30.01.2015 Views

NCRP-147 Shielding Models 147 Shielding Models - Radiation ...

NCRP-147 Shielding Models 147 Shielding Models - Radiation ...

NCRP-147 Shielding Models 147 Shielding Models - Radiation ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

RSMI 2009 Session III<br />

Diagnostic X-Ray <strong>Shielding</strong> Design<br />

<strong>NCRP</strong>-<strong>147</strong> <strong>Shielding</strong> <strong>Models</strong><br />

Douglas J. Simpkin, Ph.D.<br />

Aurora St. Luke’s Medical Ctr<br />

Milwaukee, WI<br />

dsimpkin@wi.rr.com<br />

http://www.geocities.com/djsimpkin/


<strong>Models</strong> for Diagnostic X-Ray<br />

<strong>Shielding</strong> Calculations<br />

Yes<br />

No<br />

2


The Three <strong>Models</strong> for Diagnostic<br />

X-ray <strong>Shielding</strong> In <strong>NCRP</strong> <strong>147</strong><br />

1. First-principle extensions to <strong>NCRP</strong> 49<br />

2. Given calculated kerma per patient, scale<br />

by # patients and inverse squared distance,<br />

and then use transmission curves designed<br />

for particular room types<br />

3. NT/(Pd 2 )<br />

3


1 st principle extensions to <strong>NCRP</strong> 49<br />

• (Underlies the other two methods)<br />

• The kerma in the occupied area may have<br />

contributions from<br />

– primary radiation<br />

– scatter radiation<br />

}<br />

– leakage radiation } Secondary radiation<br />

4


Primary, Scatter, and Leakage<br />

Must protect<br />

from primary<br />

radiation<br />

primary<br />

Must protect from<br />

scatter & leakage<br />

radiation<br />

5


1 st principle extensions to <strong>NCRP</strong> 49<br />

• The models for primary, scatter, and leakage in<br />

<strong>NCRP</strong>-<strong>147</strong> are extensions to what’s in <strong>NCRP</strong>-<br />

49 (1976):<br />

– x-ray tubes operating over ranges of potentials<br />

(“workload distribution”)<br />

– new model for image receptor attenuation<br />

– new model for leakage<br />

6


1 st principle extensions to <strong>NCRP</strong> 49<br />

• These primary, scatter, and leakage<br />

radiations may be from multiple x-ray<br />

sources (or tube positions)<br />

• So, simply add up all the contributions to the<br />

kerma, K, from all these sources in the<br />

occupied area behind a barrier of thickness x,<br />

K ( x)<br />

= ( K ( x)<br />

+ K ( x)<br />

K ( x)<br />

)<br />

∑ ∑ +<br />

tubes kVp<br />

P<br />

S<br />

L<br />

7


1 st principle extensions to <strong>NCRP</strong> 49<br />

• Then iteratively find a barrier thickness x that<br />

decreases that kerma to P/T, the design goal<br />

modified by the occupancy factor<br />

K )<br />

(<br />

x<br />

) =<br />

∑ ∑ ( K<br />

(<br />

x<br />

)<br />

+<br />

K<br />

(<br />

x<br />

)<br />

+<br />

K<br />

(<br />

x<br />

)<br />

=<br />

= P<br />

S<br />

L<br />

tubes kVp<br />

• See http://www.geocities.com/djsimpkin/ for<br />

shareware program XRAYBARR to do this<br />

P<br />

T<br />

8


1 st principle extensions to <strong>NCRP</strong> 49<br />

• XRAYBARR was written by me in the mid<br />

1990s to perform shielding calculations with<br />

these new models as we developed <strong>NCRP</strong>-<strong>147</strong>.<br />

The shielding data and examples in <strong>NCRP</strong>-<strong>147</strong><br />

are based on the output of XRAYBARR.<br />

• Note: Some of the examples in <strong>NCRP</strong>-<strong>147</strong><br />

aren’t duplicated by XRAYBARR because<br />

<strong>NCRP</strong>-<strong>147</strong> takes shortcuts in the tabulated x pre<br />

values. XRAYBARR is right!<br />

9


Primary <strong>Radiation</strong> Model<br />

• In primary beam,<br />

know kerma per<br />

workload at 1 m,<br />

K W(kVp) , for 3<br />

phase units (data<br />

of Archer et al.<br />

1994)<br />

Primary Kerma at 1 m per workload<br />

10


Unshielded Primary Beam Kerma<br />

KW ( kVp<br />

) W<br />

( kVp<br />

)<br />

K (0)<br />

=<br />

d<br />

W<br />

• At a given kVp,<br />

P<br />

2<br />

• If only a fraction U of the tube’s workload<br />

is directed at this barrier, then<br />

K<br />

K ( 0) =<br />

W<br />

P<br />

( kVp)<br />

d<br />

2<br />

P<br />

P<br />

U W ( kVp)<br />

• U is the use factor for this barrier<br />

11


Kerma Behind a Primary Barrier<br />

• The kerma behind a primary barrier of<br />

transmission B(x, kVp) is<br />

K<br />

K<br />

kVp<br />

U W<br />

kVp<br />

(<br />

) (<br />

)<br />

( x,<br />

kVp)<br />

W<br />

B<br />

( x,<br />

kVp<br />

)<br />

2<br />

d<br />

P =<br />

• For the whole distribution of workloads, total<br />

kerma is<br />

P<br />

K<br />

P<br />

( x)<br />

=<br />

∑<br />

kVp<br />

K<br />

W<br />

( kVp)<br />

U W<br />

2<br />

d P<br />

( kVp)<br />

B(<br />

x,<br />

kVp)<br />

12


Primary <strong>Radiation</strong>:<br />

i<br />

The Old <strong>NCRP</strong>-49 Model<br />

x<br />

Barrier of thickness x decreases raw<br />

primary radiation kerma to P/T<br />

13


Primary <strong>Radiation</strong>:<br />

The Reality<br />

Grid, cassette,<br />

supporting structures<br />

patient<br />

t<br />

Primary radiation is significantly<br />

attenuated t before reaching barrier<br />

14


Primary <strong>Radiation</strong>:<br />

A Conservative, Realistic Model<br />

Grid, cassette, maybe<br />

image receptor<br />

supporting structures<br />

Even without the patient, primary radiation is still<br />

significantly ifi attenuated t before reaching barrier<br />

15


Primary <strong>Radiation</strong>:<br />

<strong>NCRP</strong>-<strong>147</strong> Model<br />

Grid, cassette, maybe<br />

supporting structures<br />

No patient!<br />

t!<br />

x pre<br />

} x tot = x + x pre<br />

x<br />

Assume primary beam attenuation in image receptor is due to a<br />

pseudo-barrier whose equivalent thickness x pre gives same<br />

transmission as that seen for actual image receptors.<br />

16


1E+0 Primary Transmission Through Patient,<br />

8<br />

6 Image Receptor, and Supports<br />

4<br />

Data of Dixon (1994)<br />

Transmiss sion<br />

1E-1<br />

2<br />

8<br />

6<br />

4<br />

2<br />

1E-2<br />

8<br />

6<br />

1E-3<br />

4<br />

2<br />

8<br />

6<br />

4<br />

2<br />

1E-4<br />

No patient & grid & cassette:<br />

B = 4.7E-6 kVp 2.181<br />

No patient & grid & cassette &<br />

cassette support structures &<br />

radiographic table:<br />

B = 9.36E-13 kVp 4.917<br />

ers<br />

Wall-Mou unted Grid +<br />

Cassette + Cassette Hold<br />

Type of Radiographic Table<br />

(data of Dixon 1994)<br />

GE RTE Table<br />

GE Advantx Table<br />

Siemens Multix-T Table<br />

Picker Clinix-T Table<br />

40 50 60 70 80 90 100 125 150<br />

kVp<br />

17


1E+3<br />

Values of x pre<br />

(Grid+cassette+support)<br />

p<br />

Gypsum<br />

1E+2 Plate Glass<br />

Concrete<br />

x pre (mm m)<br />

1E+1<br />

Steel<br />

1E+0<br />

Lead<br />

1E-1<br />

1<br />

20 30 40 50 60 70 80 90 100 110 120 130 140 150<br />

kVp<br />

18


x pre for Radiographic Room<br />

Workload Distributions<br />

• From <strong>NCRP</strong>-<strong>147</strong> Table 4.6:<br />

– Grid + cassette:<br />

• 0.3 mm Pb<br />

• 30 mm concrete<br />

– Gid+ Grid cassette +tbl/h table/chest tbucky supports:<br />

• 0.85 mm Pb<br />

• 72 mm concrete<br />

• (See Dixon & Simpkin Health Phys 74;181-<br />

189;1998 for a more complete list.)<br />

19


Calculation of Primary Kerma<br />

• Same as model in <strong>NCRP</strong>-49 except<br />

– account for workload distribution in kVp<br />

– May account for image receptor shielding x pre<br />

• Primary kerma in occupied area is then<br />

K ( x )<br />

P<br />

1<br />

d 2<br />

P<br />

+ x pre<br />

=<br />

∑ K W ( kVp)<br />

U W ( kVp)<br />

B(<br />

x + x pre , kVp)<br />

kVp<br />

20


Scatter <strong>Radiation</strong><br />

patient<br />

21


Scaled Normalized Scatter Fraction<br />

1 m<br />

1 m<br />

1m<br />

K S<br />

K P<br />

1 cm 2 area<br />

primary beam<br />

at 1 m<br />

θ<br />

K<br />

a<br />

′ =<br />

S<br />

× 10 +6<br />

1<br />

K<br />

P<br />

22


Scaled Normalized Scatter Fraction<br />

'<br />

23


Scatter <strong>Radiation</strong><br />

• Same theory as old <strong>NCRP</strong>-49<br />

K<br />

– scatter fraction data of Kelley & Trout reevaluated<br />

by Simpkin & Dixon (Health Phys 1998)<br />

– pri ib beam area F (cm 2 ) measured at pri idistance d F<br />

conveniently taken as image receptor area @ SID<br />

– explicitly itl show kVp dependence d and sum over<br />

workload distribution to yield shielded scatter<br />

kerma<br />

S<br />

−6<br />

a′<br />

× 10 K ( ) ( )<br />

,<br />

1 W<br />

kVp W kVp F<br />

( x θ ) =<br />

∑<br />

B<br />

( x,<br />

kVp<br />

)<br />

2 2<br />

d<br />

d<br />

kVp<br />

S<br />

F<br />

24


Leakage <strong>Radiation</strong><br />

<strong>Radiation</strong> originating from x-<br />

ray tube focal spot but not<br />

emanating from the tube<br />

portal<br />

patient<br />

25


Leakage radiation<br />

• Intensity can’t exceed L = 100 mR/hr at 1 m<br />

when tube is operated at its leakage<br />

technique factors<br />

– maximum potential for continuous operation<br />

kVp max (typically 135-150150 kVp, or 50 kVp for<br />

mammography)<br />

– I max is the maximum continuous tube current<br />

possible at kVp max . Note that this is usually a<br />

low mA, not typical of clinical radiography.<br />

26


Leakage radiation<br />

• These leakage technique factors specify<br />

how thick the shielding in the tube housing<br />

should be<br />

• <strong>NCRP</strong>49 suggested leakage technique<br />

factors of 3.3 mA at 150 kVp, 4 mA at 125<br />

kVp, 5 mA at 100 kVp; remain fairly<br />

typical today<br />

27


Leakage radiation<br />

• <strong>NCRP</strong>-<strong>147</strong> calculations (and shielding methods<br />

2 and 3) use<br />

– 3.33 mA at 150 kVp<br />

– worst case leakage rates<br />

– (Subsequently, we’ve found that assuming 4 mA at<br />

125 kVp leakage technique factors specifies<br />

barriers that are 10-20% thicker than in the report)<br />

– However, actual leakage rates are 0-30% of the<br />

maximum leakage so we don’t see a problem<br />

28


New Leakage Model<br />

• For tube operating at techniques (kVp, I) with<br />

transmission through the tube housing B housing ,<br />

assume leakage kerma rate at 1 m through tube<br />

housing is<br />

2<br />

K<br />

L ( h i<br />

( kVp<br />

)<br />

∝<br />

kVp<br />

I<br />

Bhousing (<br />

kVp<br />

)<br />

• Assume worst case scenario: leakage kerma rate =<br />

limit L for tube operation at leakage technique<br />

factors (conservative by factors of 3 to ~infinity)<br />

29


New Leakage Model<br />

• Estimate thickness of tube housing by using primary beam<br />

output at leakage technique factors as model for unhoused<br />

leakage radiation.<br />

1931 mGy/hr 100 mR/hr = 0.873 mGy/hr<br />

1 m<br />

Tube operated at<br />

150 kVp, 3.3 mA<br />

1 m<br />

“unhoused”<br />

tube<br />

Tube housing<br />

= 2.32 mm Pb<br />

thick<br />

1 m 1 m<br />

1931 mGy/hr 1931 mGy/hr<br />

30


New Leakage Model<br />

• Write ratio of leakage kerma rates at any kVp<br />

to L at kVp max<br />

• and knowing that at a given kVp, workload<br />

W(kVp) is the time integral of the tube<br />

current: W ( kVp)<br />

= ∫ I dt<br />

•then unshielded d leakage kerma K L (at 1 m) at<br />

that kVp is<br />

K L<br />

(0, kVp)<br />

=<br />

L kVp<br />

2<br />

(1 −U<br />

) W<br />

2<br />

( kVp)<br />

B<br />

housing<br />

kVp I<br />

B<br />

( housing max )<br />

max max<br />

kVp<br />

( kVp)<br />

31


New Leakage Model<br />

• Applying inverse square to distance d L from<br />

tube to shielded area,<br />

• and putting a barrier with transmission<br />

exp(–ln(2)x/HVL) between tube & area yields<br />

K L<br />

( x,<br />

kVp)<br />

=<br />

L kVp<br />

1<br />

d<br />

2<br />

d L<br />

2<br />

kVp<br />

(1 −<br />

U<br />

)<br />

W<br />

2<br />

max<br />

I<br />

max<br />

(<br />

kVp<br />

)<br />

B<br />

⎛ − ln(2) x<br />

× exp⎜<br />

⎝ HVL(kVp(<br />

)<br />

housing<br />

⎞<br />

⎟<br />

⎠<br />

B<br />

housing<br />

( kVp<br />

max<br />

(<br />

kVp<br />

)<br />

×<br />

)<br />

32


How far off is <strong>NCRP</strong>-49’s leakage model<br />

1E+0<br />

1E-1<br />

1E-2<br />

<strong>NCRP</strong>-1 <strong>147</strong> leakage e/<br />

<strong>NCRP</strong>-4 49 leakage<br />

1E-3<br />

1E-4<br />

Leakage dose as function of kVp<br />

transmitted through x-ray tube<br />

1E-5 housing of 2.32 mm Pb compared<br />

to that at 150 kVp<br />

1E-6<br />

1E-7<br />

Leakage technique factors:<br />

150 kVp, 3.3 mA for 100 mR/hr<br />

1E-8<br />

1E-9<br />

50 60 70 80 90 100 110 120 130 140 150<br />

kVp<br />

33


Summary: <strong>Shielding</strong> Model No. 1<br />

• Rigorous model based on the well-accepted<br />

<strong>NCRP</strong>-49 methods.<br />

• But you need a computer program<br />

(XRAYBARR, for example) to implement<br />

fully!<br />

• Is there a shielding method that allows<br />

paper and calculator solutions<br />

34


<strong>NCRP</strong>-<strong>147</strong> <strong>Shielding</strong> Model No. 2<br />

• For each clinical workload distribution, of<br />

total workload dWW norm per patient, for both<br />

primary and secondary barriers, <strong>NCRP</strong>-<strong>147</strong><br />

provides:<br />

– K 1 , the kerma per patient at 1 m distance<br />

• Primary kerma per patient K 1 P is in Table 4.5<br />

• Secondary kerma per patient K sec1 is in Table 4.7<br />

– B, the transmission of the radiation<br />

generated by this workload distribution for<br />

primary or secondary barriers (cf App B & C)<br />

35


<strong>NCRP</strong>-<strong>147</strong> <strong>Shielding</strong> Model No. 2<br />

Primary Air Kerma at 1 m for Workload<br />

Distributions, ib i K 1<br />

36


<strong>NCRP</strong>-<strong>147</strong> <strong>Shielding</strong> Model No. 2<br />

Secondary Air Kerma at 1 m for Workload<br />

Distributions, K 1 sec<br />

37


<strong>NCRP</strong>-<strong>147</strong> <strong>Shielding</strong> Model No. 2<br />

• For single kVp operation cf. Simpkin and<br />

Dixon Health Phys. 74(3), (), 350–365 for<br />

secondary kerma per workload at 1 m at<br />

single kVp operation<br />

• All other data is available in <strong>NCRP</strong> <strong>147</strong><br />

– But be careful reading scientific notation:<br />

1.234 x 10 1 = 12.34<br />

38


<strong>Shielding</strong> Model No. 2<br />

• Get the unshielded kerma, K(0), by scaling the kerma<br />

per patient at 1 m, K 1 , by<br />

– N patient procedures (suggested values of N are in Table<br />

4.3) or, equivalently<br />

– total workload W tot (where workload/pat = W norm )<br />

– can tweak W tot by a QE-specified different workload per<br />

patient, W site<br />

• Kerma is then<br />

1<br />

K<br />

U N<br />

K( 0) = =<br />

2<br />

d<br />

K<br />

– (where U is replaced dby 1 for secondary barriers)<br />

d<br />

1<br />

2<br />

U W<br />

W<br />

tt tot<br />

norm<br />

39


<strong>Shielding</strong> Model No. 2<br />

• Ratio of P/T to K(0) is the required transmission<br />

2 2<br />

P / T P d P d W<br />

B<br />

( x<br />

) = = =<br />

norm<br />

K<br />

(0)<br />

1<br />

1<br />

N T UD W T UD<br />

– (again, U is replaced by 1 for secondary barriers)<br />

• Transmission i B is now a function of<br />

– barrier material and thickness<br />

– workload distribution<br />

ib i<br />

– primary or secondary<br />

tot<br />

40


B=0.0047<br />

x=1.2 mm Pb<br />

42


Now the<br />

difficulty is in<br />

reading the<br />

correct curve!<br />

43


<strong>Shielding</strong> Model No. 3 for<br />

“Representative Rooms”<br />

• Model No. 2 fails for<br />

complicated<br />

assemblages of x-ray<br />

tubes/ positions/<br />

workload<br />

distributions, such as<br />

in a radiographic or<br />

radiographic/<br />

fluoroscopic room<br />

44


<strong>Shielding</strong> Model No. 3 for<br />

“Representative Rooms”<br />

• (Using XRAYBARR) <strong>NCRP</strong>-<strong>147</strong> shows<br />

barrier thickness requirements calculated for<br />

representative rooms:<br />

– Assume conservatively small room layout<br />

• assures maximum contribution from all sources<br />

– Presumes that the kinds of exposures made<br />

amongst the various x-ray tubes/positions follow<br />

those observed by the AAPM TG-9 survey<br />

45


Representative Radiographic Room<br />

46


Use Factors from AAPM Survey<br />

Rad Room:<br />

Chest Bucky<br />

(Another primary wall gets<br />

U=2% of the floor/ other<br />

barrier distribution; assume<br />

tube is centered overtable)<br />

Cross-table<br />

Lateral Position<br />

U=9%<br />

Overtable Position<br />

U=89% shooting down<br />

at tfloor<br />

Rad Room: floor/<br />

other barriers applies<br />

to Overtable and<br />

Crosstable positions<br />

47


Representative Radiographic Room<br />

Chest<br />

Bucky<br />

wall<br />

primary<br />

Secondary Barrier<br />

ky<br />

dary<br />

est Buck<br />

l second<br />

Che<br />

wal<br />

Cross-table<br />

Lateral Wall<br />

primary<br />

Secondary Barrier<br />

U=2%<br />

primary<br />

wall<br />

48


“Representative R&F Room”<br />

• Also assume a “Representative R&F room”<br />

– Has same layout as “Standard Radiographic Room<br />

except an undertable fluoro x-ray tube and image<br />

intensifier are added, centered over table<br />

– Does fluoro as well as standard radiographic work,<br />

with table and chest buckies and crosstable work<br />

• Assume<br />

– 75% of patients imaged as if in radiographic room<br />

– 25% of patients imaged by fluoroscopy tube<br />

49


“Representative R&F Room”<br />

Chest Rad<br />

tube<br />

Overtable<br />

Rad tube<br />

Image<br />

Intensifier<br />

Crosstable<br />

Lateral Rad<br />

Tube<br />

Undertable Fluoro Tube<br />

50


“Representative Room”<br />

Barrier Requirements<br />

• From Model 2, transmission requirement is<br />

B ( x)<br />

=<br />

2<br />

P d<br />

N T UK<br />

1<br />

• so the barrier thickness requirement must<br />

scale as:<br />

N T<br />

P d<br />

2<br />

51


• Method:<br />

“Representative Room”<br />

Barrier Requirements<br />

– Given N patients/week, need to shield to P/T, a<br />

distance d from the x-ray source<br />

N T<br />

P d<br />

– Calculate in mGy -1 m -2<br />

2<br />

– Look up the required barrier thickness on the<br />

graph appropriate for that workload<br />

distribution, barrier, and barrier material<br />

52


There are 12 NT/Pd 2 graphs<br />

2<br />

• For Representative Radiographic and R&F<br />

Rooms:<br />

–For Lead and Concrete:<br />

• Primary barriers with preshielding<br />

• Primary barriers without preshielding<br />

• Secondary barriers<br />

53


NT/Pd 2 curves have been fit<br />

•The NT/Pd 2 curves have been fit to a<br />

modified Archer eqn:<br />

• See fitting parameters at<br />

– http://geocities.com/djsimpkin/<strong>Shielding</strong>/Shield<br />

ing.htm<br />

55


NT/Pd 2 : From where is d<br />

Primary Barriers<br />

measured<br />

Floor<br />

overhead radiographic tube<br />

Chest Bucky wall<br />

chest tube (72" SID)<br />

Crosstable Lateral Wall cross-table tube (40" SID)<br />

2% U wall center of table<br />

Secondary Barriers<br />

Floor<br />

Chest Bucky secondary wall<br />

Secondary Wall<br />

Ceiling<br />

patient on table<br />

chest tube (72" SID)<br />

patient on table<br />

patient on table<br />

57


Equivalency of <strong>Shielding</strong> Materials for<br />

Model No. 3 Calculations<br />

• For “representative room” calculations only,<br />

conservatively conclude<br />

– Steel thickness requirement =<br />

8 × Pb thickness requirement<br />

– Gypsum wallboard thickness requirement =<br />

3.2 × concrete thickness requirement<br />

– Glass thickness requirement =<br />

1.2 × concrete thickness requirement<br />

58


Conclusions<br />

• <strong>NCRP</strong>-<strong>147</strong> utilizes 3 shielding models<br />

– Model No. 1: Extension of the methods of <strong>NCRP</strong>-49<br />

• With kVp dependence<br />

• With new models for primary and leakage<br />

• Requires computer program to implement tfully<br />

– Model No. 2: Based on data from model no. 1,<br />

• <strong>NCRP</strong>-<strong>147</strong> shows kerma per patient at 1 m and transmission<br />

curves appropriate for a given workload.<br />

• Calculate unshielded kerma and then transmission needed to<br />

reduce to P/T. Look up barrier thickness.<br />

– Model lNo. 3: Based on data from model no. 1,<br />

• For N patients at distance d (for a particular workload<br />

distribution & barrier), calculate NT/Pd 2<br />

• <strong>NCRP</strong>-<strong>147</strong> shows barrier thickness as function of NT/Pd 2<br />

59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!