13.02.2015 Views

Analysis of interconnection of permanent magnet generators to the ...

Analysis of interconnection of permanent magnet generators to the ...

Analysis of interconnection of permanent magnet generators to the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Analysis</strong> <strong>of</strong> <strong>interconnection</strong> <strong>of</strong><br />

<strong>permanent</strong> <strong>magnet</strong> <strong>genera<strong>to</strong>rs</strong> <strong>to</strong> <strong>the</strong><br />

distribution grid by ATP-EMTP<br />

s<strong>of</strong>tware <strong>to</strong>ol<br />

Saša S<strong>to</strong>jković<br />

Technical Faculty, Čačak, Serbia<br />

09. 09. 2009. DEMSEE 2009 1


1. INTRODUCTION<br />

Embedded generation:<br />

• Cage induction<br />

• Double feed induction<br />

• Classic synchronous machines<br />

• Permanent <strong>magnet</strong> synchronous machines<br />

09. 09. 2009. DEMSEE 2009 2


Permanent <strong>magnet</strong> <strong>genera<strong>to</strong>rs</strong><br />

• Simplicity<br />

• Cheapness<br />

• Contain <strong>permanent</strong> <strong>magnet</strong> instead <strong>of</strong> ro<strong>to</strong>r winding<br />

• Simple regulation (runner blades)<br />

• Best suited for small heads<br />

• Fairly new concept<br />

• PMGs have never been applied before<br />

• Eliminate <strong>the</strong> need for an excitation system<br />

• Magnetic field is obtained from <strong>permanent</strong> <strong>magnet</strong>s<br />

09. 09. 2009. DEMSEE 2009 3


2. MATHEMATICAL MODEL OF PM<br />

GENERATOR<br />

x = x = x<br />

ak d<br />

f k d<br />

a d<br />

⎡ψ<br />

d<br />

⎢<br />

⎢ψ<br />

⎢<br />

⎣ψ<br />

f<br />

v<br />

v<br />

k d<br />

⎡ψ<br />

q<br />

⎢<br />

⎣ψ<br />

⎤ ⎡ x<br />

⎥ ⎢<br />

⎥ = ⎢x<br />

⎥ ⎢<br />

⎦ ⎣<br />

x<br />

k q<br />

d<br />

a d<br />

a d<br />

⎤ ⎡ x<br />

⎥ = ⎢<br />

⎦ ⎣<br />

x<br />

1<br />

dψ<br />

q<br />

a k q<br />

x<br />

x<br />

x<br />

a d<br />

k d<br />

a d<br />

x<br />

x<br />

ω<br />

a k q<br />

k q<br />

x<br />

x<br />

x<br />

a d<br />

a d<br />

f<br />

⎤<br />

⎥ ⋅<br />

⎦<br />

d<br />

d = ⋅ − ⋅ψ<br />

q<br />

ω0<br />

dt ω0<br />

q<br />

1 dψ<br />

q ω<br />

= ⋅ − ⋅ψ<br />

d<br />

dt ω<br />

ω0<br />

0<br />

⎤ ⎡ i<br />

⎥ ⎢<br />

⎥ ⋅ ⎢i<br />

⎥ ⎢<br />

⎦ ⎣<br />

i<br />

⎡ i<br />

⎢<br />

⎣<br />

i<br />

q<br />

k q<br />

a<br />

⎤<br />

⎥<br />

⎦<br />

d<br />

k d<br />

f<br />

+ r ⋅ i<br />

a<br />

d<br />

+ r ⋅ i<br />

q<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

v<br />

v<br />

v<br />

f<br />

=<br />

1<br />

ω 0<br />

dψ<br />

f<br />

⋅<br />

dt<br />

1 dψ<br />

⋅<br />

ω dt<br />

+ r<br />

f<br />

⋅ i<br />

k d<br />

k d = + rk<br />

d ⋅ ik<br />

d<br />

0<br />

1 dψ<br />

k<br />

⋅<br />

ω dt<br />

q<br />

k q = + rk<br />

q ⋅ ik<br />

q<br />

0<br />

T<br />

e<br />

= ψ ⋅ i −ψ<br />

⋅ i<br />

d<br />

2H<br />

dω<br />

⋅ = T e + T m<br />

dt<br />

ω 0<br />

q<br />

q<br />

d<br />

f<br />

= 0<br />

= 0<br />

⎡ψ<br />

d<br />

⎢<br />

⎣ψ<br />

k d<br />

⎡ψ<br />

q<br />

⎢<br />

⎣ψ<br />

k q<br />

ψ = x<br />

−ψ<br />

0 ⎤ ⎡ x<br />

⎥ =<br />

−ψ<br />

⎢<br />

0 ⎦ ⎣<br />

x<br />

−ψ<br />

0 ⎤ ⎡ x<br />

⎥ =<br />

−ψ<br />

⎢<br />

0 ⎦ ⎣<br />

x<br />

⋅ i<br />

0 a d f 0<br />

d<br />

a d<br />

q<br />

a q<br />

x<br />

x<br />

x<br />

x<br />

a d<br />

k d<br />

a q<br />

k q<br />

⎤<br />

⎥ ⋅<br />

⎦<br />

⎡ i<br />

⎢<br />

⎣<br />

i<br />

⎤ ⎡ i<br />

⎥ ⋅ ⎢<br />

⎦ ⎣<br />

i<br />

d<br />

k d<br />

q<br />

k q<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

CLASSICAL MACHINE<br />

PERMANENT MAGNET MACHINE<br />

09. 09. 2009. DEMSEE 2009 4


Simulation <strong>of</strong> <strong>permanent</strong> <strong>magnet</strong> genera<strong>to</strong>r<br />

ATP-EMTP model<br />

09. 09. 2009. DEMSEE 2009 5


Additional work <strong>to</strong> determine operational regime<br />

j*Xd*I<br />

90°<br />

e0 = u ⋅ cosδ<br />

+ xd<br />

⋅ i ⋅ sinψ<br />

= 1,2<br />

e=1,2<br />

u=1<br />

i=1,00713<br />

s = u ⋅ i<br />

= 1,007136<br />

21°<br />

15°<br />

p = s ⋅ cos ϕ = 0,972819<br />

q = s ⋅ sin ϕ = 0,2606607<br />

φ=15˚. u=1. e=1.2. cosφ=0.9659258. sinφ=0.258819.<br />

2<br />

x d ⋅ i = e − ( u ⋅ cosϕ)<br />

− u ⋅ sinϕ<br />

= 0,4532<br />

2<br />

2<br />

e − ( u ⋅ cosϕ)<br />

− u ⋅ sinϕ<br />

i =<br />

= 1, 007136<br />

x<br />

tgψ<br />

=<br />

q<br />

x d<br />

2<br />

⋅ i + u ⋅ sinϕ<br />

= 0,7371148<br />

u ⋅ cosϕ<br />

ψ = arctg( tgψ ) = 36, 39°<br />

P = p ⋅ S<br />

Q = q ⋅ S<br />

2<br />

U<br />

R = P<br />

X<br />

= Q<br />

U<br />

2<br />

= 972819<br />

= 260666<br />

= 17,78912<br />

= 66,3899<br />

W<br />

VAr<br />

Ω<br />

Ω<br />

X<br />

L = = 211,3257 mH<br />

ω<br />

δ = ψ − ϕ = 21, 39°<br />

09. 09. 2009. DEMSEE 2009 6


4. RESULTS OF SIMULATIONS<br />

Active power as a function <strong>of</strong> reactive power (left)<br />

Relative apparent. active and reactive power as a function<br />

<strong>of</strong> angle f (right)<br />

Active power p [p.u.]<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

u=1<br />

u=0.95<br />

u=1.05<br />

p=1<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6<br />

Apparent, active and reactive power (p. u.)<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

u=1<br />

0.0<br />

-10 0 10 20 30 40 50 60 70 80<br />

s<br />

p<br />

q<br />

Reactive power q [p.u.]<br />

φ [ o ], u=1<br />

09. 09. 2009. DEMSEE 2009 7


Comparison between an analytical method<br />

and ATP-EMTP results<br />

quantyty unity analytical atp-emtp<br />

i p.u. 1.00713 1.03246<br />

ψ ˚ 36.4 35.5<br />

delta ˚ 21.4 20.5<br />

P W 972819 969504<br />

Q VAr 260666 260493<br />

sqrt(3)·If A 1328 1359<br />

T gen<br />

Nm 34521 35088<br />

I md<br />

A 1185 1203<br />

I mq<br />

A 194.9 193.7<br />

ψ md<br />

Wb 14.36 14.58<br />

ψ mq<br />

Wb 2.36 2.35<br />

I R<br />

A 135 135<br />

I X<br />

A 36.17 36.15<br />

09. 09. 2009. DEMSEE 2009 8


<strong>Analysis</strong> <strong>of</strong> transient processes by ATP-EMTP<br />

Three-phase short circuit from t=0.05 s <strong>to</strong> t=0.12 s<br />

Electric <strong>to</strong>rque (left)<br />

Mechanical angular speed (right)<br />

300<br />

38<br />

*10 3 (f ile DEMSEE_01.pl4; x-v ar t) u1:OMEGM<br />

200<br />

34<br />

100<br />

30<br />

0<br />

26<br />

-100<br />

22<br />

-200<br />

0.0 0.4 0.8 1.2 1.6 [s] 2.0<br />

(f ile DEMSEE_01.pl4; x-v ar t) u1:TQGEN<br />

18<br />

0.0 0.4 0.8 1.2 1.6 [s] 2.0<br />

09. 09. 2009. DEMSEE 2009 9


Three-phase short circuit from t=0.05 s <strong>to</strong> t=0.12 s<br />

machine sta<strong>to</strong>r current (left)<br />

part <strong>of</strong> left figure (right)<br />

1500<br />

1500<br />

1000<br />

1000<br />

500<br />

500<br />

0<br />

0<br />

-500<br />

-500<br />

-1000<br />

0.0 0.4 0.8 1.2 1.6 [s] 2.0<br />

(f ile DEMSEE_01.pl4; x-v ar t) u1:IPA<br />

-1000<br />

0.0 0.2 0.4 0.6 0.8 [s] 1.0<br />

(f ile DEMSEE_01.pl4; x-v ar t) u1:IPA<br />

09. 09. 2009. DEMSEE 2009 10


Three-phase short circuit from t=0.05 s <strong>to</strong> t=0.15 s<br />

(unstable machine)<br />

electric <strong>to</strong>rque (left)<br />

angular velocity (right)<br />

250<br />

140<br />

*10 3 (f ile DEMSEE_01.pl4; x-v ar t) u1:OMEGM<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

0.0 0.4 0.8 1.2 1.6 [s] 2.0<br />

(f ile DEMSEE_01.pl4; x-v ar t) u1:TQGEN<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0.0 0.4 0.8 1.2 1.6 [s] 2.0<br />

09. 09. 2009. DEMSEE 2009 11


Three-phase short circuit from t=0.05 s <strong>to</strong> t=0.15 s<br />

machine current (left)<br />

constant equivalent field current (right)<br />

1500<br />

0<br />

1000<br />

-500<br />

500<br />

-1000<br />

0<br />

-1500<br />

-500<br />

-2000<br />

-1000<br />

-2500<br />

-1500<br />

0.0 0.4 0.8 1.2 1.6 [s] 2.0<br />

(f ile DEMSEE_01.pl4; x-v ar t) u1:IPA<br />

-3000<br />

0.0 0.4 0.8 1.2 1.6 [s] 2.0<br />

(f ile DEMSEE_01.pl4; x-v ar t) u1:IE1<br />

09. 09. 2009. DEMSEE 2009 12


5. CONCLUSIONS<br />

• At this moment <strong>permanent</strong> <strong>magnet</strong><br />

embedded <strong>genera<strong>to</strong>rs</strong> are very important<br />

because <strong>of</strong> <strong>the</strong>ir simplicity, cheapness,<br />

and simple regulation. They are best<br />

suited for small heads, which are <strong>the</strong> most<br />

interesting in embedded generation.<br />

09. 09. 2009. DEMSEE 2009 13


5. CONCLUSIONS<br />

• There are no models for such machines in<br />

most commonly used transient s<strong>of</strong>tware<br />

<strong>to</strong>ols. The ATP-EMTP s<strong>of</strong>tware is capable<br />

<strong>of</strong> modelling such a machine because it<br />

can simulate constant field current.<br />

Unfortunately, this is not easily done, as it<br />

requires additional preparations.<br />

• In this paper an attempt has been made in<br />

that direction.<br />

09. 09. 2009. DEMSEE 2009 14


This work has been supported by <strong>the</strong><br />

Ministry <strong>of</strong> Science and Technology <strong>of</strong> <strong>the</strong><br />

Republic <strong>of</strong> Serbia, as a part <strong>of</strong> <strong>the</strong> project<br />

No. 17001.<br />

09. 09. 2009. DEMSEE 2009 15


THANK YOU FOR YOUR<br />

ATTENTION!<br />

Dr Saša S<strong>to</strong>jković<br />

Technical Faculty, Čačak, Serbia<br />

sasa.s<strong>to</strong>jkovic@EUnet.rs<br />

09. 09. 2009. DEMSEE 2009 16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!