23.02.2015 Views

Present and Future Global Navigation Satellite Systems (GNSS)

GEO2TECDI_GPS_2.pdf

GEO2TECDI_GPS_2.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Present</strong> <strong>and</strong> <strong>Future</strong> <strong>Global</strong> <strong>Navigation</strong><br />

<strong>Satellite</strong> <strong>Systems</strong> (<strong>GNSS</strong>)<br />

Earth Observation with <strong>Satellite</strong> Positioning Techniques - Lecture 1<br />

<strong>GNSS</strong> Training 18-29 May 2009, GEO2TECDI, Bangkok, Thail<strong>and</strong><br />

Hans van der Marel<br />

Edited <strong>and</strong> presented by Wim J.F. Simons<br />

Delft University of Technology<br />

Faculty of Aerospace Engineering<br />

The Netherl<strong>and</strong>s<br />

1


Contents – Lecture 1<br />

<strong>Present</strong> <strong>and</strong> future <strong>Global</strong> <strong>Navigation</strong> <strong>Satellite</strong> <strong>Systems</strong><br />

• Introduction to satellite navigation<br />

• GPS <strong>and</strong> GLONASS<br />

• GPS Modernization, Galileo, Compass, …<br />

• Basics of signal processing <strong>and</strong> the promises of new signals<br />

• Issues of accuracy, integrity, continuity <strong>and</strong> availability<br />

• <strong>GNSS</strong> augmentations<br />

• <strong>Present</strong> <strong>and</strong> future applications<br />

But not in<br />

this order<br />

2<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


Principle of <strong>Satellite</strong> navigation<br />

<strong>Satellite</strong> transmits:<br />

• Time code (atomic clock) *)<br />

• Message with position <strong>and</strong><br />

satellite clock error<br />

<strong>Satellite</strong><br />

Receiver computes:<br />

• time difference between<br />

satellite <strong>and</strong> receiver clock <br />

pseudo range<br />

• coordinates receiver (3) <strong>and</strong><br />

receiver clock error (1) **)<br />

x s<br />

p s r<br />

e s r<br />

x r<br />

c dt r<br />

3<br />

Receiver<br />

*) GPS<br />

• 1 civilian signal (L1-C/A)<br />

• 2 military signals L1-P(Y), L2-P(Y)<br />

**) From 4 or more satellites<br />

Earth<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


St<strong>and</strong>ard <strong>GNSS</strong> Point Positioning Algorithm<br />

Wanted (4 unknown parameters):<br />

• receiver position (x,y,z)<br />

• receiver clock error (dt)<br />

<strong>Satellite</strong><br />

Can be computed from:<br />

1. Measured pseudo-ranges on L1 *)<br />

e s r<br />

Receiver<br />

2. Broadcast ephemeredes (data message)<br />

x r<br />

satellite position <strong>and</strong> clock error<br />

ionospheric delay (for L1)<br />

Earth<br />

3. Tropospheric delay model<br />

*) We can only measure the distance to a satellite, not the 3-D vector!<br />

x s<br />

p s r<br />

c dt r<br />

4<br />

We need 4 or more satellites, more satellites is better (redundancy)!<br />

Least Squares Adjustment<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


<strong>Global</strong> <strong>Navigation</strong> <strong>Satellite</strong> <strong>Systems</strong><br />

GPS<br />

GLONASS<br />

Space Based Augmentation <strong>Systems</strong>:<br />

WAAS, EGNOS, MSAS, GAGAN, SDCM<br />

GALILEO<br />

IRNSS<br />

COMPASS<br />

QZSS<br />

5<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GPS: <strong>Present</strong> Status<br />

Signals:<br />

– Two frequencies (L1 <strong>and</strong> L2)<br />

– C/A-code on L1<br />

– P-code (encrypted) on L1 <strong>and</strong> L2<br />

<strong>Satellite</strong> constellation:<br />

– 24 nominal satellites (28 operational)<br />

– Block II/IIA/IIR satellites (until 2014)<br />

– Orbital period 11 hour 58 min<br />

– 6 orbital planes, 55 o inclination<br />

– 20,200 km altitude<br />

6<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


NAVSTAR GPS Block II <strong>Satellite</strong><br />

solar panels<br />

antenna for ground<br />

control<br />

array of 12 helix<br />

antennas<br />

7<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


NAVSTAR GPS Block IIR <strong>and</strong> IIF<br />

satellites Block IIR<br />

Block IIF<br />

> 2009?<br />

Last 8 of the IIR series retrofitted<br />

with CS code on L2; First<br />

retrofitted IIR launched<br />

December 2005<br />

8<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GPS <strong>Satellite</strong> Ground Tracks<br />

90<br />

60<br />

30<br />

0<br />

−30<br />

−60<br />

−90<br />

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180<br />

nearly circular orbits<br />

orbital period 11 h 58 m<br />

20,200 km altitude<br />

inclination 55 0<br />

6 orbital planes<br />

9<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GPS <strong>Satellite</strong> Visibility in Delft<br />

11<br />

<strong>Satellite</strong> (PRN)<br />

31<br />

30<br />

29<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

21<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

8.7 8.8 8.9 9 9.1 9.2 9.3 9.4 9.5<br />

Time [sec]<br />

x 10 5<br />

Number of satellites<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Number of visible satellites<br />

8.7 8.8 8.9 9 9.1 9.2 9.3 9.4 9.5<br />

Time [sec]<br />

x 10 5<br />

24 hour period<br />

Elevation cut-off<br />

angle 10 o<br />

1-Dec-1999<br />

10<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


80<br />

60<br />

40<br />

20<br />

0<br />

270<br />

−20<br />

−40<br />

−60<br />

−80<br />

GPS Skyplot (azimuth <strong>and</strong> elevation) for Delft<br />

300<br />

240<br />

3<br />

210<br />

330<br />

17<br />

21 19 21<br />

27 23<br />

24 29 7<br />

25<br />

4<br />

10<br />

22<br />

31<br />

26<br />

9<br />

15<br />

8<br />

30 16 13<br />

15<br />

5<br />

1418<br />

6<br />

31<br />

27<br />

0<br />

−50 0 50<br />

180<br />

15<br />

30<br />

45<br />

60<br />

75<br />

90<br />

119<br />

17<br />

3<br />

21<br />

21 2<br />

150<br />

30<br />

23<br />

23<br />

22<br />

60<br />

10<br />

4<br />

2924<br />

729<br />

25<br />

120<br />

90<br />

Elevation (deg)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Elevation versus time plot<br />

23<br />

31<br />

21<br />

29<br />

3<br />

2<br />

15<br />

14<br />

7<br />

25<br />

1<br />

16<br />

4<br />

18<br />

22<br />

24<br />

19<br />

13<br />

27<br />

10<br />

17<br />

2<br />

7<br />

23<br />

8.7 8.8 8.9 9 9.1 9.2 9.3 9.4 9.5<br />

Time [sec]<br />

x 10 5<br />

Skyplot (polar plot of azimuth<br />

<strong>and</strong> elevation)<br />

24 hour period<br />

Elevation cut-off angle 10 o<br />

1-Dec-1999<br />

26<br />

8<br />

9<br />

21<br />

5<br />

29<br />

4<br />

30<br />

24<br />

6<br />

25<br />

1<br />

10<br />

22<br />

17<br />

3<br />

11<br />

2321<br />

31<br />

19<br />

27<br />

15<br />

29<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


80<br />

60<br />

40<br />

20<br />

0<br />

270<br />

−20<br />

−40<br />

−60<br />

−80<br />

300<br />

240<br />

More GPS Skyplots…<br />

210<br />

330<br />

23<br />

29 7<br />

24<br />

2<br />

25<br />

27<br />

4<br />

10<br />

22<br />

31<br />

26<br />

3<br />

9<br />

15 30 13 16 8<br />

North Pole<br />

19 1<br />

221<br />

17<br />

0<br />

27<br />

26<br />

−50 0 50<br />

180<br />

6<br />

15<br />

30<br />

45<br />

60<br />

75<br />

90<br />

15 31<br />

14 5 186<br />

27<br />

150<br />

30<br />

18<br />

14 5<br />

816<br />

13 30 15<br />

8 9 9<br />

3<br />

26<br />

31<br />

22<br />

23<br />

10<br />

4<br />

25<br />

24<br />

21 729<br />

23<br />

321<br />

2<br />

117<br />

19<br />

60<br />

120<br />

90<br />

80<br />

60<br />

40<br />

20<br />

0<br />

270<br />

−20<br />

−40<br />

−60<br />

−80<br />

300<br />

240<br />

3<br />

2<br />

9<br />

210<br />

330<br />

519<br />

14 181<br />

617<br />

27<br />

21<br />

30 13<br />

21 16 815<br />

29<br />

23<br />

7<br />

2926<br />

24 31 25 22<br />

25<br />

410<br />

1-Dec-1999, 24h period<br />

Equator<br />

0<br />

−50 0 50<br />

180<br />

15<br />

23<br />

30<br />

45<br />

60<br />

75<br />

90<br />

6<br />

17<br />

150<br />

30<br />

9<br />

5<br />

30<br />

60<br />

120<br />

90<br />

12<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GPS Signal Components<br />

• All signals <strong>and</strong> time information are coherently derived from the same clock<br />

with a frequency of f0=10.23 MHz<br />

• cesium <strong>and</strong> rubidium clocks (two each)<br />

• clock stability better than 10-13<br />

• To compensate for relativistic effects a frequency offset of 4.55 10-3 Hz is applied<br />

• Two carrier frequencies<br />

• L1 frequency 1575.42 Mhz (154*f0) L1 wavelength 19.05 cm<br />

• L2 frequency 1227.60 Mhz (120*f0) L2 wavelength 24.45 cm<br />

• Binary bi-phase modulation (spread spectrum modulation) with two Pseudo<br />

R<strong>and</strong>om Noise (PRN) code sequences<br />

• Coarse/Aquisition (C/A) code on L1 with 1.023 bits/sec (0.1*f0) [1 ms long]<br />

• Precision (P) code on L1 <strong>and</strong> L2 with 10.23 bits/sec (f0) [ 7 days long]<br />

In case of Anti-Spoofing (A-S) the P-code is encrypted by a secret W-code,<br />

resulting in the classified Y-code<br />

A-S was enabled on Monday 31 January 1994 0h00m<br />

• The PRN codes are combined with a broadcast message (50 bits/sec)<br />

13<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GEOCENTER<br />

Principle of one-way ranging:<br />

<strong>Satellite</strong> clock generates signal<br />

Receiver clock detects signal arrival<br />

Pseudo Range<br />

∆t<br />

P I<br />

j<br />

= c ∆t = || r I -r j ||<br />

Carrier Phase<br />

Code arriving from satellite<br />

Replica generated in receiver<br />

Time delay (Pseudo<br />

Range measurement)<br />

Doppler shifted carrier from satellite<br />

Carrier generated in receiver<br />

Carrier beat signal<br />

GPS measurements<br />

PROBLEM:<br />

The two clocks must keep the same time<br />

P I<br />

j<br />

= -λϕ i<br />

j<br />

= || r I -r j || - λA i<br />

j<br />

14<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


Examples of GPS Receivers<br />

PC card module<br />

Harisons dream..<br />

h<strong>and</strong>held<br />

Geodetic receiver with radio<br />

link<br />

15<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


Geodetic GPS Receivers<br />

• Requirements for a geodetic receiver:<br />

• must be able to measure integrated carrier phase data<br />

• must have data recording capability (typically RAM)<br />

• must have downloading capability (RS-232, USB, TCP/IP)<br />

• may be single-frequency (L1) or dual-frequency (L1&L2)<br />

• Dual-frequency receivers must be able to cope with A-S.<br />

• Measurements are usually stored/downloaded in a proprietary data format<br />

• Raw measurements can be converted into the Receiver Independent Exchange<br />

Format (RINEX)<br />

• by the receiver, or<br />

• using special converter software (manufacturer, TEQC, …)<br />

• Read/write data stream in RTCM-SC104 format (D-GPS/RTK) over serial port,<br />

build in radio-link, or via TCP/IP using the NTRIP protocol [optional for $$]<br />

16<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


RINEX: Receiver INdependent EXchange format<br />

• Different file types<br />

• Observation file: pseudo range <strong>and</strong> carrier phase data<br />

• <strong>Navigation</strong> file: broadcast ephemeredes<br />

• Meteo file: optional meteorological data<br />

Each file contains the necessary meta data, such as station name, receiver <strong>and</strong><br />

antenna type, type of measurements, operator, date, approximate station<br />

coordinates, etc.<br />

• Naming convention . (example: delf204e.04o)<br />

4let:<br />

4 letter abbreviation for the station/vehicle name<br />

doy:<br />

day of the year (1…365)<br />

yy:<br />

last two digits of the year<br />

s: session number 0 complete day<br />

a…x identify the hour of the day<br />

t: RINEX file type (o=observation, n=navigation, m=meteo)<br />

17<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


Anti-Spoofing (A-S)<br />

• On block II satellites P-code is replaced by a secret Y-code (actually the<br />

P-code is encrypted)<br />

• To prevent military receivers from tracking "false" GPS satellites <strong>and</strong> to<br />

prevent jamming<br />

• Only (military) receivers with the appropriate "key" can use the Y-code<br />

• Two frequency GPS receivers cope with A-S in the following way<br />

Signal squaring on L2: L1 code & phase, L2 half wavelength phase<br />

Cross-correlation: L1 code & phase, Y2-Y1 code & L2-L1 phase<br />

P/W tracking: L1 code & phase, L2 code & phase<br />

Anti-Spoofing will always result in some loss of information, even if<br />

they can cope with A-S, the signal-to-noise ratio is worse than w/o A-S!<br />

• A-S was enabled on Monday 31 January 1994 0h00m,<br />

occasionally off for testing <strong>and</strong> other purposes<br />

18<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


Selective Availability (SA) – 1990-2000<br />

• Intentional degradation of satellite signals by<br />

"Dithering" of satellite clock (through adding periodic errors to the satellite<br />

clock with periods of 5-7 minutes)<br />

Introducing deliberately errors in the broadcast ephemerides<br />

Classified algorithm <strong>and</strong> characteristics<br />

• To provide 100 m horizontal <strong>and</strong> 170 m vertical accuracy (95%<br />

confidence level) for C/A-code navigation<br />

• Ways to mitigate the negative effects for positioning<br />

Military receivers are able to overcome SA<br />

Use Glonass instead<br />

☺ Can be overcome by differential GPS operation (much better than absolute<br />

positioning)<br />

• Implemented on all block II satellites, but not block I, although it is<br />

was off on some block II satellites<br />

• Was operational from March 1990 until May 2nd 2000 (none during the<br />

1st Gulf war), switched off on May 2nd at 4:05 UTC!!<br />

19<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


Selective Availability (SA)<br />

60<br />

GPS Pseudo Range error (2 May 2000, 3:00-5:00 UTC)<br />

Range Error [meters]<br />

Range error (meters)<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

SA turned off May 2 nd 2000<br />

4:05 UTC<br />

-60<br />

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5<br />

Time (Hours)<br />

20<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GPS Services<br />

SPS/SA:<br />

SPS<br />

PPS<br />

St<strong>and</strong>ard Positioning Service (SA on)<br />

St<strong>and</strong>ard Positioning Service (SA off)<br />

Precise Positioning Service (military only)<br />

1-freq.<br />

2-freq.<br />

SBAS<br />

DGPS<br />

PPP<br />

CP&RTK<br />

<strong>Satellite</strong> Based Augmentation System (global)<br />

- GPS alike signal from Geostationary <strong>Satellite</strong><br />

- Corrections / Integrity flag / Protection levels<br />

Differential GPS (regional corrections)<br />

Precise Point Positioning (global)<br />

1/2-freq.<br />

Carrier Phase & Real Time Kinematic<br />

1 freq.<br />

21<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


Accuracy (1σ) of GPS Services<br />

22<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GPS PRN 23 Anomaly, 1 Jan, 2004<br />

500<br />

400<br />

300<br />

200<br />

100<br />

East, North <strong>and</strong> Up differences − delf001s.04r<br />

Not noticed by US for 3 hours<br />

Picked up by EGNOS<br />

North<br />

East<br />

Up<br />

[m]<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

satellite PRN23 included (default)<br />

at 18:30 (UT)<br />

3 min.<br />

−500<br />

100 110 120 130 140 150 160 170 180 190 200<br />

Number of epochs<br />

at 10 seconds interval<br />

23<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GPS Modernization<br />

Signal upgrade:<br />

– Third L5 frequency (1176.45 MHz)<br />

– Military M-code (on L1 <strong>and</strong> L2)<br />

– Civil signals on L2 <strong>and</strong> L5<br />

– More signal power<br />

<strong>Satellite</strong> constellation upgrade:<br />

– Upgrade Block IIR satellites (2005>):<br />

– C/A like code on L2 (now 5 sats)<br />

– M-code on L1 <strong>and</strong> L2<br />

– New Block IIF satellites (2009?):<br />

– C/A-code on L2<br />

– M-code on L1 <strong>and</strong> L2<br />

– New L5 signal<br />

1 Block IIR with<br />

L5 in 2008<br />

24<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


Modernized Signal Evolution<br />

<strong>Present</strong> Signal<br />

L5<br />

P(Y)<br />

L2<br />

P(Y)<br />

L1<br />

C/A<br />

New Civil General<br />

Utility Signal<br />

P(Y)<br />

C/A<br />

P(Y)<br />

C/A<br />

Civil Safety of Life<br />

Applications <strong>and</strong><br />

New Military<br />

Signals<br />

1176 MHz<br />

P(Y)<br />

M<br />

C/A<br />

P(Y)<br />

M<br />

C/A<br />

1227 MHz 1575 MHz<br />

25<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GPS satellites<br />

Block I<br />

Launch: 1978-1985<br />

In use unil: 1995<br />

Expected life: 5 years<br />

Weight:<br />

759 kg<br />

Block II/IIA/IIR/IIR-M<br />

Launch: 1989-2003 2007<br />

In use until: 2014 2017<br />

Expected life: 7.5/7.5/10 years<br />

Weight:<br />

1660/1816/2032 kg<br />

Block IIF<br />

Launch: starting 2005 2009<br />

In use until: ?<br />

Expected life: 15 years<br />

Weight: ?<br />

26<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2<br />

27


GLO bal’naya<br />

NA igatsionnaya<br />

S putnikova<br />

S istema<br />

28<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


Introduction to Glonass<br />

GLONASS<br />

Russian satellite navigation system<br />

Not operational (anymore)<br />

first launch in 1982 (GPS in 1978)<br />

complete constellation in 1996 (GPS in 1993)<br />

in 2005: 14 satellites remaining<br />

(GPS 28 satellites)<br />

GLONASS is rebuilding<br />

Modernized Glonass-M (> 2003) <strong>and</strong> new Glonass-K (> 2009)<br />

Extended lifetime for Glonass-M (7 years) <strong>and</strong> Glonass-K (10 years)<br />

Several new launches in 2006, 2007<br />

18 operational satellites in 2008, plan for 24 satellites by 2010<br />

new signals <strong>and</strong> regional augmentation planned<br />

29<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


1 Jan 2000<br />

1 Jan 1999<br />

GLONASS satellite constellation<br />

30<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1 Jan 1982<br />

1 Jan 1983<br />

1 Jan 1984<br />

1 Jan 1985<br />

1 Jan 1986<br />

1 Jan 1987<br />

1 Jan 1988<br />

1 Jan 1989<br />

1 Jan 1990<br />

1 Jan 1991<br />

1 Jan 1992<br />

1 Jan 1993<br />

1 Jan 1994<br />

1 Jan 1995<br />

1 Jan 1996<br />

1 Jan 1997<br />

1 Jan 1998<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2<br />

31


GLONASS Space Segment (2)<br />

skyplot - 8 days<br />

ground tracks - 8 days<br />

80<br />

330<br />

0<br />

15<br />

30<br />

90<br />

60<br />

30<br />

60<br />

40<br />

300<br />

45<br />

60<br />

60<br />

30<br />

20<br />

75<br />

0<br />

270<br />

90<br />

90<br />

0<br />

−20<br />

−30<br />

−40<br />

240<br />

−60<br />

120<br />

−60<br />

−80<br />

210<br />

−50 0 50<br />

180<br />

150<br />

GPS PRN 1<br />

−90<br />

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180<br />

GLONASS slot 1<br />

32<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GLONASS signal structure (2)<br />

Difference GLONASS <strong>and</strong> GPS signals<br />

carrier + PRN-code modulation<br />

GLONASS: satellites transmit the same PRN-code on<br />

different carrier frequencies<br />

GPS:<br />

satellites transmit different PRN-codes on<br />

the same carrier frequency<br />

also: GPS PRN-codes are transmitted with a higher<br />

chip-rate than GLONASS PRN-codes<br />

33<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2<br />

34


The 4 GALILEO arguments<br />

- European independence <strong>and</strong> sovereignty<br />

- Industrial politics<br />

Political<br />

Social<br />

- Better <strong>and</strong> new services for the citizens<br />

- Improved safety of transport systems<br />

- Environmental benefits<br />

Economic<br />

Technological<br />

- Technological lead to European industry<br />

- Explore synergy of a number of technologies<br />

- <strong>Global</strong> market shares<br />

- <strong>Global</strong> competitiveness of all segments<br />

of the Value Chain<br />

- Employment<br />

- Efficiency of transport industry<br />

35<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GALILEO Services<br />

<strong>Navigation</strong> Services<br />

Open Access Service (OS)<br />

Consumer market, e.g. car navigation systems<br />

Commercial Service (CS)<br />

Commercial <strong>and</strong> Professional applications (geodesy)<br />

Improved accuracy (3 frequencies) <strong>and</strong> integrity<br />

Public Regulated Service (PRS)<br />

“Safety of life” services (SAS)<br />

Govermental services (PRS)<br />

Free<br />

Not Free!<br />

Original plan,<br />

now ab<strong>and</strong>oned<br />

Financed by government <strong>and</strong> industry -<br />

Public Private Partnership (PPP)<br />

36<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


Galileo added value<br />

• Under control of civilian authorities<br />

• Technological improvements<br />

• New technology (improved signals)<br />

• More frequencies <strong>and</strong> signals<br />

• More ground stations for tracking <strong>and</strong> orbit determination<br />

• Better choice of satellite orbits<br />

• Integrity service for “safety of life” applications<br />

• Integration (“interoperable”) with GPS<br />

• combined GPS <strong>and</strong> Galileo receivers<br />

• twice the number of satellites<br />

this is the probably the single most important contribution to<br />

accuracy <strong>and</strong> reliability<br />

37<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


Galileo status<br />

GIOVE-B in<br />

2008<br />

• Official go-ahead on 26 March 2002<br />

• Galileo System Test Bed (GSTB-V1) delivered in 2004<br />

• Implementation Galileo ground segment using GPS satellites<br />

• 10x better than GPS<br />

• First experimental satellite in 2005 (GSTB-V2) Launch 28 Dec 2005<br />

• First four “operational” satellites in 2006-2007 -> 2009-2010 (IOV)<br />

• Operational in 2008 -> 2009-2010 -> 2012-2013<br />

GIOVE-A<br />

• EGNOS (GPS/GLONASS Integrity Service) on geostationary satellites<br />

• EGNOS operational in 2005 (slight delay; wind-up, operational 2007)<br />

• EGNOS integrated with GALILEO in future (GEO service available until<br />

2015?) -> EGNOS MRS<br />

38<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GALILEO In Flight Configuration<br />

<strong>Navigation</strong> payload: 70-80 Kg / 850 W<br />

Search <strong>and</strong> Rescue (SAR)<br />

transponder: ca. 20 kg<br />

Overall Spacecraft:<br />

650 Kg / 1.5 kW class<br />

Launcher Options:<br />

Ariane, Proton, Soyuz, …...<br />

39<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GALILEOALILEO DATA<br />

Walker 27/3/1<br />

Constellation<br />

altitude ~23616 km<br />

SMA 29993.707 km<br />

inclination 56 degrees<br />

27 + 3 satellites in three<br />

Medium Earth Orbits (MEO)<br />

• period 14 hours 4 min<br />

• ground track repeat about 10 days<br />

40<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


GPS versus Galileo<br />

GPS <strong>Satellite</strong>s:<br />

24 nominal (27 operational)<br />

circular orbits 26,561 km<br />

Orbit period 11h58m (1/2)<br />

inclination 55 0 , 6 orbit planes<br />

GPS Signals (3+5):<br />

Two frequencies (L1=1575.42 MHz<br />

<strong>and</strong> L2=1227.60 MHz)<br />

Civil signal on L1 (C/A)<br />

Military signals on L1 <strong>and</strong> L2 (P(Y))<br />

Planned modernisation (+5):<br />

Third frequency (L5=1176.45 MHz)<br />

New civil signals on L2 <strong>and</strong> L5<br />

Plus two new military signals<br />

Galileo <strong>Satellite</strong>s:<br />

27 nominal + 3 active spare<br />

circular obits 29,600 km<br />

Orbital period 14h05m (10/17)<br />

inclination 56 0 , 3 orbit planes<br />

Galileo Signals (10):<br />

Four frequencies (L1, L5(E5a), E5b=<br />

1207.14 MHz, E6=1278.75)<br />

Open service (OS) on L1, E5a <strong>and</strong><br />

E5b, data+pilot channel, 6 signals<br />

Public Regulated (PRS), “safety of life”<br />

(SAS) <strong>and</strong> commercial (CS) services<br />

on e.g. E6, 4 signals<br />

Integrated integrity service<br />

41<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


First Galileo measurements in Delft<br />

Giove A<br />

Septentrio AsteRx1<br />

GPS<br />

C/A code noise vs SNR<br />

Giove B<br />

Giove B<br />

Giove A<br />

42<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


COMPASS<br />

43<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


IRNSS<br />

44<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2


QZSS<br />

45<br />

GEO2TECDI – Bangkok, May, 2009 – <strong>GNSS</strong> Lecture 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!