02.03.2015 Views

Bjorken Sum Rule and Deep Inelastic Scattering on Polarized ... - JINR

Bjorken Sum Rule and Deep Inelastic Scattering on Polarized ... - JINR

Bjorken Sum Rule and Deep Inelastic Scattering on Polarized ... - JINR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

L.P. Kaptari, A.Yu.Umnikov*<br />

BJORKEN SUM RULE<br />

AND DEEP INELASTIC SCATTERING<br />

ON POLARIZED NUCLEI<br />

Submitted to "Physics Letters 8''<br />

*Far East State University, Sukhanova 8,<br />

Vl adi vostok, USSR


1. In spite of that the structure functi<strong>on</strong>s (SF) of deep inelastic<br />

scattering (DIS) are studied extentively, this problem c<strong>on</strong>tinues to attract<br />

c<strong>on</strong>siderable attenti<strong>on</strong> nowadays motivated, in particular, by recent EMC<br />

experimental data[l] of DIS <strong>on</strong> polarized prot<strong>on</strong>s. It has been found there<br />

that the fracti<strong>on</strong> of prot<strong>on</strong> spin carried by quarks is close to zero ("spin<br />

crisis"). This discovery stimulated a number of works devoted to the<br />

spin c<strong>on</strong>tent of nucle<strong>on</strong>[2,3,4]. Since the situati<strong>on</strong> is still unclear, there<br />

is a great need of further experimental informati<strong>on</strong> <strong>on</strong> the spin, isospin<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the flavour structures of nucle<strong>on</strong>s. C<strong>on</strong>sequently, the polarized lept<strong>on</strong><br />

DIS <strong>on</strong> polarized nuclei should be a source of unique data. This especially<br />

c<strong>on</strong>cerns neutr<strong>on</strong>s in view of the obvious difficulties with the neutr<strong>on</strong><br />

targets. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, this type of experiments would be important<br />

for the study of the nuclear structure <str<strong>on</strong>g>and</str<strong>on</strong>g> models using in descripti<strong>on</strong> of<br />

DIS <strong>on</strong> nuclei such as a c<strong>on</strong>voluti<strong>on</strong> mode1[5,6].<br />

In the present letter we discuss (i) the problems of extracti<strong>on</strong> of the<br />

first moments of the nucle<strong>on</strong> SF from the nuclear SF in polarized DIS<br />

processes; <str<strong>on</strong>g>and</str<strong>on</strong>g> (ii) the c<strong>on</strong>necti<strong>on</strong> of the nuclear SF with the c<strong>on</strong>venti<strong>on</strong>al<br />

nuclei, data (weak decay, nuclear magnetic moments etc.).<br />

Accordingly, we c<strong>on</strong>sider below the spin-dependent SF GT(x, Q2) for<br />

different targets T (nucle<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> nuclei). Also the <str<strong>on</strong>g>Bjorken</str<strong>on</strong>g> sum rule<br />

(BSR)[7] is discussed, which is <strong>on</strong>e of the basic relati<strong>on</strong>s used in explorati<strong>on</strong><br />

of the "spin crisisn[2,3,4] (besides, it allows <strong>on</strong>e to relate the SF<br />

G?(x, Q2) to the quantities used in the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard nuclear physics): '<br />

where G:'" is the spin-dependent SF of a prot<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> a neutr<strong>on</strong> (denoted<br />

through p <str<strong>on</strong>g>and</str<strong>on</strong>g> n, resp.). This relati<strong>on</strong> can be applied to a nuclear target<br />

A in which case we substitute (gA/gv)A for g ~/gv in the r.h.s. of eq. (1).<br />

The direct experimental specificati<strong>on</strong> of the spin-dependent SF of nucle<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> verificati<strong>on</strong> of the basic relati<strong>on</strong>s such as BSR, are important in<br />

view of the c<strong>on</strong>tradicti<strong>on</strong>s between the QCD c<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> prot<strong>on</strong> data<br />

combined with indirect data of the quark spin structure of nucle<strong>on</strong>s[3].<br />

In the part<strong>on</strong> picture, the SF GT(x) is proporti<strong>on</strong>al to the probabilities<br />

of finding, in the target T, a c<strong>on</strong>stituent with the carried momentum<br />

fracti<strong>on</strong> x <str<strong>on</strong>g>and</str<strong>on</strong>g> with the spin parallel <str<strong>on</strong>g>and</str<strong>on</strong>g> antiparallel to that of the target:<br />

'Note that BSR has been obtained before the QCD creati<strong>on</strong> so it did not c<strong>on</strong>tain<br />

perturbative correcti<strong>on</strong>s such as (1 - a,/*). (Here a,(Q2) is the QCD parameter,<br />

a, x 0.27 at Q? = 15 GeV?).


where T = p, n, A...; a runs over sorts of part<strong>on</strong>s.<br />

Applying the c<strong>on</strong>voluti<strong>on</strong> model to the nuclei, we get for Gf(x) [5,6]:<br />

reversed, with J = 112. For the mirror nuclei we have<br />

SPA* SO that:<br />

= snA*, SnA =<br />

0<br />

1<br />

d~ 1 a8<br />

- x - ( x ) )<br />

= - . ( ) . (1 - -) =<br />

6<br />

AA'<br />

X<br />

where t is a virtual hadr<strong>on</strong> c<strong>on</strong>stituent of the nucleus A with SF Gi(x) (2).<br />

In the present work we shall be interested <strong>on</strong>ly in the nucle<strong>on</strong> structure<br />

of nuclei, therefore in what follows t = p, n. Besides, we neglected the<br />

nucle<strong>on</strong> off-mass effects such as the EMC-effect since in the case of the<br />

lightest nuclei the off-mass correcti<strong>on</strong>s to the typical integral values [such<br />

as (I)] are insignificant [8]. Then, the integrati<strong>on</strong> of eq. (3) gives:<br />

where PtTIAT resp. PtlIAT 5s the probability to find, in the ground state of<br />

the nucleus A, a c<strong>on</strong>stituent t with spin parallel, resp., antiparallel to the<br />

target <strong>on</strong>e. Withie the framework of the c<strong>on</strong>venti<strong>on</strong>al nuclear physics,<br />

the quantity [PtTIAT - PtlIAT] can be calculated as a matrix element of<br />

the operator Ciu',(i) (the sum is carried over the type t nucle<strong>on</strong>s) over<br />

the nucleus wave functi<strong>on</strong> (WF) I A):<br />

where = (A 1 Cp(,,) u$") I A) are the nuclear spin structure fat-<br />

. .<br />

tors. Equati<strong>on</strong> (5) is a straightforward c<strong>on</strong>sequence of the c<strong>on</strong>voluti<strong>on</strong> approach<br />

usually applying to the investigati<strong>on</strong>s of the DIS <strong>on</strong> nuclei. However,<br />

to interpret this relati<strong>on</strong>, <strong>on</strong>e should be extremely careful in view<br />

of (i) the eventual changes of the nucle<strong>on</strong> properties in nucleus, <str<strong>on</strong>g>and</str<strong>on</strong>g> in<br />

view of that (ii) the simplified c<strong>on</strong>siderati<strong>on</strong> of the nuclear structure may<br />

lead to incorrect results. It is appropriate now to remember the less<strong>on</strong>s<br />

of the EMC-effect which give rise to a number of explanati<strong>on</strong>s using both<br />

the nucle<strong>on</strong> properties modificati<strong>on</strong> (Q2-resealing, "swelling". ..) <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

nuclear structure effects (binding effects, mes<strong>on</strong>s...).<br />

The authors of ref. [5] applied BSR (1) <str<strong>on</strong>g>and</str<strong>on</strong>g> relati<strong>on</strong>s like (5) to determine<br />

gAlgv for bound nucle<strong>on</strong>s using the SF Gf <str<strong>on</strong>g>and</str<strong>on</strong>g> Gf' of the mirror<br />

nuclei i.e., of A <str<strong>on</strong>g>and</str<strong>on</strong>g> A', where the numbers of prot<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> neutr<strong>on</strong>s are<br />

Following to logic of the c<strong>on</strong>voluti<strong>on</strong> approach we must assume that<br />

(see ref. [5]): (gA/gv)bd. nucl. = g~/gv. In the c<strong>on</strong>text of our c<strong>on</strong>siderati<strong>on</strong><br />

this implies the coincidence of the first moments of the free <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

bound nucle<strong>on</strong> SF Gl(x). However, the ratio gA/gV is known to be<br />

"renormalized" in nuclei to the effective value (gA/gV)bd. nucl.[9] which<br />

can be determined from the 0-decay <str<strong>on</strong>g>and</str<strong>on</strong>g> Gamov-Teller transiti<strong>on</strong>s of<br />

nuclei. This discrepancy arises from the limitati<strong>on</strong> of the c<strong>on</strong>voluti<strong>on</strong> approach<br />

which operates <strong>on</strong>ly with the nucle<strong>on</strong> degrees of freedom, whereas<br />

the mes<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> other n<strong>on</strong>-nucle<strong>on</strong> c<strong>on</strong>stituents (A-isobars, multiquarks ...)<br />

also c<strong>on</strong>tribute to the nuclear SF. If <strong>on</strong>ly nucle<strong>on</strong>s are c<strong>on</strong>cerned, <strong>on</strong>e<br />

should clearly use the effective c<strong>on</strong>stant; the <strong>on</strong>ly excepti<strong>on</strong> is probably<br />

the case of lightest nuclei where the n<strong>on</strong>-nucleorr c<strong>on</strong>tributioes seem to<br />

be insignificant.<br />

Next, [SPA- SnA] is the matrix element of the operator u373 over<br />

the nucleus A WF. Just this matrix element appears in the nuclear 0-<br />

decay processes. The weak decay experiments with the mirror nuclei[9]<br />

give the empirical value (gA/gV)AA* which allows <strong>on</strong>e to determine the<br />

renormalized ratio gA/gv for bound nucle<strong>on</strong>s:<br />

(:)AA.<br />

= (E)<br />

A<br />

bd. nucl. (A I i=l Cujrj 1 A) bd. nucl.<br />

Equati<strong>on</strong>s (6) <str<strong>on</strong>g>and</str<strong>on</strong>g> (7) illustrate the relati<strong>on</strong>ship between DIS <str<strong>on</strong>g>and</str<strong>on</strong>g> weak<br />

processes. Using this relati<strong>on</strong>ship, the experimental 0-decay informati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> computing the nuclear spin structure factors, we are able to obtain<br />

the neutr<strong>on</strong> SF <str<strong>on</strong>g>and</str<strong>on</strong>g> the ratio gA/gv from the DIS <strong>on</strong> nuclei.<br />

2. The deuter<strong>on</strong> (D). It seems evidently that the nucle<strong>on</strong> properties<br />

in a deuter<strong>on</strong> least of all deviate from free <strong>on</strong>es. Therefore it is just<br />

the deuter<strong>on</strong> that is to be c<strong>on</strong>sidered as a more c<strong>on</strong>venient source of the<br />

polarized neutr<strong>on</strong> data like the unpolarized case[lO]. The main problem<br />

in the extracti<strong>on</strong> of the "nearly free" neutr<strong>on</strong> SF from the deuter<strong>on</strong> <strong>on</strong>e is<br />

the determinati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> exclusi<strong>on</strong> of the nucle<strong>on</strong> (unpolarized or polarized)<br />

Fermi-smearing in the deuter<strong>on</strong>. If we bear in mind to operate with the<br />

integral values (1) <str<strong>on</strong>g>and</str<strong>on</strong>g> (5), the deuter<strong>on</strong> structure influence comes to


factors<br />

Then the direct calculati<strong>on</strong> in (5) with the realistic deuter<strong>on</strong> WE<br />

yields:<br />

/ @Gf x<br />

1 1<br />

(x) = / :[G:(x)<br />

+ G;(x)l. sD,<br />

dx<br />

/-[~G:(x) - Gf (x)] =<br />

x<br />

0<br />

where PD is the D-wave weight in the deuter<strong>on</strong>. Equati<strong>on</strong>s (8) <str<strong>on</strong>g>and</str<strong>on</strong>g> (9)<br />

ive the way of obtaining the first moments of the polarized neutr<strong>on</strong> SF<br />

from the relevant SF of the deuter<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> prot<strong>on</strong>. Now, neglecting the<br />

change of nucle<strong>on</strong> properties in the deuter<strong>on</strong>, it is easy to find the desired<br />

expressi<strong>on</strong> for (gA/gV)pD gA/gV:<br />

1<br />

1 gA 03<br />

/ :(~G:(x) - (sD)-'Gf (x)) = - .- . (1 - -).<br />

0<br />

6 gv 7r<br />

Equati<strong>on</strong> (10) is an useful relati<strong>on</strong> for the experimental check of the<br />

validity of BSR or, if BSR holds valid, for verificati<strong>on</strong> of the perturbative<br />

QCD (for more detailed discussi<strong>on</strong>s of this problem, see, for instance,<br />

ref.131). Substituting the realistic value of PD = 0.0425 1131 into (9)<br />

we find SD Z 0.936 which essentially deviates from unity due to the<br />

orbital moti<strong>on</strong> of nucle<strong>on</strong>s inside the deuter<strong>on</strong> (D-wave admixture in the<br />

deuter<strong>on</strong> WE). Taking account of this structure factor SD in eq. (10)<br />

leads to an essential correcti<strong>on</strong> in final results in comparis<strong>on</strong> with the<br />

case when the deuter<strong>on</strong> is presented as a simple sum of two nucle<strong>on</strong>s<br />

at rest (SD = 1). Using the experimental values for gA/gv (1.259 f<br />

0.004 from ref.[14]) <str<strong>on</strong>g>and</str<strong>on</strong>g> for I, JG~(x)dx/x ( 0.114 f O.O12(stat.) k<br />

0.026(syst .) from EMC-experiments[l]) we can estimate the role of the<br />

structure factor SD in the experimental determinati<strong>on</strong> of the BSR in DIS<br />

<strong>on</strong> polarized prot<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> deuter<strong>on</strong>s:<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> from eq.(ll) we get that its r.h.s. deviate from (10) by -1 -2%.<br />

Taking into account of such an apparently small deviati<strong>on</strong> is important<br />

because of the sensitivity of further analysis of BSR <str<strong>on</strong>g>and</str<strong>on</strong>g> spin c<strong>on</strong>tents of<br />

the nucle<strong>on</strong>.<br />

3. Helium-3 <str<strong>on</strong>g>and</str<strong>on</strong>g> Tritium (3H -3 He) mirror pair. As it is shown<br />

above, the difference of the mirror nuclear SF is c<strong>on</strong>nected with the<br />

ratio (gA/gV)bd. nucl. <str<strong>on</strong>g>and</str<strong>on</strong>g> nuclear spin structure factors SpA(nA) by the<br />

unsophisticated relati<strong>on</strong> (6). The 3H -3He is the simplest example of a<br />

mirror nucleus pair with the well-known WE (see, for instance, refs.[l5,<br />

161). The general form of such a WE is:<br />

~~MJTMT =<br />

1 Ri,(rl, r2, r3) . (LmSp I JMJ). I Sp, TMT, v), (12)<br />

L,m,w<br />

where J,T, Mj, MT are the total momentum <str<strong>on</strong>g>and</str<strong>on</strong>g> total isospin momentum<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> their projecti<strong>on</strong>s corresp<strong>on</strong>ding to the c<strong>on</strong>sidered nucleus; S <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

L spin <str<strong>on</strong>g>and</str<strong>on</strong>g> angular momenta; index v enumerates the states with different<br />

spin-isospin symmetries; I Sp, TMT, v) is the spin-isospin state with<br />

symmetry v. The basic states in WE (12) are the completely symmetric<br />

S-state <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed symmetry St-state with L = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g>, also, D-state of<br />

the mixed symmetry with L = 2. The WE (12) allows <strong>on</strong>e to express the<br />

nuclear factors (5)-(6) in the explicit form:<br />

'<str<strong>on</strong>g>Deep</str<strong>on</strong>g> inelastic scattering from a polarized deuter<strong>on</strong> was studied in refs. [ll,<br />

121. The spin-dependent illoillentunl distributi<strong>on</strong> of nucle<strong>on</strong>s in the deuter<strong>on</strong> was<br />

determined. However, the problein of the possibility of the extracti<strong>on</strong> of the neutr<strong>on</strong><br />

SF <str<strong>on</strong>g>and</str<strong>on</strong>g> thereby of the ratio gA/gv was not c<strong>on</strong>sidered.<br />

where Ps, PSI <str<strong>on</strong>g>and</str<strong>on</strong>g> PD are weights of the S-, St- <str<strong>on</strong>g>and</str<strong>on</strong>g> D-wave in 3He (or<br />

3H) respectively. Using the typical values Ps = 0.897, Pst = 0.017 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

PD = 0.086 we find:<br />

4


which is essentially different from unity given by the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard siiell<br />

model[5].<br />

Using the experimental value[9] of (gA/gv)A,3 Z 1.2055 (7) <str<strong>on</strong>g>and</str<strong>on</strong>g> estimate<br />

(15), we get:<br />

2. ;:o underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the role of the mes<strong>on</strong> exchange currents let us c<strong>on</strong>sider<br />

a pedagogical example. The averaging operator in (5) is very<br />

similar to the c<strong>on</strong>venti<strong>on</strong>al nuclear operator of the magnetic moment:<br />

instead of 1.259 for the free nucle<strong>on</strong>s. Since the ratio gA/gv is renormalized<br />

in the A = 3 nuclei about 4%, these nuclei are irrelevant sources of<br />

the free neutr<strong>on</strong> SF data. However, the possibility to c<strong>on</strong>trol the BSR<br />

remains. Substituting (15), (16) into (6) we find:<br />

which differs slightly (- 5%) from the predicti<strong>on</strong> of the usual c<strong>on</strong>voluti<strong>on</strong>'<br />

model using the nuclear structure factor (15) (not unity!):<br />

4. C<strong>on</strong>cluding remarks<br />

Our analysis shows that in the polarized DIS <strong>on</strong> nuclei <strong>on</strong>e meet the<br />

reefs which are the same as in the unpolarized case (EMC-effect).<br />

Namely, the c<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>voluti<strong>on</strong> model must be corrected by<br />

taken into account that (i) the nucle<strong>on</strong> properties in a nucleus eventually<br />

change <str<strong>on</strong>g>and</str<strong>on</strong>g> (ii) the simplified c<strong>on</strong>siderati<strong>on</strong> of the nuclear<br />

structure may lead to the incorrect results. Above, we c<strong>on</strong>sidered<br />

the influence of nuclear spin-orbital structure <strong>on</strong> the nuclear SF.<br />

Then, using the "renormalized" c<strong>on</strong>stant gA/gv we also effectively<br />

took into account other effects such as the nucle<strong>on</strong> c<strong>on</strong>versi<strong>on</strong> in the<br />

nucleus, the n<strong>on</strong>-nucle<strong>on</strong> degrees of freedom (A-isobars, multiquark<br />

states,...), etc.<br />

I<br />

It is known that the calculati<strong>on</strong> of the magnetic moments of nuclei<br />

is unsatisfactory if <strong>on</strong>ly the nucle<strong>on</strong> degrees of freedom are taken<br />

into account. For instance, in the 3He <str<strong>on</strong>g>and</str<strong>on</strong>g> 3H cases the discrepancy<br />

is nearly 20%:<br />

TV<br />

p(3He)c,lc, = -1.743<br />

; /.L(~H~),,, 2 -2.128;<br />

p(3~)cal,, 2 2.558 ; p(3H)e,P. 2.979.<br />

The deviati<strong>on</strong> of pcalc. calculated with Ps, PSI <str<strong>on</strong>g>and</str<strong>on</strong>g> Po given above<br />

from the experimental value peZp, is explained by the mes<strong>on</strong> exchange<br />

correcti<strong>on</strong>s [15,17]. Note that in the deuter<strong>on</strong> case the analogous<br />

discrepancy is insignificant (-- 0.2%). It is an evident suggesti<strong>on</strong><br />

to the small c<strong>on</strong>tributi<strong>on</strong> of mes<strong>on</strong> correcti<strong>on</strong>s in deuter<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>, therefore, the renormalzati<strong>on</strong> effects are negligible.<br />

The inclusi<strong>on</strong> of the mes<strong>on</strong> exchange currents into the anal sis of<br />

deep inelastic scattering <strong>on</strong> nuclei was explored, in the unpo r arized<br />

cases, in refs.[8]. For the matrix elements of axial-vector currents<br />

the mes<strong>on</strong>-exchange correcti<strong>on</strong>s were investigated in refs.[l8] in nuclear<br />

weak processes.<br />

3. The established relati<strong>on</strong>s am<strong>on</strong>g the nuclear structure, the renormalized<br />

ratio gA/gv <str<strong>on</strong>g>and</str<strong>on</strong>g> the nuclear SF allow <strong>on</strong>e to predict the<br />

( ~ ~ 1values 9 ~ in ) (1). ~ In particular, according to the experimental<br />

values of (gA/gv)A[g], the BSR for nuclei must have a n<strong>on</strong>trivial<br />

A-dependence. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, <strong>on</strong>e may use relati<strong>on</strong> (6) to extract<br />

the renormalized ratio gA/gv from the DIS experimental data.<br />

4. In our opini<strong>on</strong>, the extracti<strong>on</strong> of the ratio galgv from the combined<br />

prot<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> deuter<strong>on</strong> SF is not worse than the extracti<strong>on</strong><br />

from mirror nucleus data. In both cases the calculati<strong>on</strong> procedure<br />

is model-dependent since, inevitably we must deal with the model<br />

of the nuclear WF determinin the nuclear factors SpAvnA. Besides,<br />

the WF of the "exactly solva % le" nuclear model, the deuter<strong>on</strong>, is<br />

the best understood object of the nuclear physics, <str<strong>on</strong>g>and</str<strong>on</strong>g> the renormalizati<strong>on</strong><br />

effects are the smallest possible.<br />

5. Note that the calculati<strong>on</strong> of the z-behavior of the SF Gf is a more<br />

complicated problem than the calculati<strong>on</strong> of its first moment. This


[13] R. Machleidt et al., Phys. Rep. 149 (1987) 1.<br />

difficulty is especially relevant for heavy nuclei because the corresp<strong>on</strong>ding<br />

WF become extremely complicated <str<strong>on</strong>g>and</str<strong>on</strong>g> in view of the [14] Review of Particle Properties, Particle Data Group, Phys. Lett.<br />

noticeable off-mass effects[l9]. 204B, (1988) 229.<br />

[15] A.C. Phillips, Rep. Prog. Phys. 40 (1977) 906.<br />

We would like to thank Drs. V.B. Belyaev, S.M. Dorkin, A.I. Titov<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> A.V. Radyushkin for many helpful discussi<strong>on</strong>s <strong>on</strong> the nuclear effects [16] J.L. Friar, B.F. Gibs<strong>on</strong>, G.L. Payne, Ann. Rev. Nucl. Sci. 34 (1984)<br />

in deep inelastic processes. 831.<br />

[17] E.P. Harper, Y.E. Kim, A. Tubis. Phys. ~ ett. 40B (1972) 533; W.<br />

References<br />

Jaus, Nucl. Phys. A271 (1974) 495;- T.E.O. ~ricsdn, A: ~ichter,<br />

Phys. Lett. 183B (1987) 249.<br />

[I] EMC Collab., J. Ashman et al., Phys. Lett. 206B (1988) 364.<br />

[18] K. Kubodera, J. Delorme, M. Rho, Phys. Rev. Lett. 40 (1978) 755;<br />

[2] R.L. Jaffe, A. Manohar, MIT Report CTP-1706 (1989), <str<strong>on</strong>g>and</str<strong>on</strong>g> refer- H.-U. Jager, M. Kirchbach, E. Truhlik, Nucl. Phys. A404 (1983)<br />

ences. 456.<br />

[3] G. Preparata, J. Soffer, Phys. Rev. Lett., 61 (1988) 1167; G. [19] S.V. Akulinichev, S.A. Kulagin, G.M. Vagradov, Phys. Lett. 158B<br />

Preparata, P. Ratcliff, J. Soffer. Milano preprint (1989). (1,985) 475; JETP Lett. 42 (1985) 105.<br />

[4] F.E. Close, R.G. Roberts, Phys. Rev. Lett., 60 (1988) 1471; G.<br />

Altarelli, G.G. Ross, Phys. Lett. 212B (1988) 391.<br />

[5] F.E. Close, R.G. Roberts, G.G. Ross, Nucl. Phys., B296 (1988) 582.<br />

[6] R.L. Jaffe, in Relativistic Dynamics <str<strong>on</strong>g>and</str<strong>on</strong>g> Quark Nuclear Physics,<br />

Eds.: M.B. Johns<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Picklesimer (Wiley, N.Y. 1986) 537.<br />

[7] J.D. <str<strong>on</strong>g>Bjorken</str<strong>on</strong>g>, Phys. Rev. 148 (1966) 1467.<br />

[8] L.P. Kaptari, B.L. Reznik, A.I. Titov, A.Yu. Umnikov, JETP Lett.<br />

47(9) (1988) 428; E.L. Bratkovskaya, L.P. Kaptari, A.I. Titov,<br />

A.Yu. Umnikov, Preprint <strong>JINR</strong>, E2-89-306, Dubna (1989); L.P.<br />

Kaptari, A.I. Titov, A.Yu. Umnikov, Preprint <strong>JINR</strong>, P2-89-564,<br />

Dubna (1989), will be published in J. Nucl. Phys. USSR.<br />

[9] S. Raman, C.A. Houser, T.A. Walkiewicz <str<strong>on</strong>g>and</str<strong>on</strong>g> I.S. Towner, Atomic<br />

Data <str<strong>on</strong>g>and</str<strong>on</strong>g> Nuclear Data Tables, 21 (1978) 567.<br />

[lo] EMC Collab., J.J. Aubert et al., Nucl. Phys. B293 (1987) 740.<br />

[ll] L.P. Kaptari, A.I. Titov, A.Yu. Umnikov, Preprint <strong>JINR</strong>, R2-86-<br />

264, Dubna (1986); 1.1. Bazhanskij, L.P. Kaptari, B.L. Reznik, A.I. ,<br />

Titov, A.Yu. Umnikov, Proc. VIII Int. Seminar <strong>on</strong> High Energy .<br />

Physics Problems, D1,2-86-668, Dubna (1986) 318.<br />

[12] P. Hoodbhoy, R.L. Jaffe, A. Manohar, Nucl. Phys. B312 (1989) 571. Received by Publishing Department<br />

<strong>on</strong> December 25, 1989.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!