15.03.2015 Views

Actran for Acoustic Radiation Analysis

Actran for Acoustic Radiation Analysis

Actran for Acoustic Radiation Analysis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Actran</strong> <strong>for</strong> <strong>Acoustic</strong> <strong>Radiation</strong> <strong>Analysis</strong><br />

VPE Workshop: <strong>Acoustic</strong> Simulation<br />

Ze Zhou<br />

Free Field Technologies, MSC Software Company<br />

FFT & MSC Software Confidential<br />

1


Contents<br />

• Overview of <strong>Actran</strong> <strong>Acoustic</strong> Applications<br />

• <strong>Acoustic</strong> radiation & vibro-acoustic coupling<br />

– One way numerical coupling<br />

– Two way strong numerical coupling<br />

• <strong>Acoustic</strong> radiation into air<br />

– Simulation process<br />

– Techniques: Finite Element, Infinite Elements, (Adaptive) Perfectly Matched<br />

Layers, Ffowcs Williams Hawkings, Discontinuous Galerkin Method<br />

– Examples: powertrain, gearbox, intake manifold, tire<br />

• <strong>Acoustic</strong> radiation into water<br />

– Added mass effect of heavy fluid<br />

– Example: ship engine room vibration & radiation<br />

FFT & MSC Software Confidential<br />

2


Overview of <strong>Actran</strong> <strong>Acoustic</strong> Applications<br />

Sound from vibration Interior acoustics<br />

Structure insulation Material absorption<br />

Duct acoustics<br />

<strong>Acoustic</strong> fatigue<br />

Aero acoustics<br />

Aircraft engine acoustics<br />

FFT & MSC Software Confidential<br />

3


<strong>Acoustic</strong> <strong>Radiation</strong> Problems<br />

Car Air Intake Vibration<br />

<strong>Acoustic</strong> radiation<br />

<strong>Acoustic</strong> radiation into air:<br />

Ship hull vibration from engine room<br />

<strong>Acoustic</strong> radiation into sea water<br />

<strong>Acoustic</strong> radiation into water:<br />

FFT & MSC Software Confidential<br />

4


One-Way or Two-Way Coupling<br />

Structure<br />

Noise<br />

induces<br />

vibration<br />

One-way Two-way coupling<br />

(no (feedback) feedback)<br />

Vibration<br />

induces<br />

noise<br />

Air<br />

Engine radiating<br />

Sub-marine under water<br />

FFT & MSC Software Confidential<br />

5


<strong>Acoustic</strong> <strong>Radiation</strong> into Air<br />

Two-step Weakly Coupled Vibro-<strong>Acoustic</strong> Approach<br />

FFT & MSC Software Confidential<br />

6


One Way Coupled Problem: Modeling Process<br />

1. Structural FEA <strong>Analysis</strong><br />

Mesh &<br />

results<br />

files<br />

2. <strong>Acoustic</strong> computations<br />

3. Post Processing and <strong>Analysis</strong> = <strong>Actran</strong> VI<br />

Maps<br />

FRF<br />

Waterfall<br />

FFT & MSC Software Confidential<br />

7


Modeling Process - Inputs<br />

• Structure mesh<br />

• Structure vibration results<br />

– On the structure surface<br />

– Format<br />

• Nastran, Ansys, Abaqus<br />

• Displacement, Velocity or Acceleration<br />

• physical coordinates or modal coordinates (modes shapes + participation factors)<br />

<strong>Actran</strong><br />

<strong>Acoustic</strong> <strong>Radiation</strong><br />

Structure mesh<br />

& vibration results<br />

<strong>Acoustic</strong> mesh<br />

FFT & MSC Software Confidential<br />

8


Modeling Process - <strong>Acoustic</strong> Mesh<br />

• <strong>Acoustic</strong> mesh is comprised of three parts<br />

– Interior surface: surface wrap mesh of the whole structure, <strong>for</strong> mapping the<br />

structure vibration<br />

– Exterior convex surface: a convex shape surrounding the interior<br />

– Volume elements between the two surfaces<br />

Interior surface<br />

Exterior Surface<br />

Volume elements<br />

FFT & MSC Software Confidential<br />

9


Infinite Elements (IFE)<br />

• Infinite elements:<br />

– cover an unbounded domain<br />

– have appropriate high order shape<br />

functions in the radial direction<br />

P’’<br />

P’<br />

1 3<br />

• Infinite elements:<br />

– ensure there are no wave reflections<br />

at the FE/IE interface<br />

– Provide accurate acoustic results beyond the FE<br />

domain<br />

– Provide radiated power across the IFE surface<br />

S<br />

P<br />

FFT & MSC Software Confidential<br />

10


Perfectly Matched Layers (PML)<br />

• Alternative / complement to infinite elements<br />

<strong>for</strong> the radiation in free field<br />

• Extra-layer of finite elements used to<br />

progressively damp the acoustic wave<br />

non-reflecting boundary condition<br />

• PML Leads to symmetric contribution of FEM<br />

matrix<br />

• Far field acoustic pressure by FWH (Ffowcs<br />

Williams Hawkings) computation<br />

FFT & MSC Software Confidential<br />

11


Adaptive Perfectly Matched Layer (APML)<br />

• Automatic creation of the mesh supporting the perfectly matched<br />

layers<br />

• Adaptive thickness and element sizes <strong>for</strong> each frequency band<br />

• Benefits:<br />

– Reduced meshing ef<strong>for</strong>t <strong>for</strong> modeling sound radiation problems<br />

– Optimized computation time <strong>for</strong> the each desired frequency<br />

Original acoustic domain<br />

surrounding a gear box<br />

Computation of PML<br />

thickness & elements sizes<br />

based on frequencies<br />

Automatic creation of<br />

PML volume mesh<br />

<strong>Acoustic</strong> computation<br />

FFT & MSC Software Confidential<br />

12


Adaptive Perfectly Matched Layer (APML) – cont’d<br />

• APML mesh creation on a gear box sound radiation problem<br />

APML <strong>for</strong> 260Hz ~ 510Hz<br />

APML <strong>for</strong> 1025Hz ~ 1700Hz<br />

FFT & MSC Software Confidential<br />

13


Discontinuous Galerkin Method (DGM)<br />

• <strong>Actran</strong> implements a iterative time domain DGM solver, solving<br />

Linearized Euler Equation (LEE)<br />

• Element interpolation order is automatically defined by the software<br />

based on element size, frequency and flow (when applicable)<br />

• Time step is automatically computed on each element, depending on<br />

element size, element order, and flow (when applicable)<br />

FWH surface<br />

node of the linear DGM TRI<br />

DGM anchors<br />

Equivalent 1 st order mesh<br />

Buffer zone<br />

Physical domain<br />

FFT & MSC Software Confidential<br />

14


Discontinuous Galerkin Method (DGM) – cont’d<br />

• Some advantage of DGM: 1) Handle very large problems<br />

into high frequencies, 2) Highly scalable, 3) Low RAM<br />

requirement<br />

• <strong>Actran</strong> DGM was initially developed <strong>for</strong> a specific<br />

application: aircraft engine acoustics. With typical<br />

computation involves:<br />

– 100 ~ 200 m 3 of air, with shear flow layer<br />

– Large number of CPU’s <strong>for</strong> parallel computation<br />

– 2 ~ 4 GB of RAM per CPU<br />

• Recently (<strong>Actran</strong> 14), <strong>Actran</strong> DGM is extended to per<strong>for</strong>m<br />

acoustic radiation from vibrating structure as well<br />

– Reading structure surface vibration as excitation<br />

– Scattering problem can also be solved (acoustic scattering by a<br />

car or truck)<br />

FFT & MSC Software Confidential<br />

15


<strong>Acoustic</strong> <strong>Radiation</strong> Case Studies<br />

FFT & MSC Software Confidential<br />

16


Case Study 1: Truck Powertrain<br />

• A complete truck powertrain with length around 2.5 meters<br />

– The structure vibration is computed using structure FEA software<br />

– The vibration results are used as the excitation of the acoustic radiation problem<br />

solved by <strong>Actran</strong><br />

1m20<br />

FFT & MSC Software Confidential<br />

17


Case Study 1: Truck Powertrain<br />

• Map the structure results on the acoustic surface<br />

• Mapping based on Integration method<br />

– The geometries might be (slightly) different<br />

– The mesh sizes can be different (no loss of in<strong>for</strong>mation from FEA)<br />

<strong>Actran</strong><br />

inner surface<br />

FEA<br />

outer surface<br />

FFT & MSC Software Confidential<br />

18


Case Study 1: Truck Powertrain<br />

• Propagation<br />

– Near field: 4 Finite Elements per wavelength ( with special integration rule )<br />

– Far field: the Infinite Elements (free field condition + far field results)<br />

– Note: the infinite elements are surface elements on the boundary<br />

• Tetra volume meshing<br />

FFT & MSC Software Confidential<br />

19


Case Study 1: Truck Powertrain<br />

• Virtual microphones can be located<br />

anywhere in the finite and/or infinite<br />

element domain<br />

Output specifications<br />

• Multiple control surfaces to compute the<br />

radiated power<br />

• Maps <strong>for</strong> different frequencies<br />

– on the acoustic mesh or/and<br />

– on a mesh dedicated to the post-processing<br />

(named field mesh in <strong>Actran</strong>)<br />

– plot acoustic pressure, acoustic intensity, etc.<br />

field points<br />

(microphones)<br />

field mesh<br />

FFT & MSC Software Confidential<br />

20


Case Study 1: Truck Powertrain<br />

• Various maps can be produced<br />

FFT & MSC Software Confidential<br />

21


Case Study 1: Truck Powertrain<br />

Experimental Validation<br />

• For the complete set of frequency, regimes and microphones, a<br />

maximum of 2dB difference has been detected (marks: 5dB)<br />

Sound with<br />

increasing RPM<br />

FFT & MSC Software Confidential<br />

22


Case Study 1: Truck Powertrain<br />

Selective Power Evaluation<br />

• Multiple surfaces can be created in order to measure the power<br />

radiated by each part of the power train.<br />

FFT & MSC Software Confidential<br />

23


Results types: Waterfall Diagrams<br />

• “Waterfall” are diagrams where the<br />

response is plot versus both<br />

frequencies and the engine orders<br />

(RPM)<br />

• Such diagram can be obtained after<br />

a single <strong>Actran</strong> computation thanks<br />

to the multi-load case capability<br />

• Some phenomena can be identified<br />

as system dependant (vertical lines<br />

on the waterfall), e.g. structure<br />

modes, …<br />

• Some phenomena can be identified<br />

as excitation dependant (diagonal<br />

lines on the waterfall)<br />

FFT & MSC Software Confidential<br />

24


Results types: Panel Contribution & Element<br />

Contribution<br />

• Panel contribution<br />

• Element contribution<br />

Surface 1<br />

Surface 4<br />

Surface 3<br />

Surface 2<br />

FFT & MSC Software Confidential<br />

25


Case Study 2: Floor Effect on Gearbox Sound <strong>Radiation</strong><br />

• Floor effect on the pressure directivity<br />

With Floor<br />

Without Floor<br />

Real part of the<br />

pressure<br />

Rigid surfaces<br />

Infinite element<br />

surfaces<br />

Amplitude of the<br />

pressure<br />

FFT & MSC Software Confidential<br />

27


Case Study 3: Tire sound radiaiton<br />

• Smooth HQ6784 Tire of dimensions :<br />

– radius 0.314 m<br />

– width including sidewalls = 0.355 m<br />

• Tire de<strong>for</strong>mation produced by Chalmers University :<br />

– loaded Tire (3000 N)<br />

– rolling on a rigid or absorbing ground at a speed of 80 km/h<br />

– 256 frequencies (from 0 to 2800 Hz with a step of 11 Hz)<br />

7.5 m<br />

1.2 m<br />

Sound Pressure Level<br />

(SPL) at the standard<br />

pass-by noise test<br />

position<br />

FFT & MSC Software Confidential<br />

28


Effect of Absorbing Ground<br />

• The road is either considered as rigid (perfectly reflecting) or absorbing.<br />

In the latter case the absorption is given, in third-octave band :<br />

Road absorption defined by :<br />

• admittance on surface of mesh ground<br />

• infinite admittance in infinite ground<br />

FFT & MSC Software Confidential<br />

29


Effect of Absorbing Ground – Cont’<br />

Pass-by noise test position : rigid and absorbing road<br />

FFT & MSC Software Confidential<br />

30


Case Study 4: Adding Cover to Gearbox<br />

• A 2-layers cover is placed near to the<br />

gearbox<br />

– A thin plastic layer of 4 mm thickness<br />

modeled by 2D shell<br />

– A foam layer of 10mm thickness modeled by<br />

volume porous elements<br />

Name:<br />

Density<br />

Poisson<br />

ratio<br />

Young<br />

modulus<br />

Plastic<br />

900kg/m³<br />

0.4<br />

3.33 e+08 Pa<br />

Damping 49%<br />

Thickness<br />

4 mm<br />

Name:<br />

Density:<br />

Rockwool<br />

1776kg/m³<br />

Biot factor: 1<br />

Tortuosity: 1.1<br />

Porosity: 0.95<br />

Poisson ratio: 0.3<br />

Young modulus :<br />

3.33 e+08 Pa<br />

FFT & MSC Software Confidential<br />

31<br />

Damping : 10%


Case Study 4: Adding Cover to Gearbox<br />

• The acoustic mesh is shown below:<br />

Cover: Porous material (10mm) + plastic layer<br />

(4mm)<br />

Infinite elements interface<br />

Gearbox<br />

(skin only)<br />

<strong>Acoustic</strong> Finite<br />

Elements<br />

FFT & MSC Software Confidential<br />

32


Case Study 4: Adding Cover to Gearbox<br />

Effect of the cover on the directivity<br />

• Directivity plot shows the influence region of the cover (1110 Hz)<br />

FFT & MSC Software Confidential<br />

33


Case Study 5: Manifold<br />

• Mazda has developed a new engine in order to reduce<br />

the fuel consumption as well as the weight<br />

• To achieve this, Mazda decided to use a thin resin intake<br />

manifold<br />

• Consequence: many structure modes occur because of<br />

the low rigidity of the intake manifold and there<strong>for</strong>e some<br />

significant noise problems appear<br />

• Mazda had to consider many structural modifications in<br />

order to fix this problem<br />

FFT & MSC Software Confidential<br />

34


Case Study 5: Manifold<br />

Mic1<br />

Mic2<br />

Test<br />

dB(A) scale = 5dB<br />

CAE<br />

FFT & MSC Software Confidential<br />

35


S.P.L. (dBA)<br />

315<br />

400<br />

500<br />

630<br />

800<br />

1000<br />

1250<br />

1600<br />

2000<br />

2500<br />

Case Study 5: Manifold<br />

• Design improvement was done according to simulation results, which<br />

helped to reduce weight & noise<br />

Point1 SPL 2000rpm<br />

Element Contribution to sound radiation<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

5dB<br />

BASE<br />

MODIFY<br />

1/3Oct. Band (Hz)<br />

FFT & MSC Software Confidential<br />

36


<strong>Acoustic</strong> <strong>Radiation</strong> into Water<br />

Strongly Coupled Vibro-<strong>Acoustic</strong> Modeling<br />

FFT & MSC Software Confidential<br />

37


Sound <strong>Radiation</strong> from Ship Engine Room<br />

• Calculating radiated acoustic power from engine room<br />

Nastran structure model:<br />

<strong>Actran</strong> strongly coupled vibro-acoustic model<br />

<strong>Actran</strong> structure FE model obtained<br />

using “Nastran to <strong>Actran</strong> translator”<br />

Focus on engine room<br />

Pressure release condition at<br />

water/air interface: p=0<br />

FFT & MSC Software Confidential<br />

Symmetric surface<br />

38<br />

Water FE<br />

Infinite<br />

elements


Results - Added Mass Effect of Water<br />

• The influence of surrounding air<br />

is negligible compared to the<br />

added inertia of the water<br />

• At higher frequencies, we clearly<br />

see:<br />

– the frequency shift<br />

– the decrease of vibration amplitude<br />

FFT & MSC Software Confidential<br />

39


Results – Structure coupling with Multiple Fluids<br />

Both fluids and shell share the same node coupling handled by <strong>Actran</strong><br />

– Duplication of pressure DOF <strong>for</strong> two fluids<br />

– Based on component identification<br />

– Pressure discontinuity is insured over the shell<br />

FFT & MSC Software Confidential<br />

40


Going Further<br />

For other types of acoustic problems<br />

FFT & MSC Software Confidential<br />

41


The <strong>Actran</strong> software suite<br />

FFT & MSC Software Confidential<br />

42


Thank You !<br />

Ze Zhou<br />

Free Field Technologies, MSC Software Company<br />

ze.zhou@fft.be<br />

FFT & MSC Software Confidential<br />

43

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!