28.01.2015 Views

2. Brownian motion, colloidal suspensions

2. Brownian motion, colloidal suspensions

2. Brownian motion, colloidal suspensions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

BROWNIAN MOTION<br />

1. Diffusion equation<br />

At the simplest level the movement of a particle in a liquid is<br />

described by a Markovian random walk. The particle’s<br />

displacement distribution (PDD)—probability density of a jump,<br />

∆r during time interval τ:<br />

P( ∆r<br />

, τ)<br />

⎡2π<br />

⎤<br />

=<br />

⎢<br />

w( τ)<br />

⎣ 3 ⎥<br />

⎦<br />

−3 / 2<br />

⎡<br />

exp⎢−<br />

⎢⎣<br />

2<br />

3∆r<br />

⎤<br />

⎥<br />

w( τ)<br />

⎥⎦<br />

Mean squared displacement,<br />

w( τ)<br />

=<br />

∆r<br />

2<br />

( τ)<br />

=<br />

6Dτ<br />

P(∆r,τ) derives from the diffusion equation<br />

∂<br />

∂t<br />

P 2<br />

= D∇<br />

P<br />

with the initial condition P(∆r,0)=δ(∆r)<br />

D is the diffusion coefficient


2<br />

Displacement in time interval τ;<br />

∆<br />

τ<br />

r ( τ)<br />

= ∫ v(t)dt<br />

, leads to [BP];<br />

0<br />

∆r<br />

2<br />

( τ)<br />

=<br />

=<br />

2<br />

τ<br />

∫<br />

0<br />

∞<br />

2τ<br />

dt( τ − t) v(0)v(t)<br />

∫<br />

0<br />

dt<br />

v(0)v(t)<br />

(B.1)<br />

(since τ can be arbitrarily large)<br />

and<br />

1<br />

D = Z(t)dt with Z(<br />

τ ) = v(0)v( τ)<br />

3<br />

∫ ∞<br />

0<br />

(B.2)<br />

the velocity auto-correlation function.


3<br />

<strong>2.</strong> Langevin equation<br />

Force on particle is a delta correlated random force, R(t), and<br />

friction, -ζv;<br />

dv<br />

M<br />

dt<br />

=<br />

−ςv<br />

+<br />

R(t)<br />

R(t)<br />

= 0<br />

R(0)<br />

R(t)<br />

v(0)<br />

.R(t)<br />

=<br />

=<br />

6kTζδ(t)<br />

0<br />

B.3<br />

Formal solution;<br />

t<br />

⎡ ⎛ ζ ⎞ ⎤<br />

⎡ ⎛ ζ ⎞ ⎤<br />

v(t)<br />

= v(0)exp⎢−<br />

⎜ ⎟t⎥<br />

+ ∫ dt' R(t')exp⎢−<br />

⎜ ⎟(t<br />

− t' ) ⎥<br />

⎣ ⎝ M ⎠ ⎦<br />

⎣ ⎝ M ⎠ ⎦<br />

0<br />

∴<br />

Z( τ)<br />

=<br />

v<br />

2<br />

(0)<br />

⎡ ⎛ ζ ⎞ ⎤<br />

exp⎢−<br />

⎜ ⎟τ⎥<br />

⎣ ⎝ M ⎠ ⎦<br />

=<br />

3kT ⎡ ⎛ ζ ⎞ ⎤<br />

exp⎢−<br />

⎜ ⎟τ<br />

M<br />

⎥ ⎣ ⎝ M ⎠ ⎦<br />

(B.4)<br />

And<br />

D<br />

∞<br />

kT ⎡ ⎛ ζ ⎞ ⎤<br />

= ∫ dt exp⎢−<br />

⎜ ⎟t<br />

M<br />

⎥<br />

⎣ ⎝ M ⎠ ⎦<br />

0<br />

=<br />

kT<br />

ζ<br />

.


4<br />

The last result<br />

D = kT is the Einstein relation<br />

ζ<br />

From B.1 and B4;<br />

∆r 2 ( τ)<br />

⎧ ⎡ ⎛ ζ ⎞ ⎤⎫<br />

= 6Dτ−<br />

6D(M / ζ)<br />

⎨1<br />

− exp<br />

⎢<br />

− ⎜ ⎟τ<br />

⎥⎬<br />

⎩ ⎣ ⎝ M ⎠ ⎦⎭<br />

One recovers the following limits<br />

(i) ballistic<br />

∆ r<br />

2<br />

( τ<br />

><br />

(M / ζ))<br />

= 6Dτ−<br />

6MkT<br />

ζ<br />

2<br />

= 6Dτ−<br />

cons tan t<br />

What does all this mean<br />

1. Brackets, ........ , imply ensemble average, OR if all particles<br />

are statistically equivalent, average over initial times “0”.<br />

This expresses ergodicity.<br />

<strong>2.</strong> Impulsive thermal force in L.E. is inconsistent with steady<br />

<strong>motion</strong>. So only the asymptotic results are correct.<br />

3. The above applies only freely diffusing particles.


5<br />

Some numbers<br />

Particle of radius a=50nm, M=10 -19 kg. in water’<br />

Persistence time τ l = M/ζ = M/(6πηa) ≈ 10 -9 s.<br />

3kT<br />

2M<br />

2<br />

1 1 6<br />

RMS thermal velocity; v RMS = v = ≈ 10<br />

− −<br />

ms ≈ 10 radii,<br />

But, distance moved is v RMS x τ l ≈ 10 -10 m ≈ 10 -3 radii.<br />

Thus, the particle gets nowhere due to viscous friction.<br />

Consequences<br />

1. Motion strongly overdamped; use low Reynolds number<br />

hydrodynamics<br />

<strong>2.</strong> For τ>>τ=M/ζ particles have lost inertia (individually), but<br />

not memory of instantaneous momenta.<br />

3. More useful time scale; time to diffuse RMS distance of one<br />

radius;<br />

τ b = a 2 /(6D)<br />

4. Above all, Einstein’s reasoning; thermal <strong>motion</strong> of liquid<br />

molecules, and the attendant hydrodynamic flows in the<br />

liquid, must be transmitted to (visible) particles in the<br />

liquid.<br />

Q. What if the particle concentration is increased so that<br />

packing constraints become significant


6<br />

HYDRODYNAMICS<br />

A local spontaneous, thermally activated, momentum fluctuation<br />

dissipates by sound and viscous flow, respectively propagating<br />

longitudinal and diffusing transverse momentum currents.<br />

In the limit, τ>>τ=M/ζ, sound propagates instantaneously. This<br />

subjects particles to delta correlated thermal force as per L.E.<br />

Momentum diffusion (simple dimensional argument); after time<br />

t a given particle’s initial velocity, v(0), is shared (equally)<br />

among ρV(t) particles in volume V(t). So, at time t all particles,<br />

including the given particle, have increased their velocity by 1/(<br />

ρV(t)). V(t) increases by diffusion; V(t)~t 3/2 . Thus, memory of<br />

a particle’s instantaneous velocity decays as t -3/2 , and<br />

Z( τ )<br />

=<br />

hτ<br />

−3/<br />

2<br />

is the form that characterizes fully developed viscous flow—<br />

diffusing vorticity.


Statistically averaged velocity field around a central disc from<br />

MD (large arrows) compared with that for the hydrodynamic<br />

model (small arrows). From B.J. Alder and T.E. Wainwright,<br />

Phys. Rev. A 1, 18 (1970).<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!