcgale) during the spring<br />

floods (obligue aerial photo by Dāvis Gruberts, April 25, 2009)


Floodplain meadows <strong>of</strong> the Daugava River at Dviete during the spring floods<br />

(obligue aerial photo by Dāvis Gruberts, April 24, 2009)


Floodplain meadows <strong>of</strong> the Daugava River at Ilūkste during the spring floods<br />

(obligue aerial photo by Kristīne Vēvere, April 24, 2009)


Data sources<br />

1. The Global Run<strong>of</strong>f Data Centre, Koblenz, Germany<br />

(www.grdc.bafg.de) – daily mean discharges <strong>of</strong> the Daugava<br />

River at Daugavpils (GRDC No. 6973300, 1936‐2007);<br />

2. The Nati<strong>on</strong>al Climatic Data Centre, Asheville, NC, USA<br />

(ftp://ftp.ncdc.noaa.gov/pub/data/gsod): daily mean air<br />

temperature, amount <strong>of</strong> precipitati<strong>on</strong> <strong>and</strong> thickness <strong>of</strong> snow<br />

cover at Riga, Daugavpils <strong>and</strong> Vitebsk weather stati<strong>on</strong>s<br />

(1964‐2006).


Main characteristics <strong>of</strong> the hydrological<br />

stati<strong>on</strong> “Daugava at Daugavpils”<br />

• latitude: 55,88°<br />

• l<strong>on</strong>gitude: 26,53°<br />

• altitude: 86,0 m a.s.l.<br />

• catchment area: 64’500 km²<br />

• object <strong>of</strong> observati<strong>on</strong>s: water level, discharge<br />

• beginning <strong>of</strong> observati<strong>on</strong>s: since 1881<br />

• frequency <strong>of</strong> observati<strong>on</strong>s: each day<br />

• highest observed discharge: 6930 m 3 /s (April, 1931)<br />

• lowest observed discharge: 40,5 m 3 /s (February, 1942)


Locati<strong>on</strong> <strong>of</strong> the weather stati<strong>on</strong>s<br />

Gulf<br />

<strong>of</strong><br />

Riga<br />

Riga<br />

L A T V I A<br />

Ogre<br />

Aiviekste<br />

Daugava Jekabpils<br />

Lake<br />

Lubans<br />

‐ weather stati<strong>on</strong><br />

R U S S I A<br />

Zap. Dvina<br />

Daugavpils<br />

Drisa<br />

Meza<br />

LITHUANIA<br />

Disna<br />

Polock<br />

Zap. Dvina<br />

Kaspla<br />

Ulla<br />

Vitebsk<br />

60 km<br />

B E L A R U S<br />

- country borders


Statistical analysis <strong>of</strong> the hydrological drought<br />

reoccurence (probability distributi<strong>on</strong>s)<br />

• selected periods: 1936‐1977, 1966‐2007 (summer <strong>and</strong> allyear<br />

droughts); 1936‐1987, 1956‐2007 (winter droughts);<br />

• threshold level for the distincti<strong>on</strong> <strong>of</strong> the hydrological drought<br />

periods: 70 %;<br />

• parameters: all‐year droughts; summer droughts (June 5 –<br />

November 9); winter droughts (November 10 –June 4);<br />

• estimated probability distributi<strong>on</strong>s: relative run<strong>of</strong>f deficit;<br />

real low‐flow durati<strong>on</strong>; full low‐flow durati<strong>on</strong>;<br />

• the program: Nizowka 2003 (Distributi<strong>on</strong>s <strong>of</strong> Low Flow<br />

Extremes)*.<br />

* ‐ Dr. Wojciech Jakubowski, pr<strong>of</strong>. Laura Radczuk, Agricultural University <strong>of</strong> Wrocław, Pol<strong>and</strong>


The l<strong>on</strong>g‐term <str<strong>on</strong>g>change</str<strong>on</strong>g>s


The l<strong>on</strong>g‐term <str<strong>on</strong>g>change</str<strong>on</strong>g>s


The l<strong>on</strong>g‐term <str<strong>on</strong>g>change</str<strong>on</strong>g>s


The l<strong>on</strong>g‐term <str<strong>on</strong>g>change</str<strong>on</strong>g>s


The l<strong>on</strong>g‐term <str<strong>on</strong>g>change</str<strong>on</strong>g>s


The probability <strong>of</strong> hydrological droughts<br />

Relative deficit <strong>of</strong> the all‐year droughts


The probability <strong>of</strong> hydrological droughts<br />

Relative deficit <strong>of</strong> the winter droughts


The probability <strong>of</strong> hydrological droughts<br />

Relative deficit <strong>of</strong> the summer droughts


The probability <strong>of</strong> hydrological droughts<br />

Full durati<strong>on</strong> <strong>of</strong> the all‐year droughts


The probability <strong>of</strong> hydrological droughts<br />

Full durati<strong>on</strong> <strong>of</strong> the winter droughts


The probability <strong>of</strong> hydrological droughts<br />

Full durati<strong>on</strong> <strong>of</strong> the summer droughts


L<strong>on</strong>g‐term <str<strong>on</strong>g>change</str<strong>on</strong>g>s <strong>on</strong> the m<strong>on</strong>thly<br />

scale<br />

Example 1: the m<strong>on</strong>thly highest, averare <strong>and</strong> lowest air<br />

temperature at Daugavpils (1973‐2007)


L<strong>on</strong>g‐term <str<strong>on</strong>g>change</str<strong>on</strong>g>s <strong>on</strong> the m<strong>on</strong>thly<br />

scale<br />

Example 2: the m<strong>on</strong>thly mean max, average <strong>and</strong> min discharge<br />

<strong>of</strong> the Daugava at Daugavpils (1881‐2007)<br />

mean max<br />

average mean<br />

mean min


<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g>


<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impact</str<strong>on</strong>g><br />

Example 2: Correlati<strong>on</strong> between the mean m<strong>on</strong>thly<br />

discharge <strong>of</strong> the Daugava River <strong>and</strong> the mean air<br />

temperature at Daugavpils in March


Main c<strong>on</strong>clusi<strong>on</strong>s<br />

1. In general, the climate <strong>of</strong> the Daugava River drainage basin<br />

becomes more warm <strong>and</strong> wet, with less snow in winter.<br />

2. The climate becomes also more diverse <strong>on</strong> the regi<strong>on</strong>al scale.<br />

3. The annual discharge <strong>of</strong> the Middle Daugava correlates better to<br />

the climatic characteristics <strong>of</strong> the Vitebsk weather stati<strong>on</strong>.<br />

4. Peculiaries <strong>of</strong> the climate <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>and</strong> the Daugava’s run<strong>of</strong>f <strong>regime</strong><br />

are better seen <strong>on</strong> the m<strong>on</strong>thly scale.<br />

5. The probability <strong>of</strong> reoccurence <strong>and</strong> the magnitude <strong>of</strong> typical run<strong>of</strong>f<br />

extremes <strong>of</strong> the Daugava River are decreasing.<br />

6. The possibility to predict the date <strong>of</strong> the annual floods’ peak is also<br />

decreasing.<br />

7. Predicti<strong>on</strong>s <strong>of</strong> the future climate related <str<strong>on</strong>g>change</str<strong>on</strong>g>s in the run<strong>of</strong>f<br />

<strong>regime</strong> <strong>of</strong> the Middle Daugava should be based <strong>on</strong> the weather<br />

stati<strong>on</strong>s located outside Latvia.


Paldies par uzmanību!<br />

The Daugava River upstream from Daugavpils City during the spring floods<br />

(photo by Dainis Lazdāns, March 26, 2007)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!