Views
3 years ago

wavelength metallic-cavity semiconductor lasers at room temperature

wavelength metallic-cavity semiconductor lasers at room temperature

wavelength metallic-cavity semiconductor lasers at room

Record performance of electrical injection subwavelength metallic-cavity semiconductor lasers at room temperature K. Ding, 1 M. T. Hill, 2 Z. C. Liu, 1 L. J. Yin, 1 P. J. van Veldhoven, 2 and C. Z. Ning 1,* 1 School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA 2 COBRA Research Institute, Technische Universiteit Eindhoven, 5600 MB Eindhoven, The Netherlands * cning@asu.edu Abstract: We demonstrate a continuous wave (CW) sub-wavelength metallic-cavity semiconductor laser with electrical injection at room temperature (RT). Our metal-cavity laser with a cavity volume of 0.67λ 3 (λ = 1591 nm) shows a linewidth of 0.5 nm at RT, which corresponds to a Q- value of 3182 compared to 235 of the cavity Q, the highest Q under lasing condition for RT CW operation of any sub-wavelength metallic-cavity laser. Such record performance provides convincing evidences of the feasibility of RT CW sub-wavelength metallic-cavity lasers, thus opening a wide range of practical possibilities of novel nanophotonic devices based on metal-semiconductor structures. ©2013 Optical Society of America OCIS codes: (140.3948) Microcavity devices; (140.5960) Semiconductor lasers. References and links 1. C. Z. Ning, “Semiconductor nanolasers,” (Tutorial), Phys. Status Solidi, B Basic Res. 247, 774–788 (2010). 2. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402–027405 (2003). 3. A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser using metal coating,” Proc. SPIE 6468, 646801 (2007). 4. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007). 5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). 6. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). 7. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012). 8. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, M. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010). 9. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011). 10. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009). 11. K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260K,” Appl. Phys. Lett. 98(23), 231108 (2011). 12. J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19(22), 21524– 21531 (2011). 13. R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95(20), 201114 (2009). 14. K. Yu, A. M. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18(9), 8790–8799 (2010). 15. A. M. Lakhani, M. K. Kim, E. K. Lau, and M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19(19), 18237–18245 (2011). #181703 - $15.00 USD Received 14 Dec 2012; revised 19 Jan 2013; accepted 10 Feb 2013; published 19 Feb 2013 (C) 2013 OSA 25 February 2013 / Vol. 21, No. 4 / OPTICS EXPRESS 4728

External Cavity Laser Biosensor - Nano Sensors Group - University ...
High-Temperature Long-Wavelength Vertical-Cavity Lasers
Purcell effect in sub-wavelength semiconductor lasers - the Ultrafast ...
Multiple Wavelength Surface Emitting Semiconductor Laser Array
Wavelength tunable semiconductor fiber ring laser ... - physics.sk
Electro Optical Characterisation of Short Wavelength Semiconductor ...
Semiconductor Nanowire Lasers - ASU Ning's Nanophotonics ...
1.3 m wavelength vertical cavity surface emitting laser fabricated by ...
Optical Flip-Flop Memory Based on a Two-Cavity Ring Laser with ...
Size reduction of a semiconductor nanowire laser using metal coating
Self-pulsations in vertical-cavity semiconductor lasers
Long-Wavelength Vertical-Cavity Lasers and Amplifiers
Room-Temperature Polariton Lasing in ... - ResearchGate
Near-infrared semiconductor subwavelength-wire lasers
Wavelength selection in MEMS tunable vertical-cavity SOAs
Temperature-insensitive semiconductor quantum ... - ResearchGate
Amplified Littman/Metcalf External Cavity Diode Laser More Power ...
Oral Cavity Semiconductor Laser Market to Witness a Pronounce Growth During 2022: Report Bazzar
Spectral characteristics of semiconductor lasers (SPEK)
Long wavelength lasers using GaAs-based quantum dots
Large S-Section-Ring-Cavity Diode Lasers ... - IEEE Xplore
AN InP-BASED 4X4-CHANNEL MULTI-WAVELENGTH LASER
Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers - Physics ...
Long wavelength GaInNAs(Sb) lasers on GaAs ... - Seth R. Bank
History and Developments of Semiconductor Lasers