02.03.2015 Views

aba = 5, 1, 6 b = 1, 0, 3 ab = 3, 21, 1 ab = 6, 5, 1 ab = 21, 1, 3 ab = 1 ...

aba = 5, 1, 6 b = 1, 0, 3 ab = 3, 21, 1 ab = 6, 5, 1 ab = 21, 1, 3 ab = 1 ...

aba = 5, 1, 6 b = 1, 0, 3 ab = 3, 21, 1 ab = 6, 5, 1 ab = 21, 1, 3 ab = 1 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Name: __________________<br />

1 Find the cross product a b .<br />

a = 5, 1, 6 , b = 1, 0, 3<br />

Class: Math 22<br />

Spring 2005<br />

<br />

Date: _____________<br />

4 Find two unit vectors orthogonal to both 4, 1, 2 and<br />

2, 3, 8 .<br />

a. a b = 3, <strong>21</strong>, 1<br />

b. a b = 6, 5, 1<br />

c. a b = <strong>21</strong>, 1, 3<br />

d. a b = 1, 1, 9<br />

e. a b = 3, <strong>21</strong>, 1<br />

2 Find the cross product a b .<br />

a = t , t 2 , t 3 , b = 1, 5t , 8t 2<br />

a. a b = 3t 3 i 7t 2 j + 4t k<br />

b. a b = 3t 4 i 7t 3 j 4t 2 k<br />

a.<br />

b.<br />

c.<br />

<br />

2<br />

,<br />

1<br />

,<br />

1<br />

6 6 6<br />

2<br />

6<br />

,<br />

1<br />

,<br />

6<br />

1<br />

,<br />

6<br />

<br />

1<br />

,<br />

2<br />

,<br />

6 6<br />

1<br />

, <br />

6<br />

1<br />

,<br />

6<br />

1<br />

6<br />

2<br />

,<br />

1<br />

6 6<br />

1<br />

6<br />

1<br />

, <br />

2<br />

6 6<br />

1<br />

,<br />

2<br />

6 6<br />

,<br />

,<br />

,<br />

c.<br />

d.<br />

e.<br />

a b = 3t 2 i 7t 2 j + 4t 2 k<br />

a b = 3t 4 i + 7t 3 j 4t 2 k<br />

a b = 3t 4 i 7t 3 j + 4t 2 k<br />

d.<br />

1<br />

, <br />

6<br />

1<br />

,<br />

6<br />

2<br />

, <br />

6<br />

2<br />

,<br />

6<br />

1<br />

6<br />

1<br />

6<br />

,<br />

3 The figure shows a vector a in the xy plane and a<br />

vector b in the direction of k . Their lengths are a =<br />

6 and b = 2 . Find a b .<br />

e.<br />

1<br />

, <br />

6<br />

1<br />

,<br />

1<br />

, <br />

6 6<br />

1<br />

,<br />

2<br />

6 6<br />

2<br />

6<br />

,<br />

5 Find the area of the parallelogram with vertices<br />

K ( 4, 6, 2) , L ( 8, 8, 8) , M ( 13, 10, 13)<br />

, and<br />

N ( 9, 8, 7)<br />

. Please round the answer to the nearest<br />

hundredth.<br />

________<br />

a b =<br />

________<br />

6 Find a vector orthogonal to the plane through the points P,<br />

Q, and R.<br />

P ( 3, 0, 0) , Q ( 0, 9, 0) , R ( 0, 0, 4)<br />

a. 36, 11, 31 d. 34, 11, 32<br />

b. 36, 12, 27 e. 35, 5, 31<br />

c.<br />

35, 11, 27<br />

PAGE 1


Name: __________________<br />

7 Find a vector equation and parametric equations for the line<br />

through the point ( 6, 0, 10)<br />

and parallel to the vector<br />

10i 10j + 6k .<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

r = ( 4 + 13t ) i 13t j + ( 8 + 9t ) k;<br />

x =<br />

4 + 13t , y = 13t , z = 8 + 9t<br />

r = ( 9 + 14t ) i 14t j + ( 13 + 10t ) k ;<br />

x = 9 + 14t , y = 14t , z = 13 + 10t<br />

r = ( 7 + 8t ) i 8t j + ( 11 + 4t ) k;<br />

x =<br />

7 + 8t , y = 8t , z = 11 + 4t<br />

r = ( 10 + 11t ) i 11t j + ( 14 + 7t ) k;<br />

x = 10 + 11t , y = 11t , z = 14 + 7t<br />

r = ( 6 + 10t ) i 10t j + ( 10 + 6t ) k;<br />

x =<br />

6 + 10t , y = 10t , z = 10 + 6t<br />

8 Find a vector equation and parametric equations for the line<br />

through the origin and parallel to the line x = 8t , y =<br />

7 9t , z = 9 + 8t .<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

r = 7t i 8t j + 7t k;<br />

x = 7t , y = 8t , z =<br />

7t<br />

r = 8t i 9t j + 8t k;<br />

x = 8t , y = 9t , z =<br />

8t<br />

r = 12t i 13t j + 12t k ; x = 12t , y = <br />

13t , z = 12t<br />

r = 5t i 6t j + 5t k;<br />

x = 5t , y = 6t , z =<br />

5t<br />

r = 6t i 7t j + 6t k;<br />

x = 6t , y = 7t , z =<br />

6t<br />

9 Find a vector equation and parametric equations for the line<br />

through the point ( 7, 0, 10)<br />

and perpendicular to the<br />

plane 9x + 7y + 8z = 8.<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

Class: Math 22<br />

Spring 2005<br />

r = ( 6 + 11t ) i + 9t j + ( 9 + 10t ) k;<br />

x = 6 +<br />

11t , y = 9t , z = 9 + 10t<br />

r = ( 9 + 12t ) i + 10t j + ( 12 + 11t ) k ; x =<br />

9 + 12t , y = 10t , z = 12 + 11t<br />

r = ( 10 + 13t ) i + 11t j + ( 13 + 12t ) k ; x =<br />

10 + 13t , y = 11t , z = 13 + 12t<br />

r = ( 7 + 9t ) i + 7t j + ( 10 + 8t ) k ; x = 7 +<br />

9t , y = 7t , z = 10 + 8t<br />

r = ( 11 + 8t ) i + 6t j + ( 14 + 7t ) k ; x =<br />

11 + 8t , y = 6t , z = 14 + 7t<br />

Date: _____________<br />

10 Which of the following pairs of points lies on a line that is<br />

parallel to the line through points ( 2, 1, 2)<br />

and<br />

( 5, 2, 4)<br />

?<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

( 8, 5, 7), ( 11, 6, 9)<br />

( 12, 9, 11), ( 12, 7, 10)<br />

( 9, 6, 8), ( 9, 4, 7)<br />

( 5, 2, 4), ( 15, 10, 13)<br />

( 6, 3, 5), ( 8, 3, 6)<br />

11 Find parametric equations for the line through ( 4, 2, 0)<br />

that is perpendicular to the plane 5x y + z = 1.<br />

a. x = 4 + 5t , y = 2 t , z = t<br />

b. x = 2 t , y = 4 + 5t , z = t<br />

c. x = t , y = 4 + 5t , z = 2 t<br />

d. x = t + 20, y = 4 + 5t , z = 2 t<br />

e. x = 4 + 5t , y = t , z = 2 t<br />

12 Which of the following lines is parallel to the line with<br />

parametric equations x = 30t , y = 6 + 48t ,<br />

z = 24t ?<br />

a. x = 4 + 5s , y = 1 4s , z = 8s<br />

b. x = 1 + 5s , y = 4 8s , z = 4s<br />

c. x = 6 + 5s , y = 1 4s , z = 8s<br />

d. x = 4 + 8s , y = 1 5s , z = 4s<br />

e. x = 6 + 4s , y = 4 8s , z = 5s<br />

13 Find an equation of the plane through the point<br />

( 2, 0, 2) and with normal vector 5j + 9k .<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

6y + 10z = 19<br />

4x + 8y + 12z = <strong>21</strong><br />

7y 11z = 20<br />

5y + 9z = 18<br />

2x 5y + 9z = 18<br />

PAGE 2


Name: __________________<br />

14 Find an equation of the plane through the points<br />

( 0, 7, 2) , ( 2, 0, 2) , and ( 5, 7, 0)<br />

.<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

16x + 4y 35z = 93<br />

16x + 4y + 35z = 106<br />

14x + 4y + 35z = 98<br />

14x 4y + 35z = 97<br />

15x 4y + 35z = 93<br />

15 Find an equation of the plane that passes through the<br />

point ( 2, 6, 7) and contains the line x = 6t , y =<br />

3 + t , z = 5 t .<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

14x 5y + 16z = 39<br />

5x + 14y + 16z = 36<br />

5x 14y + 16z = 38<br />

16x + 5y + 14z = 41<br />

14x 5y + 16z = 36<br />

<br />

16 Find the point at which the line x = 9 + 5t , y = 6t ,<br />

z = 14 7t intersects the plane x + 4y z +<br />

5 = 0.<br />

17 Which of the following planes is parallel to the plane<br />

5x 4y + 9z = 4?<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

10x 8y + 7z = 3<br />

10x + 8y + 7z = 3<br />

45x 25y 20z = 3<br />

25x + 20y 45z = 3<br />

25x 20y + 45z = 3<br />

18 Find the point at which the lines<br />

r 1<br />

= 7, 8, 0 +<br />

t 1, 1, 9 and r = 15, 0, 54 +<br />

2<br />

s 1, 1, 0<br />

2, 8, 0 + t 1, 1, 6 and r = 2<br />

10, 0, 48 + s 1, 1, 0<br />

a. x + y = 11 d. x + y = 13<br />

b. x + y = 12 e. x + y = 3<br />

x + y = 10<br />

intersect:<br />

19 Find an equation of the plane that contains the lines<br />

c.<br />

.<br />

Class: Math 22<br />

Spring 2005<br />

r 1<br />

=<br />

Date: _____________<br />

<br />

20<br />

5z = x 2 Find the traces of the surface y 2<br />

in the<br />

planes x = k , y = k , and z = k .<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

x = k : 5z + k 2 = y 2 ; y = k : 5z k 2 =<br />

x 2 ; z = k : x 2 y 2 = 5k<br />

x = k : 5z k 2 = y 2 ; y = k : 5z + k 2 = x 2<br />

;<br />

z = k : x 2 + y 2 = 5k<br />

x = k : 5z k 2 = y 2 ; y = k : 5z + k 2 =<br />

x 2 ; z = k : x 2 y 2 = 5k<br />

x = k : 5z k 2 = y 2 ; y = k : 5z + k 2 =<br />

x 2 ; z = k : x 2 y 2 = 5k<br />

x = k : 5z k 2 = y 2 ; y = k : 5z k 2 =<br />

x 2 ; z = k : y 2 x 2 = 5k<br />

<strong>21</strong> Find an equation for the surface obtained by rotating the<br />

line x = 4y <strong>ab</strong>out the x axis.<br />

a.<br />

b.<br />

c.<br />

d.<br />

x 2<br />

16 + y 2 + z 2 = 1<br />

x 2<br />

16 = y 2 + z 2<br />

x 2 + 16y 2 + 16z 2 = 1<br />

x 2 = y 2 + 16z 2<br />

e. z = 16x 2 y 2<br />

22 Find the rectangular coordinates of the point with<br />

cylindrical coordinates 9, 2 , 4 .<br />

a. ( 0, 4, 9) d. ( 9, 0, 4)<br />

b. ( 9, 9, 4) e. ( 9, 0, 4)<br />

c. ( 0, 9, 4)<br />

23 Find the rectangular coordinates of the point with<br />

cylindrical coordinates ( 3, , 4e ) .<br />

a. ( 0, 3, 4e ) d. ( 3, 0, 4e )<br />

b. ( 0, 6, 4e ) e. ( 3, 0, 4e )<br />

c. ( 0, 6, 4e )<br />

PAGE 3


Name: __________________<br />

Class: Math 22<br />

Spring 2005<br />

24 Find cylindrical coordinates of the point with rectangular<br />

coordinates ( 3, 3, 4)<br />

.<br />

Date: _____________<br />

27 Find spherical coordinates of the point with rectangular<br />

coordinates ( 0, 6 3, 6)<br />

.<br />

a.<br />

3 2, 3 4 , 4<br />

a. 6, 3 , 3 d.<br />

2<br />

13, 3 2 , 3<br />

b.<br />

5, 4 , 4<br />

b. 12, 2 , e.<br />

3<br />

13, 2 , 3<br />

c.<br />

3, 4 , 4<br />

c.<br />

12, 3 , 2<br />

d.<br />

3 2, 4 , 4<br />

e.<br />

5, 3 4 , 4<br />

25 Find the rectangular coordinates of the point with spherical<br />

coordinates ( 3, 0, 0)<br />

.<br />

a. ( 0, 0, 3) d. ( 0, 0, 3)<br />

b. ( 0, 3, 0) e. ( 3, 0, 0)<br />

c. ( 0, 3, 0)<br />

26 Find the rectangular coordinates of the point with spherical<br />

coordinates 18, 5 4 , .<br />

3<br />

a.<br />

b.<br />

c.<br />

d.<br />

e.<br />

9 6<br />

4 , 9 6<br />

4 , 18<br />

9 3<br />

4 , 9 3<br />

4 , 9<br />

9 3<br />

2 , 9 3<br />

2 , 9 2<br />

9 6<br />

2 , 9 6<br />

2 , 9 2<br />

9 6<br />

2 , 9 6<br />

2 , 9<br />

PAGE 4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!