09.03.2015 Views

AGATA - Nuclear Physics - University of Liverpool

AGATA - Nuclear Physics - University of Liverpool

AGATA - Nuclear Physics - University of Liverpool

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Position Sensitive Semiconductor<br />

Detectors for Use in <strong>Nuclear</strong> Structure<br />

Helen Boston<br />

On behalf <strong>of</strong> the<br />

<strong>AGATA</strong><br />

Community


Introduction<br />

• Challenges ahead for <strong>Nuclear</strong> <strong>Physics</strong> experiments<br />

• <strong>AGATA</strong> – The Advanced GAmma Tracking Array<br />

• Pulse Shape Analysis (PSA)<br />

• Gamma Ray Tracking (GRT)<br />

• Expected results<br />

• Time line<br />

• Future experiments


Experimental Conditions and Challenges<br />

FAIR<br />

SPIRAL2<br />

SPES<br />

REX-ISOLDE<br />

EURISOL<br />

ECOS<br />

• Low intensity<br />

• High backgrounds<br />

• Large Doppler broadening<br />

• High counting rates<br />

• High g-ray multiplicities<br />

Need instrumentation<br />

High efficiency<br />

High sensitivity<br />

High throughput<br />

Ancillary detectors


Future Arrays<br />

• Next generation g-ray spectrometer based on gammaray<br />

tracking<br />

• First “real” 4 germanium array no Compton<br />

suppression shields<br />

• Versatile spectrometer with very high efficiency and<br />

excellent spectrum quality for radioactive and high<br />

intensity stable beams


The Concept<br />

Without<br />

Compton<br />

suppression<br />

shields<br />

Compton<br />

continuum.<br />

=> Large<br />

peak to<br />

total ratio<br />

With BGO<br />

shielding<br />

With highly<br />

segmented<br />

detectors<br />

E<br />

'<br />

g<br />

<br />

1<br />

( E<br />

g<br />

E<br />

/ mc<br />

g<br />

2<br />

)(1 cos<br />

)<br />

Less solid<br />

angle<br />

coverage<br />

=> Big drop in<br />

efficiency<br />

Path <strong>of</strong> g-ray reconstructed to form<br />

full energy event<br />

=> Compton continuum reduced<br />

=> Excellent efficiency ~50% @1MeV<br />

=> Greatly improved angular<br />

resolution (~1 0 ) to reduce Doppler<br />

effects<br />

Gamma-ray tracking arrays


The <strong>AGATA</strong> Concept<br />

• Spherical array <strong>of</strong> 180 asymmetric HPGe detectors<br />

• Each detector has a 36-fold segmented outer<br />

Contact ( FWHM ~ 2keV @ 1.3MeV)<br />

• The crystal ;<br />

• 90mm long<br />

• 40mm Maximum<br />

diameter (10 o taper)<br />

P +<br />

• Completed array - HPGe covers<br />

full 4 solid angle<br />

back<br />

+4000V<br />

n +<br />

front


<strong>AGATA</strong><br />

(Design and characteristics)<br />

4 g-array for <strong>Nuclear</strong> <strong>Physics</strong> Experiments at European accelerators<br />

providing radioactive and stable beams<br />

Main features <strong>of</strong> <strong>AGATA</strong><br />

Efficiency: 43% (M g =1) 28% (M g =30)<br />

today’s arrays ~10% (gain ~4) 5% (gain ~1000)<br />

Peak/Total: 58% (M g =1) 49% (M g =30)<br />

today ~55% 40%<br />

Angular Resolution: ~1º <br />

FWHM (1 MeV, v/c=50%) ~ 6 keV !!!<br />

today<br />

~40 keV<br />

Rates: 3 MHz (M g =1) 300 kHz (M g =30)<br />

today 1 MHz 20 kHz<br />

• 180 large volume 36-fold segmented Ge crystals in 60 triple-clusters , 12<br />

pentagonals<br />

• Shell <strong>of</strong> Ge with inner radius <strong>of</strong> 23.5cm will consist <strong>of</strong> 230kg <strong>of</strong> Germanium<br />

• Solid angle coverage <strong>of</strong> 80%<br />

• Digital electronics and sophisticated Pulse Shape Analysis algorithms allow<br />

operation <strong>of</strong> Ge detectors in position sensitive mode g-ray tracking


Position Sensitive Detectors<br />

Highly segmented detectors<br />

• Each event x, y, z, t, E<br />

• x, y, z determined with PSA (IC + RC)<br />

/ mc<br />

• Experimental pulse shapes are compared to theoretical<br />

basis<br />

- Impossible to scan 180 detectors<br />

- Simulation can be adapted as neutron damage<br />

occurs<br />

• Tracking: Compton scatter formula relates scatter<br />

angle to energy deposited<br />

- Allows reconstruction <strong>of</strong> FEE<br />

- Increases P/T<br />

- Optimum use <strong>of</strong> HPGe coverage<br />

E<br />

'<br />

g<br />

<br />

1<br />

( E<br />

g<br />

E<br />

g<br />

2<br />

)(1 cos<br />

)


Ingredients <strong>of</strong> g-Tracking<br />

g<br />

1<br />

Highly segmented<br />

HPGe detectors<br />

Identified<br />

interaction<br />

points<br />

(x,y,z,E,t) i<br />

4<br />

Reconstruction <strong>of</strong> tracks<br />

e.g. by evaluation <strong>of</strong><br />

permutations<br />

<strong>of</strong> interaction points<br />

·<br />

· ·<br />

·<br />

Pulse Shape Analysis<br />

to decompose<br />

recorded waves<br />

2 3<br />

Digital electronics<br />

to record and<br />

process segment<br />

signals<br />

reconstructed g-rays


Pulse Shape Analysis (PSA)<br />

• Location <strong>of</strong> the interaction position within detector<br />

gathered by parameterisation <strong>of</strong> the information from<br />

the pulse shape<br />

• Real charge deposited and transient charges observed<br />

100%<br />

T90<br />

T50<br />

50%<br />

DE<br />

T30<br />

0%


Magnitude (keV)<br />

Magnitude (keV)<br />

Magnitude (keV)<br />

X Y position<br />

Image charge asymmetry varies as a function <strong>of</strong><br />

lateral interaction position<br />

- Calibration <strong>of</strong> asymmetry response<br />

Pixilation 5x5x20mm becomes 1mm 3<br />

Asymmetry<br />

<br />

Area<br />

Area<br />

left<br />

left<br />

<br />

<br />

Area<br />

Area<br />

right<br />

right<br />

700<br />

AC03<br />

700<br />

AC04<br />

700<br />

AC05<br />

700<br />

AC06<br />

700<br />

AC07<br />

600<br />

600<br />

600<br />

600<br />

600<br />

500<br />

500<br />

500<br />

500<br />

500<br />

400<br />

400<br />

400<br />

400<br />

400<br />

300<br />

300<br />

300<br />

300<br />

300<br />

200<br />

200<br />

200<br />

200<br />

200<br />

100<br />

100<br />

100<br />

100<br />

100<br />

0<br />

0 1000 2000 3000<br />

Time (ns)<br />

0<br />

0 1000 2000 3000<br />

Time (ns)<br />

0<br />

0 1000 2000 3000<br />

Time (ns)<br />

0<br />

0 1000 2000 3000<br />

Time (ns)<br />

0<br />

0 1000 2000 3000<br />

Time (ns)<br />

h<br />

e


Azimuthal Detector Sensitivity<br />

r = 24mm<br />

z = 7.3mm<br />

= 124.1 o<br />

F1<br />

A1<br />

E1<br />

0 o<br />

B1<br />

D1<br />

C1


21<br />

Azimuthal Detector Sensitivity<br />

r = 24mm<br />

z = 7.3mm<br />

= 133.7 o<br />

F1<br />

A1<br />

E1<br />

0 o<br />

B1<br />

D1<br />

C1


Azimuthal Detector Sensitivity<br />

r = 24mm<br />

z = 7.3mm<br />

= 143.2 o<br />

F1<br />

A1<br />

E1<br />

0 o<br />

B1<br />

D1<br />

C1


Azimuthal Detector Sensitivity<br />

r = 24mm<br />

z = 7.3mm<br />

= 152.8 o<br />

F1<br />

A1<br />

E1<br />

0 o<br />

B1<br />

D1<br />

C1


Azimuthal Detector Sensitivity<br />

r = 24mm<br />

z = 7.3mm<br />

= 162.3 o<br />

F1<br />

A1<br />

E1<br />

0 o<br />

B1<br />

D1<br />

C1


Azimuthal Detector Sensitivity<br />

r = 24mm<br />

z = 7.3mm<br />

= 171.9 o<br />

F1<br />

A1<br />

E1<br />

0 o<br />

B1<br />

D1<br />

C1


Depth Position<br />

• Depth <strong>of</strong><br />

position<br />

gained<br />

from side<br />

scan<br />

• Asymmetry<br />

• D6 and D1<br />

no<br />

neighbour<br />

segments<br />

so area<br />

divided by<br />

gamma ray<br />

energy


Pulse Shape Analysis : Current Status<br />

Results from the analysis <strong>of</strong> an in-beam test with the first triple module,<br />

e.g. Doppler correction <strong>of</strong> gamma-rays using PSA results<br />

d( 48 Ti,p) 49 Ti, v/c ~6.5%<br />

REACTION CHANNEL: (d,p)<br />

Best result<br />

γ detector,<br />

seg. mult. 1<br />

Full<br />

dataset<br />

Simulation<br />

FWHM FWHM FWHM<br />

1382 keV<br />

Psa<br />

Seg<br />

Det<br />

Detector 32 keV 35 keV<br />

Segment 11.1 keV 12 keV<br />

PSA 4.8 keV 5.3 keV 5.0 keV<br />

Results obtained with Grid Search PSA algorithm (R.Venturelli et al.)<br />

Many different methods are under development


Gamma Ray Tracking (GRT)<br />

• Basic assumptions w.r.t. Energy and Klein Nishina<br />

• 1 st interaction deposits most energy<br />

• Scatter will be forward focused


Expected Results<br />

• Simulation <strong>of</strong><br />

rotational band<br />

structure<br />

emitted by a<br />

recoiling<br />

nucleus with<br />

very high<br />

velocity<br />

• Gain in<br />

efficiency and<br />

resolution<br />

=50%<br />

Agata: FWHM(1.3 MeV)~6 keV<br />

Euroball: FWHM(1.3 MeV)~60 keV<br />

From W Lopez-Martens


Characterisation and Scanning<br />

Comparison <strong>of</strong> real and calculated pulse shapes. Validate codes.<br />

Coincidence scan for<br />

3D position determination<br />

Three symmetric capsules scanned<br />

in <strong>Liverpool</strong><br />

374<br />

keV<br />

662<br />

keV<br />

288<br />

keV<br />

Commissioning <strong>of</strong> further scanning<br />

systems<br />

at Orsay and GSI<br />

Scan <strong>of</strong> an asymmetric capsule C001<br />

in <strong>Liverpool</strong> - now


<strong>Liverpool</strong> Scanning Table<br />

• Calibration <strong>of</strong> the detector response as a function <strong>of</strong> interaction position.<br />

• Scanning asymmetric detector with a collimated beam <strong>of</strong> mono-energetic photons.


Intensity Pr<strong>of</strong>ile – 662keV<br />

Intensity pr<strong>of</strong>ile – 662keV<br />

• Max count = 1400 in front<br />

• Background = 100 cps<br />

• ~500 keV CFD threshold<br />

• 60s per position<br />

• 920MBq Cs-137 source<br />

• 1mm steps<br />

• 1mm diameter collimator<br />

z


Intensity Pr<strong>of</strong>ile – 662keV<br />

• Detector<br />

rotated and<br />

scanned<br />

along the<br />

depth <strong>of</strong> the<br />

detectors


Coincidence Front Face Scan<br />

374keV in <strong>AGATA</strong> and 288keV in the BGO detectors


Coincidence Scan Positions<br />

Line 5<br />

Line 13<br />

Line 1<br />

Line 2<br />

Line 6<br />

Line 3<br />

Line 4<br />

Azimuth 3<br />

F<br />

A<br />

E<br />

Azimuth 4<br />

B<br />

D<br />

Line 18<br />

Line 7<br />

Line 8<br />

Line 9<br />

Azimuth 2<br />

Line 17<br />

Azimuth 1<br />

Line 16<br />

C<br />

Line 15<br />

Line 12<br />

Line 11 Line 14<br />

Line 10<br />

• √r, grid adopted<br />

• 1200 positions<br />

0 o


Electric Field Simulations : MGS<br />

I<br />

Geometry<br />

II<br />

Potential<br />

Elec field<br />

III<br />

Drift<br />

velocities<br />

IV<br />

Weightin<br />

g fields<br />

• Electric field simulations have<br />

been performed and detailsed<br />

comparisons have been made<br />

with experimental pulse shape<br />

data.<br />

<strong>AGATA</strong> symmetric crystal<br />

simulation<br />

Gamma-ray tracking arrays


<strong>AGATA</strong> Triple – Detector Module<br />

First prototype summer 2005<br />

3 encapsulated asymmetric Ge crystals in one cryostat<br />

111 preamplifiers with cold FET<br />

~230 vacuum feedthroughs<br />

LN 2<br />

dewar, 3 litre, cooling power ~8 watts


The <strong>AGATA</strong> timescale<br />

3 different<br />

asymmetric<br />

hexagonal shapes are<br />

used<br />

Triple cluster<br />

modular units in a<br />

single cryostat<br />

The <strong>AGATA</strong><br />

demonstrator: 5 triple<br />

clusters, 540<br />

segments. Scheduled<br />

for completion 2010<br />

Completed array (6480<br />

segments) with support<br />

structure<br />

2 <strong>of</strong><br />

completed<br />

array


<strong>AGATA</strong> Experimental Program<br />

Efficiency (%)<br />

2009 LNL<br />

6TC<br />

2010 GANIL/SPIRAL<br />

≥ 8TC<br />

2012 GSI / FRS<br />

~15TC (1)<br />

<strong>AGATA</strong> D. + PRISMA<br />

<strong>AGATA</strong> radius<br />

23.5 cm<br />

Eff (%)<br />

vs. distance<br />

<strong>AGATA</strong> + VAMOS<br />

<strong>AGATA</strong> D. ≥8TC<br />

EXOGAM 8 seg. Clovers<br />

Total Eff. > 10%<br />

Setup works also as<br />

Compton Polarimeter<br />

<strong>AGATA</strong> @ FRS<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

Solid Angle (%)<br />

Efficiency M = 1<br />

Efficiency M = 10<br />

Efficiency M = 20<br />

Efficiency M = 30<br />

= 0 = 0.5<br />

6%<br />

<strong>AGATA</strong> D.<br />

LNL<br />

13.5 cm<br />

10<br />

5<br />

0<br />

1 2


Commissioning Preliminary Plan<br />

- Phase 0: commissioning with radioactive sources starting<br />

when detectors and electronics are available<br />

(even partially).<br />

- Phase 1: easy test with tandem beams with no ancillary<br />

detectors. Radiative capture or fusion-evaporation<br />

reactions with light targets in inverse kinematics.<br />

- Phase 2: test with a “simple” ancillary detector with<br />

limited number <strong>of</strong> parameters (DANTE).<br />

Coulomb excitation reactions with medium mass<br />

beams (A


• March 2009 at Legnaro<br />

• 1 asymmetric triple <strong>AGATA</strong> detector<br />

• 30 Si@70MeV + 12 C (216mg/cm 2 )<br />

• Two detector<br />

positions :<br />

close (5.5 cm)<br />

for 54h<br />

far (23.5 cm)<br />

for 20h<br />

• 14TB data<br />

• >1M events in<br />

1823keV peak<br />

Latest In-beam Test<br />

40<br />

K<br />

1823 keV<br />

40<br />

K<br />

2333 keV


The <strong>AGATA</strong> Demonstrator<br />

Objective <strong>of</strong> the final R&D phase 2003-2010<br />

1 symmetric triple-cluster<br />

5 asymmetric triple-clusters<br />

36-fold segmented crystals<br />

540 segments<br />

555 digital-channels<br />

Eff. 3 – 8 % @ M g = 1<br />

Eff. 2 – 4 % @ M g = 30<br />

Full EDAQ<br />

with on line PSA and g-ray tracking<br />

In beam Commissioning<br />

Technical proposal for full array<br />

Cost ~ 6 M € Capital


<strong>AGATA</strong> demonstrator at Legnaro<br />

(2009-10)<br />

5 triple clusters coupled to PRISMA<br />

Schematics <strong>of</strong> the mounting frame<br />

holding (up to) 15 clusters<br />

Peak efficiency<br />

3 – 8 % @ M g = 1<br />

2 – 4 % @ M g = 30


<strong>AGATA</strong> Demonstrator at Legnaro<br />

Principal physics opportunities :<br />

High-spin spectroscopy <strong>of</strong><br />

moderately neutron-rich nuclei<br />

produced in deep-inelastic reactions<br />

Good experience from CLARA + Prisma<br />

Heavy-ion beams from PIAVE + ALPI<br />

with suitable intensities and energies


<strong>AGATA</strong> Demonstrator at GANIL<br />

Main physics opportunities:<br />

(~2010/11)<br />

• Spectroscopy <strong>of</strong> heavy elements towards SHE<br />

• Gamma-ray spectroscopy <strong>of</strong> neutron-rich nuclei<br />

populated in Deep Inelastic Reaction (with the GANIL<br />

specific aspects)<br />

• Gamma-ray spectroscopy with reactions at intermediate<br />

energies (up to 50 A.MeV)<br />

• Classical high-spin physics and exotic shapes<br />

Range <strong>of</strong> beams, fragmentation, SPIRAL, direct beam line


<strong>AGATA</strong> Post-Demonstrator Array at GSI ~ 2012<br />

Main physics opportunities:<br />

Gamma-ray spectroscopy with reactions<br />

at relativistic energies (> 50 A.MeV) - Coulomb excitation, few nucleon<br />

removal etc<br />

with slowed-down beams (10-20 A.MeV) - direct reactions, inelastic<br />

scattering


Summary<br />

• Challenges ahead for nuclear spectroscopy<br />

• New Arrays such as <strong>AGATA</strong> use highly segmented detectors to<br />

gain position sensitivity and allow gamma ray tracking<br />

• <strong>AGATA</strong> at Legnaro<br />

• Shell evolution in neutron-rich nuclei and high-spin states<br />

in island <strong>of</strong> inversion etc<br />

• <strong>AGATA</strong> at GANIL<br />

• High-spin spectroscopy <strong>of</strong> neutron-rich nuclei populated in<br />

deep inelastic reactions, studies <strong>of</strong> proton-rich nuclei and<br />

proton-neutron pairing correlations<br />

• <strong>AGATA</strong> at GSI<br />

• Proton drip-line and N=Z physics, neutron-rich nuclei,<br />

shell melting and studies along the r-process path


Acknowledgements<br />

A.J. Boston a , R.J. Cooper a , J.R. Cresswell a , M.R.<br />

Dimmock a , I. Lazarus b , S. Moon a L. Nelson a ,<br />

P.J. Nolan a , J. Simpson b , C. Unsworth a .<br />

a<br />

Oliver Lodge Laboratory, The <strong>University</strong> <strong>of</strong><br />

<strong>Liverpool</strong>, UK<br />

b<br />

STFC Daresbury Laboratory, Daresbury,<br />

Warrington , UK<br />

On behalf <strong>of</strong> the <strong>AGATA</strong> Collaboration


HPGe Specifications<br />

• Hexaconical Ge crystals:<br />

- 90 mm long.<br />

- 80 mm max diameter.<br />

- 36 segments, 1 centre contact<br />

- Al encapsulation, 0.6 mm spacing,<br />

• Symmetric detectors<br />

– 3 delivered<br />

• Asymmetric detectors<br />

– 19 ordered (9 accepted, 4 in test, 2<br />

not accepted, 4 to be delivered)<br />

• Preamplifiers available<br />

– Core (Cologne);<br />

– Segment (Ganil & Milano)<br />

• Test cryostats for characterisation<br />

– 5 delivered<br />

• Triple cryostats<br />

– 5 ordered<br />

– 1 complete, 2 being assembled, 2<br />

ordered<br />

0.8 mm thickness.<br />

-37 vacuum feed-throughs.


<strong>AGATA</strong> : Advanced GAmma<br />

Tracking Array<br />

CAARI 2008<br />

Helen Boston<br />

On behalf <strong>of</strong> the <strong>AGATA</strong> Community


Digital Electronics<br />

o Digital sampling <strong>of</strong> preamplifier response allows analysis <strong>of</strong> pulse shape<br />

o CCLRC Daresbury designed GRT4 cards currently in use<br />

The GRT4 Cards<br />

4-channel VME cards<br />

14 bit, 80MHz FADCs<br />

2 XILINX Spartan II FPGAs per input provide:<br />

• Buffering<br />

• Internal CFD<br />

• Event timestamp<br />

• Energy calculation via Moving Window<br />

Deconvolution<br />

Count rate limited by data readout through VME<br />

bus (40Mb/s/crate)


Efficiency (%)<br />

<strong>AGATA</strong>-15 at the GSI-FRS<br />

Forward Quadrant with 45 crystals in 15 triple-clusters<br />

50<br />

45<br />

40<br />

35<br />

Solid Angle (%)<br />

Efficiency M = 1<br />

Efficiency M = 10<br />

Efficiency M = 20<br />

Efficiency M = 30<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

= 0 = 50 %<br />

v/c 1 = 0 v/c<br />

2= 0.5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!