05.02.2015 Views

PART 5_2 Chemical contaminants and ecotoxicology

PART 5_2 Chemical contaminants and ecotoxicology

PART 5_2 Chemical contaminants and ecotoxicology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Environmental Chemistry<br />

Part 5 Biospheric Chemistry<br />

5.2 <strong>Chemical</strong> <strong>contaminants</strong><br />

<strong>and</strong> <strong>ecotoxicology</strong>


Ecotoxicology<br />

• Ecotoxicological study is a multi-step<br />

process, involving:<br />

– The entry, distribution <strong>and</strong> fate of<br />

pollutants within the environment;<br />

– The entry <strong>and</strong> fate of pollutants in living<br />

(biota) organisms within an ecosystem;<br />

<strong>and</strong><br />

– The harmful effects of the chemical<br />

pollutants on the constituents (biotic &<br />

abiotic) of ecosystems (which include<br />

man).


Beyond our toxin trail<br />

Is the grave deeper than we thought<br />

Transport<br />

<strong>and</strong> fate<br />

Ingested<br />

Metabolized<br />

<strong>and</strong>/or stored<br />

Toxin<br />

emitted<br />

Ecosystem<br />

effects<br />

Contacts<br />

human<br />

Reaches<br />

an organ<br />

Community<br />

effects<br />

Population<br />

effects<br />

Physiological<br />

chain of events


Toxicology <strong>and</strong> Ecotoxicology are<br />

similar but not identical<br />

Toxicology<br />

• Absorption<br />

• Distribution<br />

• Metabolism<br />

• Elimination<br />

Ecotoxicology<br />

Release into environment<br />

Fate <strong>and</strong> disposition<br />

Metabolism<br />

No counterpart


There are also differences.<br />

Toxicology<br />

• Host defense<br />

mechanisms<br />

• Individual<br />

susceptibility states<br />

• Single effects<br />

• Cumulative<br />

exposure<br />

Ecotoxicology<br />

• Bioaccumulation<br />

• Bioconcentration<br />

(in water)<br />

• Biomagnification<br />

• Never single<br />

effects<br />

• Movement<br />

between media (air,<br />

water)


Ecological bases of Ecotoxicology<br />

• The basis for determining the effects of<br />

<strong>contaminants</strong> on ecosystem is at<br />

organism level<br />

• At organism level, response can be:<br />

– Acute toxicity causing mortality<br />

– Chronically accumulating damage ultimately<br />

causing death<br />

– Sublethal impairment of various aspects of<br />

physiology <strong>and</strong> morphology<br />

– Sublethal behavioral effects<br />

– Measurable biochemical changes


•At population level, response can be:<br />

–Size <strong>and</strong> dynamics (based on birth rates, death<br />

rates, gains, from immigration <strong>and</strong> losses from<br />

emigration)<br />

–Cause a reduction or an increase in the natural<br />

flowchart of numbers, in the biomass, sex ratio, etc.<br />

•At community level, response can be:<br />

–species diversity<br />

–predator prey relationship, etc<br />

•Change in ecosystem<br />

–nutrient cycling rates, patterns of nutrient flow,<br />

–physical-chemical conditions etc.


Underst<strong>and</strong>ing <strong>ecotoxicology</strong>


Assessment of Structural Changes<br />

changes in species / population structure<br />

- appearance/disappearance of an<br />

indicator species<br />

- number of individuals of a species<br />

- biomass of a species<br />

- presence or absence of a species<br />

Biomass-a quantitative estimate of the total mass of<br />

living plant or animal materials


changes in community/ecosystem structure<br />

- biomass<br />

- abundance<br />

- biotic indices (e.g. trophic types)<br />

- species richness / diversity<br />

- dominance<br />

- food chain length/complexity


<strong>Chemical</strong>s of Ecotoxicological<br />

interest<br />

• They are toxic <strong>and</strong> in many cases their<br />

metabolites are also harmful e.g. DDT & DDE<br />

(metabolite of DDT)<br />

• They are very stable both chemically <strong>and</strong><br />

environmentally<br />

• Their stability has lead to their persistence <strong>and</strong><br />

ubiquitous nature in the environment<br />

• Almost all chemicals of ecotoxicologigal interest<br />

are bioavailable <strong>and</strong> in most cases undergo<br />

bioaccumluation <strong>and</strong> biomagnification (food<br />

chain)


<strong>Chemical</strong> behavior <strong>and</strong> Bioavailability<br />

Bioconcentration (from external<br />

environment)<br />

Bioaccumulation (from external<br />

environment/food )<br />

Biomagnification (at higher tropic level)


Bioavailabiltiy The fraction of a chemical<br />

that is in an available form to an organism<br />

e.g. fish: food, absorption from water<br />

Bioconcentration - where the chemical<br />

concentration in an organism exceeds the<br />

concentration in the surrounding media (i.e.<br />

aquatic environment) as a result of exposure<br />

through the respiratory surfaces (i.e. gills/dermal<br />

surfaces) - not food!<br />

Bioconcentration Factor = conc. in organism<br />

conc. in ambient medium (usually water)


Bioaccumulation - where the chemical<br />

concentration in an organism achieves a level<br />

that exceeds that in the water/media as a result<br />

of chemical uptake through all routes of<br />

exposure.<br />

Bioaccumulation factor = Conc. in organism<br />

Conc. in food<br />

(or ingested water)<br />

•Bio-accumulation of Cd is higher than most<br />

metals as it is assimilated rapidly <strong>and</strong><br />

excreted slowly<br />

•depends on the rate of excretion


Biomagnification - where the chemical<br />

concentration in an organism achieves a<br />

level that exceeds that in the organism’s diet<br />

due to dietary absorption. i.e. higher trophic<br />

levels accumulate more chemical<br />

Biomagnification Factor =<br />

Conc. in predator<br />

Conc. in prey


Factors that influence bioaccumulation<br />

•Environmental persistence<br />

•Lipophilicity<br />

•Biotransformation


ECOSYSTEMS: Fate of Metals<br />

• The ultimate compartment is the whole<br />

planet but compartment can be<br />

– individual organism or<br />

– as small as single cells<br />

– Or even organelles within a cell<br />

• Metals are non-biodegradable<br />

• However there is the formation <strong>and</strong><br />

degradation of organometallic<br />

compounds e.g. MeHg,


Fate of Metals<br />

• Certain metals are assimilated by<br />

organisms to a greater extent than others<br />

• Bio-accumulation of Cd is higher than most<br />

metals as it is assimilated rapidly <strong>and</strong><br />

excreted slowly<br />

• Bio-availability is another reason for a high<br />

bio-concentration factor in that the<br />

chemical in question may be more bioavailable


Fate of Metals<br />

• pH is very important when it comes<br />

to metal bio-availability<br />

• Some metals e.g. Al is insoluble at<br />

normal to slightly acidic pH but<br />

below pH 4.5 its solubility increases<br />

dramatically <strong>and</strong> becomes most<br />

important responsible for fish kills<br />

in acidified lakes


ECOSYSTEMS: Terrestrial<br />

• Soils are contaminated<br />

– by metals <strong>and</strong> radioactive isotopes<br />

resulting from<br />

• industrial, mining or other activity or<br />

deposition from agricultural practices such<br />

as application of<br />

– metal-containing pesticides or<br />

– metal-contaminated sewage sludge<br />

– or wet or dry deposition from smelting<br />

activity, lead-containing car exhaust,<br />

atmospheric nuclear weapon testing or<br />

accidents such as Chernobyl.


ECOSYSTEMS: Terrestrial<br />

• Mobility of metals in soils is dictated<br />

largely by<br />

– clay content<br />

– amount of organic matter<br />

– pH<br />

• In general the higher the clay <strong>and</strong>/or<br />

organic matter content <strong>and</strong> pH, the more<br />

firmly bound are the metals <strong>and</strong> the longer<br />

is their residence time in soil<br />

• Acid rain helps in leaching nutrient<br />

(magnesium in European soil) from top to<br />

lower soil (inaccessible to root system)


ECOSYSTEMS: Terrestrial<br />

• Contamination of soils by radioactive<br />

materials is largely due to nuclear<br />

weapon testing (Australian <strong>and</strong><br />

Nevada deserts)<br />

• Accident has also contributed to that<br />

e.g. Chernobyl fallout outside the<br />

former Soviet Union.<br />

• When soils are contaminated<br />

organisms living in soils are affected


ECOSYSTEMS: Aquatic<br />

• The ultimate “sink” for metal is the ocean<br />

but difficult to estimate effect on biota due<br />

to massive dilution<br />

• Effect of metals on biota is much felt in<br />

estuaries especially those receiving water<br />

from contaminated sites<br />

• In estuaries the flow rate diminishes,<br />

suspended sediments settled <strong>and</strong> dissolved<br />

metals precipitated<br />

• Contaminated water affect organisms living<br />

in it


Biomarkers<br />

A xenobiotically induced alteration in<br />

cellular or biochemical components or<br />

processes, structures, or functions that is<br />

measurable in a biological system or<br />

sample.<br />

Types of Biomarkers<br />

Biomarkers of exposure<br />

Biomarkers of effect<br />

Biomarkers of susceptibility


1. Biomarkers of exposure<br />

Biomarkers of exposure include exogenous<br />

chemicals, metabolites, or products of<br />

interactions between environmental toxicants<br />

<strong>and</strong> target molecules or cells that are measured<br />

in a compartment within an organism (Travis,<br />

1993).


Internal dosimeters-<br />

1. measure the amount of a toxicant or its metabolite<br />

present in cells, tissues, or body fluids. Ex.<br />

urinary nitrophenol concentration used as a<br />

marker for methyl parathion exposure.<br />

2. account for individual differences in absorption<br />

<strong>and</strong> bioaccumulation of the xenobiotic <strong>and</strong> are<br />

relatively easy to measure.<br />

The biologically effective dose is the amount of the<br />

internal dose necessary to elicit a response or<br />

health effect.


2. Biomarkers of Effect<br />

Biomarkers of effect are measurable alterations<br />

of an organism that can indicate a potential or<br />

established health impairment or disease (Travis,<br />

1993). These can include an alteration in a tissue or<br />

organ, an early event in a biologic process that is<br />

predictive of disease, a health impairment or clinical<br />

disease, or a response parallel to the disease<br />

process, but correlated with it, <strong>and</strong> able to predict<br />

health impairment. Ex. the change in blood<br />

cholinesterase activity after exposure to anticholinesterase<br />

organophosphorous pesticides.


hypersensitivity)<br />

Nonspecific<br />

The induction of mixed function oxidase<br />

The formation of DNA adducts<br />

Sister chromatid exchange<br />

Str<strong>and</strong> breakage<br />

Porphyrin profile alteration<br />

Induction of vitellogenin in oviparous vertebrates<br />

Immunochanges (immunosupression,


Biomarkers in order of decreasing specificity<br />

Source: Walker et al. Principles of Ecotoxicology (2001) 2nd Edition [DUHS-P]


3. Biomarkers of Susceptibility<br />

Biomarkers of susceptibility indicate individual factors<br />

that can affect response to an environmental toxicant<br />

(Bearer, 1998). They are indicators of inherent or<br />

acquired properties of an organism that may lead to an<br />

increase or decrease in the internal dose of the<br />

xenobiotic or an increased or decreased level of the<br />

response resulting from the exposure.<br />

Genetic polymorphisms fall into this category of<br />

biomarkers.<br />

P450 1A1 induction<br />

Decreases in conjugated enzymes<br />

Inhibit the activity of immune system


Biomarker interpretation<br />

• Species different-ex.P450 induction<br />

• to integrate multiple chemical exposure across<br />

an area with a variety of chemical <strong>contaminants</strong><br />

•Relationship between biomarker <strong>and</strong> disease<br />

pathology<br />

•To predict disease<br />

•To predict environmental <strong>and</strong> genetic risk


Toxic Effects<br />

• The biochemical (molecular in nature) or<br />

physiological (observed at organ <strong>and</strong> whole<br />

organism levels) changes which adversely<br />

affect individual organisms’ birth, growth<br />

or mortality rates.<br />

• Both biochemical <strong>and</strong> physiological<br />

changes could lead to behavioral (whole<br />

organism level) changes


Example<br />

• The pollutant binding to a receptor<br />

• Followed by biochemical response at<br />

both cellular <strong>and</strong> organ levels<br />

• Leading to physiological responses<br />

• Finally, behavioral changes on the<br />

individual leading to effects on the<br />

population, community <strong>and</strong> the<br />

ecosystem.


BEHAVIORAL EFFECTS:<br />

– Migration,<br />

– intraspecific attraction,<br />

– aggregation,<br />

– aggression,<br />

– predation,<br />

– vulnerability,<br />

– mating


• Binding:<br />

– Reversible vs. Irreversible binding<br />

• Irreversible binding (covalent) causes harmful<br />

effects.<br />

• Types of bonding:<br />

– Covalent > ionic > Hydrogen binding > V<strong>and</strong>erwaals ><br />

hydrophilic<br />

• Biochemical responses:<br />

– Biochemical response could be protective or nonprotective<br />

(may or may not cause harmful effect).<br />

• Non-protective biochemical responses have<br />

Carcinogenic, Mutagenic, Teratogenic <strong>and</strong><br />

Neurotoxic potentials.


• Protective biochemical responses:<br />

– Monoxygenase (OCs <strong>and</strong> PAHs)<br />

– Induction <strong>and</strong> binding to metalothionein (Cu,<br />

Cd, Zn <strong>and</strong> Hg)<br />

– Binding to blood plasma, bones <strong>and</strong> hair<br />

(Metals <strong>and</strong> xenobiotics)<br />

– Dissolving in fat (organics- e.g. OCs)<br />

– Mineralization ( e.g. MeHg to Hg 2+)<br />

– Demineralization (As to MeAs)


Protective biochemical response<br />

• Heavy metals for example can be stored <strong>and</strong><br />

detoxified by organisms either by binding to<br />

specific proteins e.g. metallothioneins (-SH<br />

proteins)<br />

• In some cases it is mineralized to inorganic<br />

form, which is less toxic: e.g. Hg bound to Se<br />

is a mineralized Hg (detoxified Hg: MeHg to<br />

Hg). On the other h<strong>and</strong>, the inorganic form,<br />

which is more toxic can be methylated to a<br />

less toxic form e.g. As.


Protective biochemical response<br />

PHASE 1 REACTION.<br />

• Organic pollutants could also be metabolized <strong>and</strong><br />

detoxified by Cytochrome P450 enzymes<br />

(Microsomal Monoxygenase; MMO).<br />

PHASE 2 REACTION<br />

• The metabolites undergo conjugation with<br />

endogenous molecules e.g. GSH.<br />

• For some chemicals the metabolites/conjugated<br />

form are more toxic than the parent compound <strong>and</strong><br />

can lead to cancer formation.


Non-protective response<br />

– Binding to DNA (DNA adduct)<br />

– DNA Structural damage (str<strong>and</strong>s break)<br />

induced by genotoxic compounds<br />

– Binding to SH-Protein (Protein adduct);<br />

enzymes <strong>and</strong> proteins<br />

– Nerotoxicity: prolongation of K <strong>and</strong> Na flow<br />

<strong>and</strong> inhibition of AChE activity in the brain


Non-protective response<br />

– Mitochondrial Poison (lost of proton<br />

gradient)<br />

– Inhibition of vitamin K cycle (competition<br />

with vit K binding site)<br />

– Inhibition of Thyroxine (competition with<br />

thyrosine binding site)<br />

– Inhibition of ATPase (enzymes for<br />

transport of ions e.g. K, Na, Ca)


Non-protective response<br />

• Environmental Estrogens (eg DDT) <strong>and</strong><br />

<strong>and</strong>rogens (tributhyl Tin)<br />

• Endocrine disrupters (binding to endocrine<br />

receptors)<br />

• Photosystems of Plants (interruption of<br />

electron flow)<br />

• Plant growth regulation


Physiological changes<br />

Non-protective biochemical responses lead to<br />

Physiological changes which could be<br />

observed at organ <strong>and</strong> organism levels<br />

• Organ level:<br />

– accumulation of Cd in kidney, which could cause<br />

cell death (cytotoxicity), resulting in dysfunction of<br />

the kidney<br />

– PAHs <strong>and</strong> Lung cancer<br />

• Organism level:<br />

– decrease in production (growth <strong>and</strong> reproduction)<br />

– changes in gene frequency<br />

– decrease in resources acquisition <strong>and</strong> uptake


Behavioral Changes<br />

– Either or both physiological <strong>and</strong> biochemical<br />

effects could lead to behavioral effects at<br />

organism level-<br />

– e.g. caring for young ones <strong>and</strong> avoidance of<br />

predator.<br />

Biochemical, Physiological <strong>and</strong> Behavioral<br />

effects on the individual organism culminate<br />

effects observed at the Population,<br />

Community <strong>and</strong> Ecosystem levels.


Population Changes<br />

• Changes in population may come about as a<br />

result of direct changes in numbers of<br />

individual organism <strong>and</strong> gene frequency<br />

(resistance)<br />

• By indirect means (decrease in<br />

population of predators due to toxic<br />

chemicals could lead to increase in<br />

numbers of its prey).


Diclofenac residues as the cause of<br />

vulture population decline in Pakistan.<br />

Nature. 2004 Feb 12;427(6975):630-3.<br />

• Diclofenac<br />

causes kidney<br />

damage,<br />

increased serum<br />

uric acid<br />

concentrations,<br />

visceral gout, <strong>and</strong><br />

death.


• Changes in community structure<br />

– change in pyhtoplankton assemblage due to<br />

eutrophication<br />

– acid rain affecting microorganisms in the soil,<br />

aquatic life<br />

• Changes in Ecosystem level (earth as<br />

an ecosystem)<br />

– carbon dioxide increase<br />

– ozone depletion


Some General effects of pollution on an<br />

Ecosystem<br />

• Decrease in the suitability of the abiotic<br />

component as a habitat for the biotic<br />

components of the ecosystem, which have<br />

been naturally established <strong>and</strong> adapted to<br />

that ecosystem<br />

• Detrimental impact on part of the biotic<br />

component (vulnerable species) as related to<br />

the intensity <strong>and</strong> type of pollution<br />

• Alteration to the community structure <strong>and</strong> in<br />

most cases, there is a declined in the number<br />

of species present


Some General effects of pollution<br />

on an Ecosystem<br />

• Matter <strong>and</strong> Energy flow within the<br />

ecosystem changes<br />

• Removal of larger organisms with longer<br />

life spans<br />

• The appearance of opportunistic species<br />

with short life spans exhibiting large<br />

population fluctuations in time <strong>and</strong><br />

space


What is an Endocrine<br />

Disruptor <br />

“An exogenous agent that interferes<br />

with the synthesis, secretion,<br />

transport, binding, action, or<br />

elimination of natural hormones in<br />

the body that are responsible for the<br />

maintenance of homeostasis,<br />

reproduction, development <strong>and</strong>/or<br />

behavior. “


Mechanisms of endocrine disrupting<br />

compounds<br />

1) Binding <strong>and</strong> activating the estrogen receptor<br />

2) Binding but not activating the estrogen<br />

receptor (therefore acting as an anti-estrogen)<br />

3) Binding other receptors<br />

4) Modifying the metabolism of natural<br />

hormones<br />

5) Modifying the number of hormone receptors<br />

in a cell<br />

6) Modifying the production of natural hormones


Hormone regulation <strong>and</strong> feedback control<br />

Estrogen levels depend on<br />

Estrodiol serum-binding proteins<br />

α-fetoprotein (AFP)<br />

Testosterone-estradiol binding globulin<br />

Xenoestrogens (ex. DES)<br />

100-fold lower affinity than E2 to these binding<br />

protein<br />

Bioavailability increased


Non-genomic mechanisms of ED<br />

action<br />

• Compounds of the azole type, such as<br />

ketoconazole <strong>and</strong> the fungicide fenarimol,<br />

inhibit these CYP isoforms <strong>and</strong><br />

consequently can also affect steroid<br />

synthesis while the now-banned anti-fouling<br />

agent tributyltin <strong>and</strong> its metabolites, which<br />

have strong ED potential, are thought to act<br />

by the same mechanism, probably by<br />

inhibition of aromatase.


Genomic mechanisms of ED action<br />

• bind to oestrogen receptors <strong>and</strong> so act as<br />

pseudoestrogens in vivo, giving feminising effects<br />

• tamoxifen <strong>and</strong> diethylstilbestrol) <strong>and</strong> industrial<br />

chemicals (e.g. octylphenol <strong>and</strong> bisphenol-A<br />

• fungicide vinclozolin binds competitively to the<br />

<strong>and</strong>rogen receptor (Shono et al., 2004), blocking<br />

the cellular actions of testosterone on <strong>and</strong>rogendependent<br />

tissue growth <strong>and</strong> behaviour patterns<br />

• chlordecone, inhibit binding to the oestrogen <strong>and</strong><br />

progesterone receptors (Guzelia, 1982), whereas<br />

bisphenol-A can block lig<strong>and</strong> binding to the thyroid<br />

receptor


Timing, duration, <strong>and</strong> amount of exposure.<br />

Organization vs. activation<br />

Timing, duration, <strong>and</strong> amount of exposure are each<br />

important determinants of the outcome. There are<br />

windows of vulnerability during fetal development in<br />

which small exposures to endocrine disruptors may<br />

have profound effects not observed in adults.<br />

Studies of the intrauterine position of mice during<br />

fetal development show that slight fluctuations of<br />

steroid hormone levels influence genital morphology,<br />

timing of puberty, sexual attractiveness, sexual<br />

behavior, aggressiveness, <strong>and</strong> activity level of<br />

offspring.


Various Classes of EDCs<br />

Flame Retardants<br />

Fungicides<br />

Herbicides<br />

Insecticides<br />

Metals<br />

Pharmaceuticals<br />

Phenols<br />

Plasticizers<br />

Polyaromatic<br />

Hydrocarbons<br />

Soy Products<br />

Surfactants<br />

Polybrominated diphenyl ether<br />

Vinclozolin<br />

Atrazine<br />

Methoxychlor<br />

Tributyltin<br />

Ethynyl Estradiol<br />

Bisphenol A<br />

Phthalates<br />

PCBs, dioxins<br />

Genistein<br />

Alkylphenol<br />

Ethoxylates


PBDEs( 多 溴 二 苯 基 醚 )<br />

• Polybrominated diphenyl ethers (PBDEs)<br />

are a class of recalcitrant <strong>and</strong><br />

bioaccumulative halogenated<br />

compounds that have emerged as a<br />

major environmental pollutant. PBDEs<br />

are used as a flame-retardant <strong>and</strong> are<br />

found in consumer goods such as<br />

electrical equipment, construction<br />

materials, coatings, textiles <strong>and</strong><br />

polyurethane foam (furniture padding).


Bioavailability of PBDEs<br />

‣Found in animals<br />

‣Increase in fish<br />

‣Increase in whales<br />

‣Sewage sludge<br />

‣PCBs Found in Lake Washington<br />

Fish (PBDEs next)<br />

‣Found in human (breast milk)


PBDEs Breast Milk - Sweden<br />

(Norén <strong>and</strong> Mieronyté, 1998)


Health Effects of PBDEs<br />

‣Similar to PCBs (Polychlorinated biphenyls)<br />

‣PBT (Persistent Bioaccumulative Toxicant)<br />

‣No human data<br />

‣Animals studies indicate<br />

‣Effects thyroid hormone levels<br />

‣Neurobehavioral toxicity<br />

‣Effects development - alters Behavior<br />

‣Impairs memory <strong>and</strong> learning<br />

‣Delays sexual development


Vinclozolin<br />

• Vinclozolin is a fungicide that has been<br />

shown to cause Leydig cell tumors <strong>and</strong><br />

atrophy of the accessory sex gl<strong>and</strong>s in<br />

adult rodents. In addition, exposure of<br />

rats during pregnancy causes a pattern<br />

of malformations in the male urogenital<br />

tract .<br />

• Androgen receptor antagonist


Atrazine<br />

• A chlorotriazine herbicide, is used to control<br />

annual grasses <strong>and</strong> broadleaf weeds.<br />

• suppression of the luteinizing hormone surge<br />

during the estrus cycle by atrazine leads to the<br />

maintenance of elevated blood levels of 17betaestradiol<br />

(E2) <strong>and</strong> prolactin.<br />

• The mechanism for tumor development may<br />

include one or more of the following: the induction<br />

of aromatase (CYP19) <strong>and</strong>/or other P450<br />

oxygenases, an antagonist action at the estrogen<br />

feedback receptor in the hypothalamus, an<br />

agonist action at the mammary gl<strong>and</strong> estrogen<br />

receptor or an effect on adrenergic neurons in the<br />

hypothalamic-pituitary pathway.


双 酚 A<br />

Bisphenol-A<br />

BPA is used in the manufacture of<br />

polycarbonate plastics <strong>and</strong> epoxy resins from<br />

which food <strong>and</strong> beverage containers <strong>and</strong> dental<br />

materials are made. Perinatal exposure to<br />

environmentally relevant BPA doses results in<br />

morphological <strong>and</strong> functional alterations of the<br />

male <strong>and</strong> female genital tract <strong>and</strong> mammary<br />

gl<strong>and</strong>s that may predispose the tissue to earlier<br />

onset of disease, reduced fertility <strong>and</strong> mammary<br />

<strong>and</strong> prostate cancer


聚 氯 乙 烯 (PVC)<br />

让 长 牙 的 婴 儿 咬 玩 得 固 齿 器 、 洗 澡 玩 得 软 性 玩 具 、 价 格 不 贵 的 流<br />

行 卡 通 玩 具 常 常 是 PVC 制 品 , 在 使 用 中 可 能 释 放 出 邻 苯 二 甲 酸<br />

(phthalates) 这 类 有 致 癌 性 的 环 境 荷 尔 蒙 。<br />

【 安 全 替 代 品 】 仔 细 查 看 成 分 标 示 , 凡 是 婴 幼 儿 可 能 放 在 口 中 把<br />

玩 的 玩 具 一 定 选 择 PE( 聚 乙 烯 ) 制 品 。<br />

苯 乙 烯 alkylphenol ( 烷 基 酚 )<br />

摊 贩 、 自 助 餐 店 、 速 食 店 的 热 饮 杯 ( 装 汤 、 茶 、 咖 啡 )、 方 便<br />

面 的 面 碗 及 面 杯 绝 大 多 数 都 是 使 用 聚 苯 乙 烯 (polystyren) 的 塑<br />

胶 容 器 , 简 称 PS。 其 原 料 单 体 叫 苯 乙 烯 , 是 已 知 致 癌 物 。 并 且<br />

制 造 过 程 所 添 加 的 增 塑 剂 alkylphenol( 烷 基 酚 ) 也 是 会 干 扰 内<br />

分 泌 的 环 境 荷 尔 蒙 , 二 者 在 使 用 过 程 中 很 容 易 溶 出 到 食 物 中 。


化 妆 品 中 的 环 境 荷 尔 蒙<br />

多 数 的 化 妆 品 、 卸 妆 用 清 洁 用 品 含 有 几 类 的 环 境<br />

荷 尔 蒙 :<br />

• 壬 基 苯 酚 乙 烯 ( 一 种 非 离 子 表 面 活 性 剂 )<br />

• 邻 苯 二 甲 酸 (phthalates)<br />

• 烷 基 酚 (alkylphenol)


Tributyltin (TBT)<br />

三 丁 基 锡 是 一 种 有 机 锡 化 合 物 ,<br />

常 被 添 加 于 船 舶 油 漆 中 , 以 防 止 贝 类<br />

及 藻 类 附 着 于 船 身 , 由 于 具 有 杀 菌 效<br />

果 , 所 以 也 可 以 作 为 杀 菌 剂 使 用 。


收 到 三 丁 基 锡 或 三 苯 基 锡 污 染 的 雌 岩 螺 , 因 生 殖 孔 阻 塞 受<br />

精 卵 无 法 排 出 , 堆 积 在 生 殖 管 道 内 变 红 变 黑 形 成 坏 死 组 织 ,<br />

此 时 长 出 阴 茎 的 雌 化 作 用 也 同 时 引 发 。


许 多 生 物 对 有 机 锡 的 代 谢 能 力 低 , 在 低 浓<br />

度 长 时 间 的 污 染 下 , 负 面 效 果 即 能 呈 现 , 有 机<br />

锡 累 积 在 食 物 链 顶 端 的 鲸 豚 肝 脏 也 普 遍 存 在<br />

(up to 10 mg/kg)。 鉴 于 有 机 锡 污 染 对 海 域 生<br />

态 的 威 胁 , 全 世 界 将 禁 止 三 丁 基 锡 作 为 油 漆 添<br />

加 物 。<br />

此 外 , 有 机 锡 还 有 致 畸 胎 作 用 。


Phthalates 邻 苯 二 甲 酸 酯<br />

• 软 化 剂 , 广 泛 存 在 于 化 妆 品 、 儿 童 玩 具<br />

和 食 品 包 装 袋 中<br />

• 聚 氯 乙 烯 PVC 制 品 在 使 用 中 可 释 放 出 邻<br />

苯 二 甲 酸 酯<br />

• male infertility<br />

• Interfere with cholesterol uptake <strong>and</strong><br />

<strong>and</strong>rogen biosynthesis


Alkylphenol( 烷 基 酚 )<br />

• 聚 苯 乙 烯 制 品 制 造 过 程 中 所 添 加 的 增 塑 剂<br />

alkylphenol( 烷 基 酚 ) 也 是 会 干 扰 内 分 泌 的 环<br />

境 荷 尔 蒙 disrupted reproduction in pikeperch<br />

• In juvenile fish a decrease in the percentage<br />

of males <strong>and</strong> an increase of intersex fish was<br />

observed in relation to dose of NP <strong>and</strong> time of<br />

exposure to this alkylphenol.<br />

• Exposure of adult males to the NP led to the<br />

reduction in fecundity, milt quality <strong>and</strong> fertility.


EDSTAC Tier 1 Assays<br />

Concerned with detecting<br />

• Receptor binding assays (ER <strong>and</strong> AhR)<br />

• Uterotrophic<br />

• Hershberger<br />

• Pubertal female<br />

• Steroidogenesis<br />

• Frog metamorphosis<br />

• Fish reproductive screen


EDSTAC Tier 2<br />

dose-response relationship<br />

• Mammal development <strong>and</strong><br />

reproduction<br />

• Bird development <strong>and</strong> reproduction<br />

• Mysid shrimp life cycle<br />

• Fish reproduction <strong>and</strong> development<br />

• Amphibian development <strong>and</strong><br />

reproduction


Species-dependent sex determination<br />

Mammal XY/XX<br />

synthesis of testosterone/functional <strong>and</strong>rogen receptors<br />

estrogen receptor in the brain<br />

Birds WZ/WW<br />

The ability to synthesize <strong>and</strong> recognize 17β-estradiol is<br />

necessary for female CNS <strong>and</strong> gonadal sexual<br />

development to occur<br />

Reptile<br />

temperature-dependent sex determination (aromatase<br />

related)


Temperature-dependent sex determination<br />

thermosensitive period (TSP)


Temperature<br />

determines their<br />

sex. A nest<br />

temperature of<br />

73.5 degrees<br />

would develop<br />

males. If it heats<br />

up to 83.5,<br />

hormones would<br />

trigger changes<br />

causing the<br />

embryonic cells<br />

to differentiate<br />

as females.


III. Field studies<br />

Manipulative<br />

Observational (biomonitoring)<br />

This sections looks briefly at the field of microcosm<br />

<strong>and</strong> mesocosm toxicity testing.<br />

Microcosms - laboratory systems that are<br />

intended to physically simulate an ecosystem or a<br />

major subsystem of an ecosystem. They are an<br />

attempt to create systems that display ecosystem<br />

properties while permitting control of conditions <strong>and</strong><br />

replication of treatments at reasonable cost.


There are two types of microcosms, assembled <strong>and</strong><br />

excised.<br />

One of the more common assembled type is the aqutic<br />

microcosm developed by Taub (see Suter, 1993). This<br />

system consists of ten species of algae, five<br />

zooplankters (cladoceran, amphipod, ostracod,<br />

protozoan, <strong>and</strong> rotifer), <strong>and</strong> a bacterium in a defined<br />

aqueous medium with serile s<strong>and</strong> sediment all contained<br />

in gallon jar under fluorescent lights. The advantage of<br />

the system is that it is st<strong>and</strong>ardized, similar results can<br />

be achieved from different labs, researchers can<br />

compare results with different chemicals, <strong>and</strong> the limited<br />

<strong>and</strong> constant array of species makes it more likely that<br />

the cause of observed responses can be determined<br />

making it possible to model the ecosystem level<br />

interactions for extrapolation to the field. However, they<br />

are very much oversimplified.


Excised microcosms are segments of ecosystems that<br />

have been removed from the environment as a unit or a<br />

few units <strong>and</strong> placed in containers in the laboratory.<br />

They contain natural assemblages of biota, natural<br />

median <strong>and</strong> are more realistic. The are also less<br />

amenable to quality control <strong>and</strong> to comparisons.<br />

Examples include:<br />

•Mixed flask culture - mixed culture of microbes <strong>and</strong><br />

microinvertebrates derived from one or more natural<br />

communities <strong>and</strong> held in the lab.<br />

•Pond microcosm - water, sediment, macrophytes, <strong>and</strong><br />

associated biota obtained from a shallow pond or the<br />

littoral zone of a lake or slow-moving river<br />

•Site-specific aquatic microcosm - large tank of<br />

ambient water, a sediment core suspended in the water,<br />

<strong>and</strong> associated biota


Mesocosms - outdoor experimental systems that are<br />

delimited <strong>and</strong> to some extent enclosed.<br />

These systems offer more realism than microcosms due<br />

to their larger size <strong>and</strong> more natural physical conditions<br />

but can still provide replication, control of chemical<br />

exposure, <strong>and</strong> some control of biotic components.<br />

Mesocosm studies are currently a requirement for<br />

pesticide registration in the U.S. Mesocosms are also<br />

either assembled such as artificial ponds <strong>and</strong> streams or<br />

delimited such as limnocorrals <strong>and</strong> other enclosures of<br />

portions of an ecosystem.


Biomonitoring


生 物 監 測 (Biomonitoring) 在 歐 洲 國 家 於 20 世 紀<br />

初 首 先 使 用 藻 類 腐 水 指 標 系 統 監 測 水 質 , 其 後 陸 續<br />

建 立 底 棲 生 物 及 魚 類 指 標 監 測 方 法 。 一 般 河 川 水 質<br />

監 測 只 有 分 析 水 中 理 化 參 數 , 而 忽 略 水 中 生 物 之 存<br />

在 與 否 。Loeb 及 Spacie(1994) 指 出 , 水 中 生 物<br />

因 長 期 生 活 棲 息 之 水 中 環 境 , 任 何 外 來 物 質 刺 激<br />

(Stress), 他 們 首 當 其 衝 , 故 他 們 才 是 最 佳 環 境<br />

監 測 器 。 他 們 身 體 健 康 情 況 或 存 在 與 否 , 即 是 反 映<br />

水 質 好 壞 。<br />

河 川 生 物 監 測<br />

藻 類 評 估 水 質 使 用 之 方 法 為 藻 屬 指 數<br />

底 棲 水 生 昆 蟲 使 用 之 方 法 為 科 級 生 物 指 標 及 快 速 生<br />

物 評 估 法<br />

魚 類 評 估 方 法 有 魚 類 生 物 整 合 性 指 標 法 及 魚 類 指 標<br />


An Index of Biotic Integrity (IBI) is a tool (index) which<br />

we use to determine the health (integrity) of the fish<br />

community (biotic) in a given river. Webster's defines<br />

an index as "a ratio or other number derived from a<br />

series of observations <strong>and</strong> used as an indicator or<br />

measure". Biotic is defined as "of or relating to<br />

life". And integrity is defined as "the quality or state of<br />

completeness".<br />

The IBI examines three components of the fish<br />

community to determine its health. By knowing the<br />

abundance (total number of fish), the diversity<br />

(number of different species), <strong>and</strong> trophic (food chain)<br />

interactions, we get an idea of how healthy the fish<br />

community is in a given area.


Indicator species<br />

A species whose status provides information<br />

on the overall condition of the ecosystem <strong>and</strong><br />

of other species in that ecosystem.<br />

Particular tolerant or sensitive to<br />

environmental contamination.<br />

Ex. Ephemeroptera, Plecoptera, <strong>and</strong><br />

Trichoptera<br />

Biomarker responses to specific chemical<br />

are well characterized<br />

Accumulated environmental <strong>contaminants</strong>


Example 1<br />

• What will happen When Raw Domestic<br />

Sewage from a Sewered Community of<br />

40,000 people flows into a stream


Ecological Risk Assessment<br />

has three primary phases<br />

Problem formulation<br />

Analysis<br />

Risk characterization


•Data required to conduct an ecological risk<br />

assessment include the following:<br />

•Toxicity to wildlife, aquatic organisms, plants, an<br />

nontarget insects<br />

•Environmental fate<br />

•Environmental transport<br />

•Estimated environmental concentrations<br />

•Where <strong>and</strong> how the pesticide will be used<br />

•What animals <strong>and</strong> plants will be exposed<br />

•Climatologic, meterologic, <strong>and</strong> soil information

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!