30.01.2015 Views

Many-Body I - TDDFT.org

Many-Body I - TDDFT.org

Many-Body I - TDDFT.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Many</strong>-<strong>Body</strong> Theory<br />

and DFT / <strong>TDDFT</strong><br />

Rex Godby


Outline<br />

• Introduction to many-body perturbation<br />

theory<br />

• The GW approximation (non-SC and SC)<br />

• Implementation of GW<br />

• Spectral properties<br />

• GW total energy<br />

• Vertex corrections beyond GW<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 2<br />

+


The Basic Problem<br />

Nucleus α (fixed)<br />

Electron i<br />

( H ˆ − E)Ψ ( r 1 , r 2 ,...r N ) = 0, where<br />

∑<br />

H ˆ = − 1 2 ∇ i 2<br />

i<br />

+ 1 2<br />

i≠ j<br />

−<br />

+ 1 2<br />

∑<br />

∑<br />

1<br />

r i − r j<br />

Z α<br />

electronic K. E<br />

e - e interaction<br />

r i − R α<br />

electronic P.E.<br />

Z α Z β<br />

∑<br />

α ≠β R α − R β<br />

nucleus - nucleus P. E.<br />

iα<br />

• The second term makes the problem interesting!<br />

(Otherwise see undergraduate courses: Bloch’s<br />

theorem, energy bands, etc.)<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 3


Approaches to the<br />

electron-electron interaction<br />

• Density-functional theory (for ground-state properties only):<br />

[ − 1 2 ∇2 + V ext (r) + V Hartree (r) + V xc (r) − ε i ]ψ i (r) = 0<br />

• <strong>Many</strong>-body perturbation theory based on Green’s functions:<br />

[ − 1 2 ∇2 + V ext + V Hartree + Σ xc (ω ) − ω]G(r, r ′,ω) = δ(r − r ′)<br />

(which, inter alia, leads to the quasiparticle equation<br />

[ − 1 2 ∇2 + V ext + V Hartree + Σ xc (ε) − ε]ψ (r) = 0)<br />

Note the two ways of describing exchange and correlation:<br />

In DFT: V xc (r) (local, energy-independent potential)<br />

In many-body theory: Σ xc (r, r ′,ω ) (non-local, energydependent<br />

potential)<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 4


Some Pathologies of the KSDFT<br />

functional<br />

δE<br />

[ n]<br />

• Band-gap problem: V ( r)<br />

xc<br />

xc =<br />

δn(<br />

r)<br />

is discontinuous (by a constant) when an electron is added to an<br />

insulator (Sham and Schlüter, Perdew and Levy 1983)<br />

• Widely separated open-shell atoms: V xc(r)<br />

has a peculiar spatial<br />

variation between distant atoms so as to equalise highest occupied<br />

states (Almbladh and von Barth 1985)<br />

• Exchange-correlation “electric field” accompanies real electric field in<br />

an insulator (Godby and Sham 1994, Gonze, Ghosez and Godby 1995)<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 5


Introduction to <strong>Many</strong>-<strong>Body</strong><br />

Perturbation Theory


Key ideas of many-body<br />

perturbation theory<br />

• Electronic and optical experiments often measure some<br />

aspect of the one-particle Green’s function<br />

• The spectral function, Im G, tells you about the singleparticle-like<br />

approximate eigenstates of the system: the<br />

quasiparticles Im G non-interacting<br />

interacting<br />

E 1 E 2 µ<br />

• G obtained from self-energy Σ(r,r´,E)<br />

• Σ = GW + O(W 2 ); W = screened Coulomb interaction<br />

ω<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 7<br />

+


Second Quantisation<br />

• Field operators add/remove an electron at<br />

r with spin σ (x=r,σ) at time t<br />

ψ<br />

ˆ †( x,<br />

t)<br />

ˆ ( x,<br />

t)<br />

• Defined rigorously in terms of operation on<br />

Slater determinants<br />

• Have equations of motion in the<br />

Heisenberg representation that follows<br />

from the TDSE<br />

;<br />

ψ<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 8


1-particle Green's Function G<br />

• One-particle Green's function<br />

G ( x,<br />

x';<br />

t − t')<br />

≡ −i<br />

N T[<br />

ψ ˆ ( x,<br />

t)<br />

ψˆ<br />

( x',<br />

t'<br />

)] N<br />

+<br />

where x ≡ ( r,<br />

ξ)<br />

is space+spin, N = N-electron ground state,<br />

T=time-ordering operator<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 9


G as a Propagator<br />

G ( x,<br />

x';<br />

t − t')<br />

≡ −i<br />

N T[<br />

ψ ˆ( x,<br />

t)<br />

ψˆ<br />

( x',<br />

t'<br />

)]<br />

+<br />

N<br />

ψˆ †( r'<br />

t')<br />

ψˆ<br />

( rt)<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 10


Lehmann Representation for G<br />

G(<br />

rt;<br />

r'<br />

t')<br />

=<br />

f<br />

s<br />

⎪⎧<br />

( r)<br />

= ⎨<br />

⎪⎩<br />

∑<br />

s<br />

Nψˆ ( r)<br />

fs<br />

( r)<br />

fs<br />

ω −ε<br />

N + 1, s<br />

N −1,<br />

sψˆ ( r)<br />

N<br />

s<br />

*( r')<br />

∓ iδ<br />

, ε<br />

, ε<br />

s<br />

s<br />

⎧<<br />

⎫<br />

, ε<br />

s ⎨ ⎬µ<br />

⎩><br />

⎭<br />

=<br />

=<br />

E<br />

E<br />

N + 1, s<br />

N<br />

−<br />

−<br />

E<br />

E<br />

N<br />

N −1,<br />

s<br />

> µ<br />

< µ<br />

• s labels the excited states of the N+1 or N-1-<br />

electron systems<br />

• G has its poles at each energy with which an<br />

electron can be added/removed<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 11


Spectral function and<br />

quasiparticles from Im G<br />

Im G non-interacting<br />

interacting<br />

E E µ<br />

1 2<br />

ω<br />

[ − 1 2 ∇2 + V ext + V Hartree + Σ xc (ε) − ε]ψ (r) = 0)<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 12


Equation of Motion of G<br />

• Using equation of motion of field<br />

operators, G can be shown to satisfy<br />

⎛<br />

⎜i<br />

⎝<br />

∂<br />

∂t<br />

−<br />

⎞<br />

h(<br />

x)<br />

⎟G(<br />

xt;<br />

⎠<br />

x'<br />

t')<br />

+<br />

i<br />

∫<br />

v(<br />

r,<br />

r')<br />

N T[<br />

ψˆ<br />

ψψψ ˆ ˆ ˆ<br />

†<br />

†<br />

]<br />

N<br />

d<br />

4<br />

x<br />

−<br />

∫ ΣG<br />

= δ ( x<br />

−<br />

x')<br />

δ ( t<br />

−t')<br />

- defines Σ<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 13


⎛<br />

⎜i<br />

⎝<br />

⎛<br />

⎜i<br />

⎝<br />

Green's Functions and Self-<br />

Energies<br />

• G obeys a very similar equation to the<br />

Green’s function of the Kohn-Sham<br />

electrons in DFT, but with the non-local,<br />

time-dependent Σ replacing V xc :<br />

∂<br />

∂t<br />

∂<br />

∂t<br />

−<br />

−<br />

{ h + V + Σ}<br />

H<br />

⎞<br />

⎟G(<br />

xt;<br />

x'<br />

t')<br />

⎠<br />

= δ ( x<br />

−t')<br />

{ h + V + V } G ( xt;<br />

x'<br />

t')<br />

= δ ( x − x')<br />

δ ( t −t'<br />

)<br />

H<br />

xc<br />

⎞<br />

⎟<br />

⎠<br />

KS<br />

− x')<br />

δ ( t<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 14


Hedin’s Equations<br />

• Exact closed equations for G, Σ etc.<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 15


The GW Approximation


The GW approximation<br />

• Iterate Hedin’s equations once starting<br />

with Σ=0<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 17


The GW Approximation<br />

Σ ( x , x';<br />

ω)<br />

i<br />

= ∫ W ( x,<br />

x';<br />

ω')<br />

G ( x,<br />

x';<br />

ω + ω')<br />

e<br />

2π<br />

where x ≡ ( r,<br />

ξ ) is space+spin<br />

iδω ' d<br />

ω'<br />

In the time domain<br />

Σ( x , x';<br />

t − t')<br />

= iW ( x,<br />

x';<br />

t − t')<br />

G(<br />

x,<br />

x';<br />

t − t')<br />

W is the dynamically screened Coulomb interaction between electrons<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 18


Vertex Corrections beyond GW<br />

Arno Schindlmayr, Thomas Pollehn and RWG<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 19


GW vs. <strong>TDDFT</strong><br />

<strong>Many</strong>-body perturbation theory (e.g. GW)<br />

• Based on Green’s functions<br />

• Self-energy theories give one-particle G, e.g.<br />

electron addition/removal<br />

• Similar diagrammatic theories for two-particle G,<br />

e.g. optical absorption<br />

• Natural domain: quasiparticle energies, band<br />

structure, spectral function<br />

• Other applications: ground state total energy,<br />

etc.<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 20


GW vs. <strong>TDDFT</strong> (2)<br />

DFT<br />

• Natural domain (of ordinary DFT): ground<br />

state total energy<br />

• <strong>TDDFT</strong> permits study of excited states of<br />

N-electron system<br />

• <strong>TDDFT</strong> also allows formulation of groundstate<br />

total energy through ACFDT<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 21


GW vs. DFT / <strong>TDDFT</strong><br />

Method<br />

DFT / <strong>TDDFT</strong><br />

Advantages<br />

Inexpensive (esp.<br />

density-based<br />

functionals)<br />

Disadvantages<br />

XC functional and<br />

f xc (r,r′,ω) pathological<br />

and can be difficult to<br />

approximate<br />

sufficiently accurately<br />

Intermediate approaches such as GW-based orbital functionals<br />

(KS/GKS)<br />

GW (+ MBPT)<br />

Description of XC<br />

explicit diagrammatic<br />

series, better behaved<br />

Can be expensive<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 22


Implementation of GW


Local-density-approximation<br />

calculation of one-electron<br />

wavefunctions and eigenvalues,<br />

using ab initio pseudopotentials<br />

Compute Green's<br />

function G<br />

Compute screened<br />

Coulomb<br />

interaction W<br />

S(q,ω)<br />

Compute self-energy<br />

Σ(r,r',ω)<br />

QP<br />

energies<br />

E<br />

Solve Dyson equation to obtain<br />

updated Green's function<br />

G(r,r',ω)<br />

Spectral function<br />

Charge density +<br />

momentum distn.<br />

Space-time method:<br />

H.N. Rojas, RWG and<br />

R.J. Needs, Phys. Rev. Lett. 74<br />

1827 (1995)<br />

Total energy<br />

Updated<br />

self-energy<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 24


Self-Consistency<br />

Fully self-consistent<br />

Σ=iGW: Conserving<br />

Partially self-consistent<br />

Σ=iGW 0 : Conserving<br />

Non-self-consistent<br />

Σ=iG 0 W 0 : Non-conserving<br />

Arno Schindlmayr, Pablo García-González and RWG<br />

Kris Delaney<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 25


Spectral Properties:<br />

Effect of self-consistency<br />

and pseudopotentials


G 0 W 0 Band Structures<br />

of Insulators<br />

From "Quasiparticle calculations<br />

in solids", W.G. Aulbur, L. Jönsson<br />

and J.W. Wilkins, Solid State<br />

Physics 54 1 (2000)<br />

[also available in preprint form at<br />

http://www.physics.ohiostate.edu/~wilkins/vita/publications.htm<br />

l#reviews]<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 27


Tests for Be atom (QP energies)<br />

K.T. Delaney, P. García-González, Angel Rubio, Patrick Rinke and<br />

RWG, Phys. Rev. Lett. 2004<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 28


SC+Pseudopotentials:<br />

Tests for Be atom<br />

K.T. Delaney, P. García-González, Angel Rubio, Patrick Rinke and<br />

RWG, Phys. Rev. Lett. 2004<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 29


Tests for Be atom (3)<br />

K.T. Delaney, P. García-González, Angel Rubio, Patrick Rinke and<br />

RWG, Phys. Rev. Lett. 2004<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 30


Total Energy from <strong>Many</strong>-<br />

<strong>Body</strong> Perturbation Theory


Ab initio GW total energy<br />

• Galitskii-Migdal expression for ground-state total energy<br />

E =<br />

µ<br />

1 3<br />

∫ dω<br />

∫ d r ( ω + h r)<br />

) A(<br />

r,<br />

r',<br />

ω r'<br />

→ r +<br />

2<br />

)<br />

−∞<br />

( V , where<br />

• Start with LDA calculation<br />

• Use GW space-time method to calculate self-energy Σ ( r,<br />

r',<br />

it)<br />

using a<br />

double grid in real space, and a grid in imaginary time<br />

LDA<br />

0 xc )<br />

( ) • Calculate new Green’s function using G = 1−<br />

G ( Σ −V<br />

G0<br />

• Recalculate Σ using new G and new W (based on new G)<br />

• Repeat to self-consistency<br />

• Calculate total energy using self-consistent G<br />

nucl<br />

−1<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 32


Total Energy of the H.E.G.<br />

ε XC<br />

(Ha)<br />

-0.6<br />

-0.5<br />

-0.4<br />

-0.3<br />

-0.2<br />

-0.1<br />

-0.30<br />

-0.25<br />

-0.20<br />

-0.15<br />

-0.10<br />

2 3 4 5 6<br />

Exact<br />

G 0<br />

W 0<br />

GW 0<br />

GW<br />

0.0<br />

2 4 6 8 10<br />

r s<br />

(a.u.)<br />

Pablo García-González and RWG, PRB 2001<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 33


Van der Waals forces<br />

GW<br />

Pablo García-González and RWG, PRL 2002<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 34


GW Total Energy for Real Matter<br />

• Bulk silicon (Tim Gould)<br />

• E tot in mHa per electron:<br />

QMC –995<br />

LDA –991 = QMC + 4<br />

G 0 W 0 –1002 = QMC – 7<br />

GW –997 = QMC – 2<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 35<br />

+


Using self-energy<br />

approaches to shed light on<br />

DFT functionals


Using self-energy approaches to<br />

shed light on DFT functionals<br />

• G.s. total energy – already discussed (e.g.<br />

van der Waals)<br />

• From Σ can calculate g.s. density ρ(r),<br />

then determine V xc such that the same<br />

density is reproduced: Sham-Schlüter<br />

equation (see e.g. Godby Schlüter Sham PRL 1986):<br />

relevant to<br />

– Band-gap problem<br />

– Exchange-correlation electric field in polarised systems<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 37


Vertex Corrections<br />

Beyond GW


The Vertex<br />

• Σ=GWΓ is exact by definition<br />

• Vertex function Γ needs to be<br />

approximated; in GW start with Σ=0<br />

• Can also start with<br />

Σ = simplified self-energy;<br />

simplest of all is V xc<br />

LDA<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 39


ALDA Vertex (a.k.a. “GWΓ”)<br />

• ALDA vertex in W (G 0 W 0<br />

LDA<br />

) yields slight improvement<br />

over G 0 W 0 for atoms and jellium. However, this vertex is<br />

unphysical when added into Σ (G 0 W 0 Γ LDA )<br />

Morris, Stankovski, Rinke, Delaney, RWG<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 40


ALDA Vertex 2<br />

Morris, Stankovski, Rinke, Delaney, RWG<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 41


Acknowledgements and<br />

Summary


Collaborators<br />

• Pablo<br />

García-González<br />

• Jeil Jung<br />

• Kris Delaney<br />

• Tim Gould<br />

• Patrick Rinke<br />

• Martin<br />

Stankovski<br />

• Peter Bokes<br />

• Angel Rubio<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 43


Some starting points<br />

for further reading<br />

• "Quasiparticle calculations in solids", W.G. Aulbur, L.<br />

Jönsson and J.W. Wilkins, Solid State Physics 54 1<br />

(2000), available in preprint form on the web<br />

• “<strong>Many</strong>-particle theory”, E.K.U. Gross, Runge and<br />

Heinonen, Adam Hilger (approx. 1992)<br />

• “Electron Correlations in Molecules and Solids”, P.<br />

Fulde, Springer (1993)<br />

• "Density functional theories and self-energy<br />

approaches", R. W. Godby and P. García-González,<br />

chapter in "A Primer in Density Functional Theory", ed.<br />

Carlos Fiolhais, Fernando Nogueira and M. A. L.<br />

Marques, Lecture Notes in Physics vol. 620, Springer<br />

(Heidelberg), 2003<br />

• Further info at http://www-users.york.ac.uk/~rwg3<br />

<strong>Many</strong>-body theory and <strong>TDDFT</strong> - Benasque, 30/31 Aug 2006 44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!