23.04.2015 Views

BIOREMEDIATION OF Cr(VI) CONTAMINATED SOIL AND AQUIFERS

BIOREMEDIATION OF Cr(VI) CONTAMINATED SOIL AND AQUIFERS

BIOREMEDIATION OF Cr(VI) CONTAMINATED SOIL AND AQUIFERS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>BIOREMEDIATION</strong> <strong>OF</strong> <strong>Cr</strong>(<strong>VI</strong>)<br />

<strong>CONTAMINATED</strong> <strong>SOIL</strong> <strong>AND</strong><br />

<strong>AQUIFERS</strong><br />

Dr. Ligy Philip<br />

Professor<br />

E-mail:ligy@iitm.ac.in<br />

Department of Civil Engineering<br />

Indian Institute of Technology Madras, Chennai


<strong>BIOREMEDIATION</strong><br />

Degradation/transformation of<br />

organic/inorganic contaminants by<br />

indigenous or inoculated micro-organisms.<br />

1. Bio-Stimulation<br />

2. Bio-Augmentation<br />

Types of bioremediation<br />

* In-situ bioremediation<br />

* Ex-situ bioremediation


Prof. Ligy Philip<br />

Prof. B.S. Murty<br />

Dr. R. Elangovan<br />

Dr. S. Shashidhar<br />

Research Team<br />

Mr. Shourirajan<br />

Mr. Ramakrishna<br />

Dr. J. Jeyasing<br />

Mr. Somasundaram<br />

Funding<br />

Department of Biotechnology (DBT), Govt. of India<br />

Ministry of Water Resources (MoWR), Govt. of India<br />

Central Pollution Control Board (CPCB), India


CLEANUP METHODS FOR FIELD CONDITIONS<br />

GROUND SURFACE<br />

L<strong>AND</strong>FILL<br />

LEACHATE<br />

WATER TABLE<br />

INSITU<br />

BIO-REMEDIATION<br />

Movement of Groundwater


MOTIVATION<br />

TamilNadu Chromate Chemicals Limited,<br />

Ranipet, Vellore District , Tamilnadu.


Chromium waste<br />

Disposal area: 5 acres (2 hectares)<br />

2 x10 5 Tones of waste)


Chromium Leachate in Ground Water


<strong>Cr</strong>(<strong>VI</strong>) Concentration in open wells/bore<br />

wells in and around TCCL (Prepared by IIT Madras)<br />

TCCL<br />

BDL mg/l<br />

178 mg/l<br />

SIPCOT Service Road<br />

To Banglore<br />

NH - 4<br />

To Ranipet/Chennai<br />

BDL mg/l<br />

9.6mg/l<br />

BDL mg/l<br />

BDL<br />

271 mg/l<br />

BDL mg/l<br />

141 mg/l<br />

34 mg/l<br />

21 mg/l<br />

BDL<br />

BDL mg/l<br />

BDL mg/l<br />

BDL<br />

BDLl<br />

BDL<br />

0.31 mg/l<br />

BDL<br />

BDL<br />

Pulian Kannu Eri<br />

BDL<br />

BDL<br />

Karai<br />

Eri


Many <strong>Cr</strong>(<strong>VI</strong>) contaminated sites are present in<br />

various parts of the world. Reasons for<br />

contamination are either natural or<br />

anthropogenic<br />

Sukhinda Valley in Orissa<br />

Vaniyambadi in Tamilnadu<br />

Jajmau in Kanpur<br />

Hanford area in U.S.A<br />

Most common treatment method – Reduce<br />

<strong>Cr</strong>(<strong>VI</strong>) to <strong>Cr</strong>(III) and precipitate or adsorb<br />

<strong>Cr</strong>(III).


Methods for Remediation of <strong>Cr</strong>(<strong>VI</strong>)<br />

Contaminated Aquifers<br />

• Pump and Treat systems<br />

• Geochemical fixation<br />

• Permeable Reactive Barriers<br />

• Reactive Zones<br />

• Natural attenuation<br />

• Phyto-remediation


Schematic Representation of a Permeable Reactive Bio-barrier


REACTIVE ZONES


TASKS<br />

1<br />

Isolation and Enrichment of Bacteria for<br />

<strong>Cr</strong>(<strong>VI</strong>) Reduction [CRB / IRB / SRB]


Abiotic Reduction<br />

• Reduction of <strong>Cr</strong> (<strong>VI</strong>) by aqueous phase Fe (II)<br />

3Fe 2+ + H<strong>Cr</strong>O 4<br />

-<br />

+ 8H 2 O 3 Fe (OH) 3 + <strong>Cr</strong> (OH) 3<br />

+ 5H +<br />

• Fe (II) sources<br />

Iron silicates-olivine<br />

Iron oxides - magnetite (Fe 2+ Fe 2<br />

3+<br />

0 4 ), hematite (Fe 2<br />

3+<br />

O 3 )<br />

contains (FeO).<br />

Iron sulfides FeS 2<br />

• Organic matters (humic and fulvic acids)<br />

<strong>Cr</strong> 2 O<br />

2-<br />

7 + 3C 0 + 16H + 4<strong>Cr</strong> 3+ + 3CO 2 +<br />

8H 2 O


Biotic Reduction<br />

Advantages<br />

Less cost and chemical usage<br />

Requires minimal maintenance<br />

• Direct reduction (CRB)<br />

Aerobic/Anaerobic<br />

– Pseudomonas fluorescens<br />

– P. aeruginosa<br />

– Enterobacter cloacae<br />

– Bacillus sp<br />

– A. radiobacter etc.<br />

• Indirect reduction<br />

‣Iron reducing<br />

bacteria –mostly<br />

anaerobic condition.<br />

‣Sulphate reducing<br />

bacteria- strictly<br />

anaerobes


Mechanism of <strong>Cr</strong> (<strong>VI</strong>) Reduction by CRB<br />

• Aerobic<br />

– NADH /Endogenous e - reserves acts as<br />

donors<br />

– Enzyme Soluble Reductase (SR)<br />

Membrane Reductase (MR)<br />

• Anaerobic<br />

– <strong>Cr</strong> (<strong>VI</strong>) acts as terminal electron<br />

acceptor<br />

– NADH ,Endogenous e - reserves,<br />

carbohydrates, proteins, Hydrogen acts<br />

as donors<br />

– SR, MR, Cytochromes mediates reaction<br />

C 6 H 12 O 6 + 8<strong>Cr</strong> 6+ + 12H 2<br />

O 6HCO 3-<br />

+ 8<strong>Cr</strong> 3+ + 3OH - (aerobic and anaerobic)<br />

COD of 1g Glucose is 1.07g<br />

180 g glucose is required to reduce 416(8x52)g of <strong>Cr</strong> 6+<br />

1g of glucose can reduce 2.311g of <strong>Cr</strong> 6+<br />

1 g of COD can reduce 2.1598g of <strong>Cr</strong> 6+


Mechanism of <strong>Cr</strong>(<strong>VI</strong>) Reduction by SRB<br />

Sulphates acts as terminal electron acceptor<br />

• Reduction of Sulphates<br />

SRB<br />

1/2SO 4<br />

2-<br />

+CH 2<br />

O +1/2 H + 1/2 HS - + H 2<br />

O + CO 2<br />

• Reduction of chromate by Sulphides<br />

8<strong>Cr</strong>O 4<br />

2-<br />

+ 3HS - + 17 H 2<br />

0 8 <strong>Cr</strong> (OH)<br />

3 + 3SO 4 2- +11OH -<br />

• Precipitation of <strong>Cr</strong> (<strong>VI</strong>) by Sulphide<br />

<strong>Cr</strong> 6+ + 3 HS - <strong>Cr</strong>S 3 + 3H +<br />

• Reduction of iron by sulphides:<br />

8 Fe (OH)<br />

3 (aq) + HS- +15H + 8Fe 2+ (aq) + SO 4<br />

2-<br />

+ 20H 2<br />

O<br />

Sulphide inhibition of SRB were reported to 230 to 550 mg/L of un dissociated<br />

H 2 S at pH 6.2 to 8. (Vincent et al., 1998).<br />

<strong>Cr</strong> (<strong>VI</strong>) reduction and iron reduction helps in prevention of Sulphide inhibition


Mechanism of <strong>Cr</strong>(<strong>VI</strong>) Reduction by IRB<br />

Abiotic reduction<br />

The increase in pH cause corrosion which facilitates abiotic chromium reduction<br />

2<strong>Cr</strong> 6+ +6 e − →2<strong>Cr</strong> 3+<br />

3Fe 0 →3Fe 2+ +6 e −<br />

2<strong>Cr</strong> 3+ +6OH − →2<strong>Cr</strong>(OH) 3<br />

2<strong>Cr</strong> 6+ +3Fe 0 +6OH − →2<strong>Cr</strong>(OH) 3<br />

+3Fe 2+<br />

Biotic reduction<br />

IRB<br />

C 6<br />

H 12<br />

O 6<br />

+ 24Fe (III) + 12H 2<br />

O 6HCO 3-<br />

+ 24 Fe (II) + 3OH -<br />

3Fe 2+ + H<strong>Cr</strong>O 4<br />

-<br />

+ 8H 2<br />

O 3 Fe (OH)<br />

3 + <strong>Cr</strong> (OH) 3 + 5H+


2<br />

BATCH STUDIES<br />

• Bio-kinetic parameters<br />

• Adsorption Parameters


<strong>Cr</strong>(<strong>VI</strong>) Reduction Studies with CRB, SRB<br />

and IRB, in Combinations<br />

1. CRB –Aerobic<br />

2. CRB -Anaerobic<br />

2. SRB-Anaerobic<br />

3. IRB- anaerobic<br />

4. CRB+SRB<br />

5. CRB+IRB<br />

6. CRB+SRB+IRB<br />

Adsorption Studies<br />

Adsorbents– Soil , Sand<br />

Adsorbates:<br />

1. <strong>Cr</strong>(<strong>VI</strong>)<br />

2. Molasses/Sugar<br />

3. Lithium<br />

4. <strong>Cr</strong>(III)


<strong>Cr</strong>(<strong>VI</strong>) Reduction in Aerobic Conditions<br />

<strong>Cr</strong> 6+ conc<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

Chromium(<strong>VI</strong>) reduction<br />

0 50 100 150<br />

time in hrs<br />

0 ppm<br />

20ppm<br />

30ppm<br />

65 ppm<br />

110 ppm<br />

145 ppm<br />

190 ppm<br />

cell dry wt in mg/L<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Growth curve<br />

0 50 100 150<br />

time in hrs<br />

0 ppm<br />

20 ppm<br />

32ppm<br />

66 ppm<br />

110 ppm<br />

140 ppm<br />

190 ppm<br />

COD removal rate<br />

4000<br />

COD in mg/L<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0 ppm<br />

20 ppm<br />

30 ppm<br />

65ppm<br />

110 ppm<br />

145 ppm<br />

190 ppm<br />

0<br />

0 50 100 150<br />

time in hr


<strong>Cr</strong> (<strong>VI</strong>) Reduction by CRB under Anaerobic Condition<br />

cell dry wt in mg/L<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Growth curve<br />

0 ppm<br />

10 ppm<br />

20 ppm<br />

30 ppm<br />

50 ppm<br />

COD in mg/L<br />

3000<br />

2700<br />

2400<br />

2100<br />

1800<br />

COD reduction curve<br />

0 ppm<br />

10 ppm<br />

20ppm<br />

30ppm<br />

50ppm<br />

50<br />

0<br />

0 50 100 150<br />

time in hrs<br />

1500<br />

0 30 60 90 120<br />

time in hr<br />

<strong>Cr</strong> reduction curve<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

0 50 100 150<br />

0 ppm<br />

10 ppm<br />

20 ppm<br />

30 ppm<br />

50 ppm


Growth of CRB+IRB+SRB under Anaerobic Condition<br />

Fe(400ppm,Sulphate(500ppm)<br />

cell dry wt in mg/L<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

CRB+IRB+SRB growth curve<br />

<strong>Cr</strong>(0) Fe(400) SO4 2- (500)<br />

<strong>Cr</strong>(10) Fe(400) SO4 2- (500)<br />

<strong>Cr</strong>(20) Fe(400) SO4 2- (500)<br />

<strong>Cr</strong>(50) Fe(400) SO4 2- (500)<br />

0 20 40 60 80 100 120 140<br />

Cell dry wt in mg/L<br />

3200<br />

2700<br />

2200<br />

1700<br />

1200<br />

COD removal curve<br />

0 50 100 150<br />

time in hrs<br />

<strong>Cr</strong>(0) Fe(400) SO4 2-<br />

(500)<br />

<strong>Cr</strong>(10) Fe(400) SO4 2-<br />

(500)<br />

<strong>Cr</strong>(20) Fe(400) SO4 2-<br />

(500)<br />

<strong>Cr</strong>(50) Fe(400) SO4 2-<br />

(500)<br />

time in hrs<br />

Sulphate reduction<br />

<strong>Cr</strong>(<strong>VI</strong> ) reduction<br />

<strong>Cr</strong>(0) Fe(400) SO4 2-<br />

(500)<br />

Sulphate conc in mg/L<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

0 50 100 150<br />

time in hrs<br />

<strong>Cr</strong>(0) Fe(400) SO4 2-<br />

(500)<br />

<strong>Cr</strong>(10) Fe(400) SO4 2-<br />

(500)<br />

<strong>Cr</strong>(20) Fe(400) SO4 2-<br />

(500)<br />

<strong>Cr</strong>(50) Fe(400) SO4 2-<br />

(500)<br />

<strong>Cr</strong>(<strong>VI</strong>) conc in mg/L<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 50 100 150<br />

time in hrs<br />

<strong>Cr</strong>(10) Fe(400) SO4 2-<br />

(500)<br />

<strong>Cr</strong>(20) Fe(400) SO4 2-<br />

(500)<br />

<strong>Cr</strong>(50) Fe(400) SO4 2-<br />

(500)<br />

Fe(II) generation<br />

Fe(II) conc in mg/L<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 50 100 150<br />

time in hrs<br />

<strong>Cr</strong>(0) Fe(400) SO4 2- (500)<br />

<strong>Cr</strong>(10) Fe(400) SO4 2-<br />

(500)<br />

<strong>Cr</strong>(20) Fe(400) SO4 2-<br />

(500)<br />

<strong>Cr</strong>(50) Fe(400) SO4 2-<br />

(500)


Model<br />

Suffix 1,2,3 represents CRB,SRB,IRB respectively<br />

3<br />

M = ∑ M<br />

i=<br />

1<br />

i<br />

3<br />

S = ∑ S<br />

i=<br />

1<br />

i<br />

3<br />

6<br />

= ∑<br />

i=<br />

1<br />

<strong>Cr</strong> <strong>Cr</strong>6<br />

i<br />

S<br />

i<br />

=<br />

S<br />

⎛<br />

⎜<br />

⎝<br />

M<br />

M<br />

i<br />

⎞<br />

⎟<br />

⎠<br />

<strong>Cr</strong><br />

=<br />

<strong>Cr</strong><br />

6,i 6<br />

⎛<br />

⎜<br />

⎝<br />

M<br />

M<br />

i<br />

⎞<br />

⎟<br />


⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

+<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

+<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

=<br />

M<br />

M<br />

<strong>Cr</strong><br />

K<br />

K<br />

M<br />

M<br />

S<br />

K<br />

M<br />

M<br />

S<br />

M<br />

dt<br />

dM<br />

i<br />

CRB<br />

i<br />

CRB<br />

i<br />

i<br />

CRB<br />

s<br />

i<br />

CRB<br />

CRB<br />

CRB<br />

6<br />

,<br />

,<br />

,<br />

,<br />

.µ max .<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

+<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

+<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

=<br />

M<br />

M<br />

<strong>Cr</strong><br />

K<br />

K<br />

M<br />

M<br />

S<br />

K<br />

M<br />

M<br />

S<br />

M<br />

dt<br />

dM<br />

i<br />

IRB<br />

i<br />

IRB<br />

i<br />

i<br />

IRB<br />

s<br />

i<br />

IRB<br />

IRB<br />

IRB<br />

6<br />

,<br />

,<br />

,<br />

,<br />

.µ max .<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

+<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

+<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

=<br />

M<br />

M<br />

<strong>Cr</strong><br />

K<br />

K<br />

M<br />

M<br />

S<br />

K<br />

M<br />

M<br />

S<br />

M<br />

dt<br />

dM<br />

i<br />

SRB<br />

i<br />

SRB<br />

i<br />

i<br />

SRB<br />

s<br />

i<br />

SRB<br />

SRB<br />

SRB<br />

6<br />

,<br />

,<br />

,<br />

,<br />

.µ max .


<strong>Cr</strong>(<strong>VI</strong>), mg/L<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

10ppm Predicted<br />

10 ppm Experimental<br />

20ppm Predicted<br />

20 ppm Experimental<br />

50 ppm Predicted<br />

50 ppm Experimental<br />

0 10 20 30 40 50 60 70<br />

Time, h<br />

<strong>Cr</strong>(<strong>VI</strong>) reduction by CRB, SRB and IRB under anaerobic<br />

conditions for different initial <strong>Cr</strong>(<strong>VI</strong>) concentrations<br />

Somasundaram et al., Jl. of Hazard. Mater., 2009


3<br />

BENCH SCALE STUDIES


Constant head reservoir<br />

N 2 GAS<br />

Over flow<br />

Soil column<br />

Sample ports<br />

Outlet<br />

Supply tank


Inlet Reservoir<br />

Perforate plate<br />

Sample ports<br />

10 cm<br />

Bio-barrier (soil C)<br />

Outlet Reservoir<br />

Soil B<br />

49 cm<br />

20 cm<br />

Sample<br />

ports<br />

100 cm<br />

10 cm<br />

10<br />

cm<br />

Schematic of experimental setup


30<br />

8<br />

<strong>Cr</strong>(<strong>VI</strong>) mg/L<br />

25<br />

20<br />

15<br />

10<br />

Port at 20 cm<br />

Port at 40 cm<br />

Port at 60 cm<br />

Port at 80 cm<br />

Porevelocity<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Porevelocity cm/h<br />

5<br />

2<br />

0<br />

0 20 40 60 80 100 120 140<br />

Time h<br />

1<br />

<strong>Cr</strong>(<strong>VI</strong>) break-through curve with biotransformation, Soil A<br />

Shashidhar et al., Jl. of Hazard. Mater., 2006


25<br />

25<br />

<strong>Cr</strong>(<strong>VI</strong>) concentration, mg/L<br />

20<br />

15<br />

10<br />

5<br />

<strong>Cr</strong>(<strong>VI</strong>) concentration, mg/L<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 50 100 150 200 250 300<br />

Time, h<br />

0<br />

0 50 100 150 200 250 300<br />

Time, h<br />

<strong>Cr</strong>(<strong>VI</strong>) breakthrough just before and after Biobarrier BB1<br />

(Bact conc= 0.0205 mg/g of soil)<br />

25<br />

25<br />

<strong>Cr</strong>(<strong>VI</strong>) concentration, mg/L<br />

20<br />

15<br />

10<br />

5<br />

<strong>Cr</strong>(<strong>VI</strong>) concentration, mg/L<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time, h<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time, h<br />

<strong>Cr</strong>(<strong>VI</strong>) breakthrough just before and after Biobarrier (BB2)<br />

(Bact conc= 0.205 mg/g of soil)


Transport of <strong>Cr</strong>(<strong>VI</strong>) with Biotransformation<br />

Y<br />

M<br />

dt<br />

dS<br />

dt<br />

dS<br />

R<br />

R<br />

x<br />

S<br />

D<br />

x<br />

S<br />

u<br />

t<br />

S<br />

R<br />

R<br />

x<br />

<strong>Cr</strong><br />

D<br />

x<br />

<strong>Cr</strong><br />

u<br />

t<br />

<strong>Cr</strong><br />

R<br />

kS<br />

kS<br />

s<br />

k<strong>Cr</strong><br />

cr<br />

λµ<br />

=<br />

=<br />

−<br />

∂<br />

∂<br />

=<br />

∂<br />

∂<br />

+<br />

∂<br />

∂<br />

−<br />

∂<br />

∂<br />

=<br />

∂<br />

∂<br />

+<br />

∂<br />

∂<br />

sin<br />

sin<br />

2<br />

2<br />

6<br />

sin<br />

2<br />

2<br />

6<br />

6<br />

6<br />

6


max<br />

max<br />

6<br />

2<br />

2<br />

1<br />

max<br />

]<br />

[<br />

1<br />

0.63<br />

0<br />

0<br />

6<br />

M<br />

if M<br />

M<br />

M<br />

Y<br />

M<br />

R<br />

k<br />

dt<br />

dM<br />

M<br />

S<br />

S<br />

Su<br />

Su<br />

if<br />

<strong>Cr</strong><br />

K<br />

K<br />

Su<br />

K<br />

Su<br />

simk<strong>Cr</strong><br />

d<br />

T<br />

><br />

=<br />

=<br />

−<br />

=<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

=<br />

<<br />

=<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

+<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

+<br />

=<br />

µ<br />

η<br />

λ<br />

µ<br />

λ<br />

µ<br />

µ


30<br />

25<br />

20 cm port Numerical<br />

20 cm port Experimental<br />

30<br />

25<br />

40 cm port Numerical<br />

40 cm port Experimental<br />

<strong>Cr</strong>(<strong>VI</strong>) mg/L<br />

20<br />

15<br />

10<br />

<strong>Cr</strong>(<strong>VI</strong>) mg/L<br />

20<br />

15<br />

10<br />

5<br />

5<br />

0<br />

0 20 40 60 80 100 120 140<br />

Time h<br />

0<br />

0 20 40 60 80 100 120 140<br />

Time h<br />

20 cm Port 40 cm Port<br />

Initial pore velocity 7.3 cm/h<br />

30<br />

25<br />

60 cm port Numerical<br />

60 cm port Experimental<br />

25<br />

20<br />

80 cm port Numerical<br />

80 cm port Experimental<br />

20<br />

<strong>Cr</strong>(<strong>VI</strong>) mg/L<br />

15<br />

10<br />

<strong>Cr</strong>(<strong>VI</strong>) mg/L<br />

15<br />

10<br />

5<br />

5<br />

0<br />

0 20 40 60 80 100 120 140<br />

Time h<br />

60 cm Port 80 cm Port<br />

0<br />

0 20 40 60 80 100 120 140<br />

Time h<br />

Shashidhar et al., Jl. of Hazard. Mater., 2007


4<br />

PILOT SCALE STUDIES


Schematic Diagram of the Reactor<br />

Inlet<br />

Chambe<br />

r<br />

Bio barrier-0.1M<br />

Outlet<br />

chamber<br />

0.2<br />

5


Location of Wells


<strong>Cr</strong> (<strong>VI</strong>) Concentration before the Bio-barrier in<br />

Bioreactor<br />

50<br />

<strong>Cr</strong>(<strong>VI</strong>), mg/L<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

0 20 40 60 80 100<br />

Time, days<br />

Well N1<br />

Well N2<br />

Well 2<br />

Well 3<br />

Well 8


<strong>Cr</strong> (<strong>VI</strong>) Concentration after the Bio-barrier in<br />

Bioreactor<br />

Well 11-20<br />

<strong>Cr</strong>(<strong>VI</strong>) mg/L<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 50 100<br />

Time, Days<br />

Well 11-20


<strong>Cr</strong> (<strong>VI</strong>) Concentration in the Blank Reactor<br />

before Barrier<br />

<strong>Cr</strong>(<strong>VI</strong>), mg/L<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

0 50 100<br />

Time, Days<br />

Well B1<br />

Well B2<br />

Well B3<br />

Well B8<br />

well B9


<strong>Cr</strong> (<strong>VI</strong>) Concentration in the Blank Reactor after<br />

the Barrier<br />

50<br />

<strong>Cr</strong>(<strong>VI</strong>) mg/L<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

0 50 100<br />

Time, Days<br />

Well B11<br />

Well B12


PLAN <strong>VI</strong>EW <strong>OF</strong> REACTOR CONTANING FOUR<br />

INJECTION WELLS<br />

Injection wells<br />

8<br />

17<br />

22<br />

27<br />

3<br />

12<br />

1<br />

7<br />

11<br />

16<br />

21<br />

26<br />

6<br />

15<br />

20<br />

25<br />

10<br />

5<br />

14<br />

19<br />

24<br />

9<br />

2<br />

4<br />

13<br />

18<br />

23<br />

15 cm<br />

15 cm<br />

35 cm 20 cm<br />

25 cm<br />

Inlet<br />

Chamber<br />

50 cm<br />

25 cm<br />

100 cm


<strong>Cr</strong> (<strong>VI</strong>) Concentration in Reactor before<br />

four Injection wells<br />

300<br />

250<br />

4 wells- well1<br />

<strong>Cr</strong>(<strong>VI</strong>) concentration<br />

Bacteria injected again<br />

was increased form 60<br />

to 250 mg/L<br />

<strong>Cr</strong>(<strong>VI</strong>) , mg/L<br />

200<br />

150<br />

100<br />

50<br />

expt well1<br />

0<br />

0 50 100 150 200 250 300<br />

Time,d


<strong>Cr</strong> (<strong>VI</strong>) Concentration in Reactor after<br />

four Injection wells<br />

60<br />

4 wells - wells 13,15,17<br />

Bacteria injected again<br />

<strong>Cr</strong>(<strong>VI</strong>) , mg/L<br />

50<br />

40<br />

30<br />

20<br />

<strong>Cr</strong>(<strong>VI</strong>) concentration<br />

was increased form<br />

60 to 250 mg/L<br />

Expt well 13<br />

expt well 15<br />

expt well 17<br />

10<br />

0<br />

0 50 100 150 200 250 300<br />

Time,d


MATHEMATICAL MODEL<br />

R<br />

cr<br />

∂<strong>Cr</strong><br />

∂t<br />

+<br />

R<br />

hcr<br />

∂h<br />

∂t<br />

+<br />

( ) = Dˆ<br />

( <strong>Cr</strong>)<br />

Aˆ<br />

<strong>Cr</strong><br />

⎛<br />

− λ.<br />

h.<br />

M.<br />

⎜<br />

⎝<br />

S<br />

⎞ ⎛<br />

⎟.<br />

⎜<br />

⎝<br />

( ) ⎟ ⎜ (<br />

m<br />

K + + ) ⎠<br />

⎟⎟ s<br />

S 1 K<br />

H<br />

. <strong>Cr</strong> ⎠<br />

1<br />

⎞<br />

R<br />

S<br />

∂S<br />

∂t<br />

+<br />

R<br />

hS<br />

∂h<br />

∂t<br />

+<br />

Aˆ<br />

S<br />

Q<br />

j j<br />

( S ) − = Dˆ<br />

( S )<br />

n<br />

−<br />

λ.<br />

hM<br />

η<br />

⎛<br />

.<br />

⎜<br />

⎝<br />

S<br />

⎞ ⎛<br />

⎟.<br />

⎜<br />

⎝<br />

( ) ⎟ ⎜ (<br />

m<br />

K + + ) ⎠<br />

⎟⎟ s<br />

S 1 K<br />

H<br />

. <strong>Cr</strong> ⎠<br />

1<br />

⎞<br />

R<br />

R<br />

cr<br />

hcr<br />

⎛<br />

h⎜<br />

+<br />

⎝<br />

1<br />

ρ<br />

−1<br />

=<br />

b<br />

n<br />

1 K<br />

cr<strong>Cr</strong><br />

ncrφ<br />

⎛ ρ<br />

⎜<br />

+<br />

b<br />

<strong>Cr</strong><br />

⎝ φ<br />

1<br />

−1<br />

=<br />

n<br />

1 K<br />

cr<strong>Cr</strong><br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />


R<br />

S<br />

⎛<br />

h⎜<br />

+<br />

⎝<br />

1<br />

ρ<br />

−1<br />

=<br />

b n<br />

1 K<br />

S<br />

S<br />

nSφ<br />

⎞<br />

⎟<br />

⎠<br />

R<br />

hcr<br />

⎛<br />

S⎜<br />

+<br />

⎝<br />

1<br />

ρ<br />

−1<br />

=<br />

b n<br />

1 K<br />

S<br />

S<br />

φ<br />

⎞<br />

⎟<br />

⎠<br />

Aˆ<br />

=<br />

∂<br />

∂x<br />

∂<br />

∂y<br />

( uh( )) + ( vh( ))<br />

Dˆ<br />

=<br />

∂<br />

∂x<br />

⎡<br />

⎢D<br />

⎣<br />

xx<br />

h<br />

( ) ∂( ) ⎤ ∂ ⎡ ∂( ) ∂( ) ⎤<br />

⎥⎦<br />

∂<br />

∂x<br />

+<br />

D<br />

xy<br />

h<br />

∂y<br />

⎥<br />

⎦<br />

+<br />

∂y<br />

⎢D<br />

⎣<br />

yx<br />

h<br />

∂x<br />

+<br />

D<br />

yy<br />

h<br />

∂y


<strong>Cr</strong>(<strong>VI</strong>), mg/L<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Well 11<br />

Well 12<br />

Well 13<br />

Well 14<br />

Well 15<br />

Well 16<br />

Predicted<br />

0 50 100 150 200<br />

Time,Days<br />

Experimental and modeling results for temporal<br />

variation of <strong>Cr</strong>(<strong>VI</strong>) concentration in wells 11-16 (at a<br />

distance of 110 cm from inlet) in reactor R1<br />

Jeyasigh et al., Chem. Engrg. Jl., 2011


<strong>Cr</strong>(<strong>VI</strong>) concentration in Blank reactor<br />

<strong>Cr</strong>(<strong>VI</strong>) ,mg/L<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Predicted<br />

well 11<br />

well 12<br />

well 13<br />

well 14<br />

well 15<br />

well 16<br />

0 50 100 150 200 250<br />

Time,Days<br />

Experimental and modeling results for temporal variation of<br />

<strong>Cr</strong>(<strong>VI</strong>) concentration in wells 11-16 in reactor R2<br />

Jeyasigh et al., Chem. Engrg. Jl., 2011


<strong>Cr</strong>(<strong>VI</strong>) , mg/L<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Predicted Well 1<br />

Experimental Well 1<br />

0 50 100 150 200 250 300<br />

Time,d<br />

Experimental and modeling results for temporal variation of<br />

<strong>Cr</strong>(<strong>VI</strong>) concentration at well no 1 in reactor R4 (4 wells system)<br />

Jeyasigh et al., Chem. Engrg. Jl., 2011


<strong>Cr</strong>(<strong>VI</strong>) , mg/L<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Predicted Well 9<br />

Predicted Well 10<br />

Predicted Well 11<br />

Predicted Well 12<br />

Experimental Well 9<br />

Experimental Well 10<br />

Experimental Well 11<br />

Experimental Well 12<br />

50<br />

0<br />

0 50 100 150 200 250 300<br />

Time,d<br />

Jeyasigh et al., Chem. Engrg. Jl., 2011


<strong>Cr</strong>(<strong>VI</strong>) , mg/L<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Predicted Well 13<br />

Predicted Well 14<br />

Predicted Well 15<br />

Predicted Well 16<br />

Predicted Well 17<br />

Experimental Well 13<br />

Experimental Well 14<br />

Experimental Well 15<br />

Experimental Well 16<br />

Experimental Well 17<br />

0<br />

0 50 100 150 200 250 300<br />

Time,d<br />

Jeyasigh et al., Chem. Engrg. Jl., 2011


Field Demonstration of<br />

Bioremediation of <strong>Cr</strong>(<strong>VI</strong>)<br />

Contaminated Soil and Aquifer in<br />

Ranipet, Tamilnadu


SCOPE<br />

• Remediation of at least 5 tons of chromium<br />

sludge in the vicinity of Tamilnadu<br />

Chromates and Chemicals Limited (TCCL)<br />

at the site;<br />

• Demonstration of in-situ bioremediation of<br />

<strong>Cr</strong>(<strong>VI</strong>) contaminated aquifer in a 5 m ×5 m<br />

area of aquifer in the vicinity of Tamilnadu<br />

Chromates and Chemicals Limited (TCCL),<br />

Ranipet, by injection well - reactive zone<br />

technology;


Well locations in the experimental plot


RESULTS<br />

Soil Remediation<br />

312.5 kg 312.5 kg 625 kg 1250 kg 2500 kg<br />

Solid Waste Remediation<br />

3.5<br />

3<br />

<strong>Cr</strong>(<strong>VI</strong>), mg/g of soil<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 50 100 150 200 250 300<br />

Time ,d<br />

Variation of <strong>Cr</strong>(<strong>VI</strong>) concentration with respect to time in solid waste<br />

remediation (Mass of untreated sludge added at various time is mentioned<br />

inside the graph)


Variation of total chromium concentration<br />

with respect to time in solid waste<br />

remediation


Remediated and un-remediated<br />

soils<br />

Five Tones of Remediated Soil<br />

Leachate from remediated soil<br />

Un-remediated Soil and<br />

Leachate from unremediated<br />

soil


Aquifer Remediation<br />

Bioremediation using Molasses (Jaggery) as<br />

the Carbon Source<br />

<strong>Cr</strong>(Vl) concentration for wells 1 and 2<br />

200<br />

<strong>Cr</strong>(<strong>VI</strong>) , mg/L<br />

150<br />

100<br />

50<br />

well 1<br />

well 2<br />

0<br />

0 20 40 60 80 100<br />

Time,d<br />

Variation of <strong>Cr</strong> (<strong>VI</strong>) concentration with respect to time in<br />

wells 1 and 2 (molasses as carbon source)


<strong>Cr</strong>(Vl) concentration for wells 3,4 ,5 and 6<br />

<strong>Cr</strong>(<strong>VI</strong>) , mg/L<br />

200<br />

150<br />

100<br />

50<br />

well 3<br />

well 4<br />

well 5<br />

well 6<br />

Variation of <strong>Cr</strong> (<strong>VI</strong>)<br />

concentration with respect<br />

to time in wells 3, 4, 5 and 6<br />

(molasses as carbon source)<br />

0<br />

0 20 40 60 80 100<br />

Time,d<br />

<strong>Cr</strong>(<strong>VI</strong>) Concentration well 7,8,9 and 10<br />

Variation of <strong>Cr</strong> (<strong>VI</strong>)<br />

concentration with respect to<br />

time in wells 7, 8, 9 and 10<br />

(molasses as carbon source)<br />

<strong>Cr</strong>(<strong>VI</strong>),mg/l<br />

140<br />

100<br />

60<br />

20<br />

Well 7<br />

well 8<br />

well 9<br />

well10<br />

-20<br />

0 20 40 60 80 100<br />

Time,d


Variation of <strong>Cr</strong> (<strong>VI</strong>) concentration with respect to time in<br />

wells 11 – 14 (molasses as carbon source)<br />

150<br />

<strong>Cr</strong>(Vl) concentration for well 11,12,13 and 14<br />

125<br />

well 11<br />

<strong>Cr</strong>(<strong>VI</strong>) , mg/L<br />

100<br />

75<br />

50<br />

T<br />

well 12<br />

well 13<br />

well 14<br />

25<br />

0<br />

0 20 40 60 80 100<br />

Time,d


COD Variation in various wells<br />

COD for wells 1 and 2<br />

COD for wells 3,4 ,5 and 6<br />

cod(mg/l)<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

w ell 1<br />

w ell 2<br />

cod(mg/l)<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

w ell 3<br />

w ell 4<br />

w ell 5<br />

w ell 6<br />

200<br />

20000<br />

0<br />

10000<br />

0 20 40 60 80 100<br />

0<br />

Time(d)<br />

0 20 40 60 80 100<br />

Time(d)<br />

COD for wells 7,8,9 and 10<br />

4500<br />

4000<br />

2500<br />

Cod for wells 11,12,13 and14<br />

cod(mg/l)<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

well 7<br />

well 8<br />

well 9<br />

well 10<br />

cod(mg/l)<br />

2000<br />

1500<br />

1000<br />

well 11<br />

well 12<br />

well 13<br />

well 14<br />

1000<br />

500<br />

500<br />

0<br />

-10 10 30 50 70 90 110 130<br />

time(d)<br />

0<br />

0 20 40 60 80 100 120 140<br />

Time(d)


Total Chromium Concentration in Various Wells<br />

Total Chromium for well 1and 2<br />

Total Chromium for well 3,4,5and 6<br />

150<br />

200<br />

Total chromium,mg/l<br />

145<br />

140<br />

135<br />

130<br />

125<br />

120<br />

115<br />

0 20 40 60 80 100<br />

Time,d<br />

well1<br />

well2<br />

Total chromium,mg/l<br />

150<br />

100<br />

50<br />

0<br />

0 20 40 60 80 100<br />

Time,d<br />

well3<br />

well4<br />

well5<br />

well6<br />

Total Chromium for well 7,8,9 and 10<br />

Total Chromium for well 11,12,13 and 14<br />

Total chromium,mg/l<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

well7<br />

well8<br />

well9<br />

well10<br />

Total chromium,mg/l<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

well11<br />

well12<br />

well13<br />

well14<br />

0 20 40 60 80 100<br />

0 20 40 60 80 100<br />

Time,d<br />

Time,d


Water samples before and after<br />

Remediation


<strong>Cr</strong>(<strong>VI</strong>) Concentrations during Well<br />

<strong>Cr</strong>(<strong>VI</strong>) Concentration for well 3,4,5 and 6<br />

Recovery<br />

150<br />

<strong>Cr</strong>(<strong>VI</strong>),mg/l<br />

100<br />

50<br />

well 3<br />

well 4<br />

well 5<br />

well 6<br />

0<br />

0 10 20 30 40 50 60 70<br />

Time,d<br />

<strong>Cr</strong>(<strong>VI</strong>) Concentration for well 11,12,13 and 14<br />

145<br />

<strong>Cr</strong>(<strong>VI</strong>),mg/l<br />

140<br />

135<br />

130<br />

125<br />

well 11<br />

well 12<br />

well 13<br />

well 14<br />

120<br />

0 10 20 30 40 50 60 70<br />

Time,d


COD values during well recovery<br />

COD for well 3,4,5 and 6<br />

150<br />

COD,mg/l<br />

100<br />

50<br />

well 3<br />

well 4<br />

well 5<br />

well 6<br />

0<br />

0 10 20 30 40 50 60 70<br />

Time,d<br />

COD for well 11,12,13 and 14<br />

140<br />

120<br />

COD,mg/l<br />

100<br />

80<br />

60<br />

40<br />

well 11<br />

well 12<br />

well 13<br />

well 14<br />

20<br />

0<br />

0 10 20 30 40 50 60 70<br />

Time,d


Bioremediation using Sugar as the<br />

Carbon Source<br />

• Remediation of <strong>Cr</strong>(<strong>VI</strong>) aquifers were also carried<br />

out using sugar as the carbon source.<br />

• For this study the initial biomass concentration<br />

was reduced to 1/10 th of that used in the previous<br />

case.<br />

• Carbon source concentration also was reduced to<br />

1/4 th and feeding interval was increased to 7- 10<br />

days.<br />

• The fate and transport of chromium (both <strong>Cr</strong>(<strong>VI</strong>)<br />

and <strong>Cr</strong>(III)), sugar and its derivatives, and<br />

microbes during the study period was monitored.


Bioremediation using Sugar as the<br />

Carbon Source: <strong>Cr</strong>(<strong>VI</strong> concentrations<br />

<strong>Cr</strong>(Vl) Concentration for well 1 and 2<br />

<strong>Cr</strong>(Vl) concentration for well 3,4,5and 6<br />

150<br />

150<br />

125<br />

well 3<br />

<strong>Cr</strong>(Vl),mg/l<br />

100<br />

75<br />

50<br />

w ell 1<br />

w ell 2<br />

<strong>Cr</strong>(<strong>VI</strong>) , mg/L<br />

100<br />

50<br />

well 4<br />

well 5<br />

well 6<br />

25<br />

0<br />

0 25 50 75 100 125 150<br />

Time,d<br />

0<br />

0 50 100 150<br />

Time,d<br />

<strong>Cr</strong>(Vl) concentration for well 7,8,9and 10<br />

<strong>Cr</strong>(Vl) concentration for well 11,12,13 and 14<br />

150<br />

150<br />

well 11<br />

<strong>Cr</strong>(<strong>VI</strong>) , mg/L<br />

100<br />

50<br />

well 7<br />

well 8<br />

well 9<br />

well 10<br />

<strong>Cr</strong>(<strong>VI</strong>) , mg/L<br />

100<br />

50<br />

well 12<br />

well 13<br />

Well 14<br />

0<br />

0 50 100 150<br />

Time,d<br />

0<br />

0 50 100 150<br />

Time,d


COD concentrations in various wells during<br />

bioremediation using sugar as carbon Source<br />

COD for well 1 and 2<br />

COD for well 3,4,5 and 6<br />

250<br />

7500<br />

200<br />

6000<br />

COD,mg/l<br />

150<br />

100<br />

well 1<br />

well 2<br />

COD,mg/l<br />

4500<br />

3000<br />

well 3<br />

well 4<br />

well 5<br />

well 6<br />

50<br />

1500<br />

0<br />

0 50 100 150 200<br />

Time,d<br />

0<br />

0 50 100 150 200<br />

Time,d<br />

COD for well 7,8,9 and 10<br />

COD for well 11,12,13 and 14<br />

1200<br />

1200<br />

COD,mg/l<br />

900<br />

600<br />

300<br />

well 7<br />

well 8<br />

well 9<br />

well 10<br />

COD,mg/l<br />

900<br />

600<br />

300<br />

well 11<br />

well 12<br />

well 13<br />

Well 14<br />

0<br />

0 50 100 150 200<br />

Time,d<br />

0<br />

0 50 100 150 200<br />

Time,d


Total <strong>Cr</strong> concentrations in various wells during<br />

bioremediation using sugar as carbon Source<br />

Total Chromium for well 1 and 2<br />

Total Chromium for well 3,4,5 and 6<br />

200<br />

200<br />

Total Chromium,mg/l<br />

150<br />

100<br />

50<br />

well 1<br />

well 2<br />

Total Chromium,mg/l<br />

150<br />

100<br />

50<br />

well 3<br />

well 4<br />

well 5<br />

well 6<br />

0<br />

0 50 100 150<br />

Time,d<br />

0<br />

0 50 100 150<br />

Time,d<br />

Total Chromium for well 7,8,9 and 10<br />

Total Chromium for well 11,12,13 and 14<br />

Total Chromium, mg/L<br />

150<br />

100<br />

50<br />

0<br />

0 50 100 150<br />

Time,d<br />

well 7<br />

well 8<br />

well 9<br />

well 10<br />

Total Chromium,mg/l<br />

150<br />

100<br />

50<br />

0<br />

0 50 100 150<br />

Time,d<br />

well 11<br />

well 12<br />

well 13<br />

Well 14


Water samples from various wells<br />

after remediation


Water samples from various<br />

wells after remediation


Analysis of Heavy Metals in<br />

Aquifer<br />

Metals<br />

Well 1<br />

(mg/L)<br />

Well 2<br />

(mg/L)<br />

Well 3<br />

(Injection<br />

well)<br />

Well 5<br />

(Injection<br />

well)<br />

Well 9 Well 13 Well 14<br />

Copper BDL BDL BDL BDL BDL BDL BDL<br />

Lead BDL BDL 0.0925 0.0775 0 0 0<br />

Manga<br />

nese 0.065 0.067 0.068 0.057 0.017 0.054 0.05<br />

zinc 0.012 0.017 0.2825 0.2175 0.0225 0.07 0.09<br />

<strong>Cr</strong>(<strong>VI</strong>) 145.2 140.2 BDL BDL BDL BDL BDL<br />

Iron BDL BDL 0.017 0.023 0.0487 0.032 0.036<br />

Nickel BDL BDL BDL BDL BDL BDL BDL


IN THIS FIELD LEVEL STUDY, WE HAVE<br />

DEMONSTRATED CONCLUSIVELY THAT<br />

<strong>BIOREMEDIATION</strong> IS AN<br />

• EFFECTIVE,<br />

• ECONOMICAL <strong>AND</strong><br />

SUMMARY<br />

• EN<strong>VI</strong>RONMENTALLY FRIENDLY<br />

TECHNOLOGY FOR THE REMEDIATION <strong>OF</strong><br />

HEXAVALENT CHROMIUM <strong>CONTAMINATED</strong><br />

<strong>SOIL</strong>S <strong>AND</strong> <strong>AQUIFERS</strong>


Technology Transfer<br />

• Munjal Showa, Haryana, INDIA<br />

• Shriram Pistons & Rings Ltd, Meerut Road,<br />

Ghaziabad, INDIA<br />

• Anant Udyog, Faridabad, Haryana, INDIA


Hydro-Geological Conditions


Shriram Pistons and Rings Ltd, Meerut<br />

Road, Ghaziabad, INDIA<br />

Between<br />

Dewan<br />

Rubber and<br />

Mascot<br />

X3<br />

Contaminate<br />

d Zone-1<br />

X4<br />

X1<br />

LEGEND<br />

(Hexavalent Chrome concentration)<br />

12-16 mg/L<br />

8 – 12 mg/L<br />

4 – 8 mg/L<br />

1 – 4 mg/L<br />

X2<br />

<strong>CONTAMINATED</strong> ZONE IDENTIFIED FOR SETTING UP ETP


MAP <strong>OF</strong> LOHIANAGAR <strong>AND</strong> ADJOINING AREA<br />

SHOWING SEGMENTS A – E


Quantification of Contaminated Groundwater<br />

S.<br />

No.<br />

Segment<br />

Quantity of<br />

Contaminated<br />

Groundwater,<br />

Q=A*Wlf*Sp.Y.<br />

Range of<br />

Hexavalent<br />

Chromium in<br />

Mg/L<br />

1 Segment A 69,600 cu.m./yr. Nil – 3.4<br />

2 Segment B 2,08,800 cu.m./yr. 0.2 – 16.3<br />

3 Segment C 52,200 cu.m./yr. 0.1 -1.3<br />

4 Segment D 1,74,000 cu.m./yr. 1.3 – 15.4<br />

5 Segment E 1,04,400 cu.m./yr. Nil – 1.3


Our Research<br />

•Bioremediation of contaminated air<br />

•SOx and NOx removal from flue gases<br />

•Hg vapour removal from flue gases<br />

•VOC removal from contaminated air<br />

•Bioremediation of Contaminated Soil<br />

•Pesticide contaminated Soils<br />

•Heavy Metal contaminated soils<br />

•Bioremediation of Contaminated Water<br />

•Industrial and domestic wastewaters<br />

•Contaminated Aquifers


Biofiltration of<br />

contaminated air<br />

Treatment of Flue gases<br />

SOx, Nox, Mercury vapor, VOC’s<br />

(BTEX), chloroform, alcohols,<br />

aldehydes etc..<br />

•Complete removal of SOx and elemental sulfur<br />

recovery<br />

•Novel system for complete treatment of NOx<br />

•Mercury vapor removal from flue gas using<br />

Thiobacillus immobilized biotrickling filters<br />

Compressed<br />

air inlet<br />

Mineral medium inlet<br />

N 2 CO 2 SO NO<br />

2<br />

Clean air<br />

exhaust<br />

BIOTRICKLING<br />

FILTER<br />

Medium 2 feed<br />

POST-TREATMENT<br />

(heated to 37 C)<br />

SETTLER<br />

Overflow<br />

purge<br />

Effluent Gas<br />

Liquid<br />

Air<br />

NOx<br />

Photo<br />

Catalytic<br />

Oxidation<br />

Filter<br />

Ozone<br />

Oxidation<br />

Scrub<br />

bing<br />

Ozone<br />

Oxidation<br />

Leachate for<br />

Denitrification<br />

Philip and Deshueeses (2003). ES&T,37(9), pp 1978-1982<br />

Barman and Philip (2006) ES&T, 40(3),pp 1035-1041<br />

Philip and Deshusses (2008) Chemosphere, 70(3), 411-417


M/S FUTURA POLYESTERS, MANALI, CHENNAI<br />

Field demonstration plant for SOx and NOx removal


Pesticide Poisoning cases in India<br />

Finger deformities<br />

Six year-old cancer patient<br />

10 year-old patient<br />

12 year paralysis patient


SOURCES <strong>OF</strong> PESTICIDE POLLUTION<br />

* Agricultural runoff * Ariel transport<br />

* Pesticide industrial effluent * Discarded pesticide packages


Consumption of selected insecticides in Indian<br />

agriculture (tones technical grade)<br />

Items 93-94 94-95 95-96 96-97 97-98<br />

Endosulfan 4’600 5’200 5’500 4’300 4’200<br />

HCH<br />

(BHC) 24’000 22’000 22’000 4’250 --<br />

Lindane 50 45 40 40 250<br />

Methyl<br />

parathion 2’600 2’600 2’400 1’700 2’000


Photographs of bench<br />

scale and pilot scale<br />

soil reactors during<br />

operation<br />

Contaminated<br />

site<br />

identification<br />

What we do?<br />

Isolation,<br />

enrichment<br />

Treatability<br />

study<br />

Parameters<br />

optimized,<br />

1. Supplementary carbon<br />

2. Operating pH<br />

3. Innoculum size<br />

4. Operating condition<br />

EID Parry India Ltd.<br />

Chennai, India.<br />

Mixed<br />

culture<br />

To check workability of<br />

the culture<br />

Soils selected<br />

Compost soil, clay soil<br />

Sandy soil, Red soil<br />

Identification<br />

Miniature soil reactor<br />

Sorption studies to find the<br />

bioavailability<br />

Pathway<br />

identification<br />

Bench scale soil reactor<br />

REACTOR STUDIES<br />

Pilot scale soil reactor


Bioremediation- Pesticides<br />

Endosulfan, Lindane, Atrazine,<br />

Carbofuran, Methyl Parathion<br />

Isolated strains for complete mineralization<br />

of endosulfan<br />

•Developed a consortium to degrade an array<br />

of pesticides<br />

•Pesticide effect on biological systems and<br />

their fate<br />

• Pilot scale bioremediation system<br />

development

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!