Views
3 years ago

# F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I

## F A S C I C U L I M A T H E M A T I C

F A S C I C U L I M A T H E M A T I C I Nr 35 2005 Ali Aral ON A GENERALIZED λ-GAUSS WEIERSTRASS SINGULAR INTEGRAL Abstract: In the present note we consider the integral ∫ Wλ s c(n, λ, s) (f; x, α) := f (x + t) exp (− ||t|| s |λ| α |λ| λ /4α s) n dt, R n where x ∈ R n , s > 0, α > 0 and λ 1 , λ 2 , · · · , λ n are positive numbers with |λ| = λ 1 + λ 2 + · · · + λ n . The integrals Wλ s (f; x, α) will be called a generalized λ−Gauss Weierstrass singular integral. We study some approximation properties of this integral in the nonisotropic exponential weighted space. Key words: λ−Gauss Weierstrass integral, exponential weighted space. 1. Introduction Let λ 1 , λ 2 , · · · , λ n be positive numbers with |λ| = λ 1 + λ 2 + · · · + λ n and ||x|| λ = (|x 1 | 1 λ 1 + . . . + |x n | 1 λn ) |λ| n , x ∈ R n . The expression ||x − y|| λ , x, y ∈ R n is called the nonisotropic distance between the x and y. It can be seen that nonisotropic distance become ordinary Euclidean distance |x − y| for λ j = 1 2 , j = 1, 2, . . . n. Nonisotropic distance has the following property. Using the inequality (a + b) m ≤ 2 m (a m + b m ) , m > 1 we obtain (1) ||x − y|| λ ≤ M λ (||x|| λ + ||y|| λ ) , where M λ = 2 (1+ 1 λ min ) |λ| n and λ min = min(λ 1 , λ 2 , . . . λ n ). This integral operators with the kernels depending on nonisotropic distance have important application in theory of partial differential equations and imbedding theorems. ([4] , [6]) .

B A Y L O R H E A L T H C A R E S Y S T E M F O U N D A T I O
S C H O O L O F T H E M U S E U M O F F I N E A R T S , B O S T O N
S C H O O L O F T H E M U S E U M O F F I N E A R T S , B O S T O N
T R E A S U R E S F R O M T H E C O L L E C T I O N S H A G L E y ...
F Ã¼ r K Ã¼ c h e n m i t S t i l
W W W . S A F E H A V E N A N I M A L S A N C T U A R Y . O R G
T h e S T i f T u n g h A u S S C h M i n K e - Hess AG
{ I D E C P H A R M A C E U T I C A L S } Volume 2 Issue 1
T H E C A R M E L F O U N D A T I O N
A b C D E F G H I J K L M N o P Q R s T u v w X y Z - Ineke
catering bon appÃ©tit f r e s h a u t h e n t i c n a t u r a l ... - Bon Appetit
L E S S O N S F R O M T H E F U T U R E
F l e x i b l e C o n d u i t S y s t e m s a n d W i r i n g A c c e s s o r i e s
T h e S t r o k e C o u n c i l
Z WA A I L I C H T E N - F E U X TO U R N A N T S - R OTAT ... - AEB
Beale Street M U S I C ------F E S T I V A L - Allstar Audio Systems ...
A B C D E F G H I J K L M N O P Q R S T U ... - Polygraph Export
A b C D E F G H I J K L M N o P Q R s T u v w X y Z - Ineke
catering bon appÃ©tit f r e s h a u t h e n t i c n a t u r a l ... - Bon Appetit
f r e s h a u t h e n t i c n a t u r a l catering bon appétit
L E S SO N S F R O M T H E F U T U R E
P U S H T H E L I M I T S
C I T Y O F S U F F O L K E C O N O M I C A C T I V I T Y R E P O R T ...
S Y M F O N I C K Ý O R C H E S T R H L. M. P R A H Y F O K ...
M o n T u e W e d T h u F r i S a t S u n
J E F F E R S O N S C H O L A R S F O U N D A T I O N
H e a l t h a n d F i t n e s s M e m b e r s h i p s
H e a l t h a n d F i t n e s s M e m b e r s h i p s
A b C D E F G H I J K L M N o P Q R s T u v w X y Z - Ineke
M E M B E R S H I P a P P l I c a t I o n f o R M - Brittany Ferries