05.05.2015 Views

clinical waste handling and obstacles in malaysia - Centro de ...

clinical waste handling and obstacles in malaysia - Centro de ...

clinical waste handling and obstacles in malaysia - Centro de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EDITORIAL TEAM<br />

Editors<br />

Celso Augusto Guimarães Santos, Fe<strong>de</strong>ral University of Paraíba, Brazil<br />

Masuo Kashiwadani, Ehime University, Japan<br />

Dragan Savic, University of Exeter, United K<strong>in</strong>gdom<br />

Vicente L. Lopes, Texas State University, United States<br />

Associate Editors<br />

Koichi Suzuki, Ehime University, Japan<br />

Hafzullah Aksoy, Istanbul Technical University, Turkey<br />

António Pais Antunes, University of Coimbra, Portugal<br />

Roberto Leal Pimentel, Fe<strong>de</strong>ral University of Paraíba, Brazil<br />

Max Billib, Hannover University, Germany<br />

Bernardo Arantes do Nascimento Teixeira, Fe<strong>de</strong>ral University of São Carlos, Brazil<br />

Generoso <strong>de</strong> Angelis Neto, State University of Mar<strong>in</strong>gá, Brazil<br />

FOCUS <strong>and</strong> SCOPE<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE) provi<strong>de</strong>s a forum for orig<strong>in</strong>al papers <strong>and</strong> for the exchange of<br />

<strong>in</strong>formation <strong>and</strong> views on significant <strong>de</strong>velopments <strong>in</strong> urban <strong>and</strong> environmental eng<strong>in</strong>eer<strong>in</strong>g worldwi<strong>de</strong>. The scope of the<br />

journal <strong>in</strong>clu<strong>de</strong>s:<br />

(a) Water Resources <strong>and</strong> Waste Management: This topic <strong>in</strong>clu<strong>de</strong>s (i) <strong>waste</strong> <strong>and</strong> sanitation; (ii) environmental<br />

issues; (iii) the hydrological cycle on the Earth; (iv) surface water, groundwater, snow <strong>and</strong> ice, <strong>in</strong> all their physical,<br />

chemical <strong>and</strong> biological processes, their <strong>in</strong>terrelationships, <strong>and</strong> their relationships to geographical factors, atmospheric<br />

processes <strong>and</strong> climate, <strong>and</strong> Earth processes <strong>in</strong>clud<strong>in</strong>g erosion <strong>and</strong> sedimentation; (v) hydrological extremes <strong>and</strong> their<br />

impacts; (vi) measurement, mathematical representation <strong>and</strong> computational aspects of hydrological processes; (vii)<br />

hydrological aspects of the use <strong>and</strong> management of water resources <strong>and</strong> their change un<strong>de</strong>r the <strong>in</strong>fluence of human<br />

activity; (viii) water resources systems, <strong>in</strong>clud<strong>in</strong>g the plann<strong>in</strong>g, eng<strong>in</strong>eer<strong>in</strong>g, management <strong>and</strong> economic aspects of<br />

applied hydrology.<br />

(b) Constructions <strong>and</strong> Environment: Build<strong>in</strong>gs <strong>and</strong> <strong>in</strong>frastructure constructions (bridges/footbridges, pipel<strong>in</strong>es etc)<br />

are part of every urban area. In recent years there is a grow<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> seek<strong>in</strong>g rationality of construction systems, <strong>in</strong><br />

balance with environmental a<strong>de</strong>quacy <strong>and</strong> harmony <strong>in</strong> an urban area. This <strong>in</strong>volves, among others, a<strong>de</strong>quacy of structural<br />

systems (shapes, functionality, rational <strong>de</strong>sign etc), use of alternative materials for construction (recycled,<br />

environmentally friendly materials etc) <strong>and</strong> solutions seek<strong>in</strong>g energy efficiency.<br />

(c) Urban Design: This topic covers the arrangement, appearance <strong>and</strong> functionality of towns <strong>and</strong> cities, <strong>and</strong> <strong>in</strong><br />

particular the shap<strong>in</strong>g <strong>and</strong> uses of urban public space (e.g. streets, plazas, parks <strong>and</strong> public <strong>in</strong>frastructure), <strong>in</strong>clud<strong>in</strong>g also<br />

urban plann<strong>in</strong>g, l<strong>and</strong>scape architecture, or architecture issues (e.g. thermic <strong>and</strong> acoustic comfort).<br />

(d) Transportation Eng<strong>in</strong>eer<strong>in</strong>g: This topic covers such area as Traffic & Transport Management, Rail Transport, Air<br />

Transport, International Transport, Logistics/Physical Distribution/Supply Cha<strong>in</strong> Management, Management Information<br />

Systems & Computer Applications, Motor Transport, Regulation/Law, Transport Policy, <strong>and</strong> Water Transport.


SUMMARY<br />

CLINICAL WASTE HANDLING AND OBSTACLES IN MALAYSIA……………………………………….. 47-54<br />

Shaidatul Shida Razali<br />

Multi-criteria evaluation of the expansion of natural gas distribution network by the urban<br />

dynamics………………………………………..………………………………………..……………………………… 55-62<br />

Vanessa Meloni Massara, Miguel Edgar Morales Udaeta<br />

ANALYSIS OF NEIGHBORHOOD IMPACTS ARISING FROM IMPLEMENTATION OF<br />

SUPERMARKETS IN CITY OF SÃO CARLOS………………………………………………………………….. 63-73<br />

Pedro Silveira Gonçalves Neto, José Augusto <strong>de</strong> Lollo<br />

DETERMINING INDICATORS OF URBAN HOUSEHOLD WATER CONSUMPTION THROUGH<br />

MULTIVARIATE STATISTICAL TECHNIQUES……………………………………………………………….. 74-80<br />

Gledsneli Maria Lima L<strong>in</strong>s, Walter Santa Cruz, Zédna Mara Castro Lucena Vieira,<br />

Francisco <strong>de</strong> Assis Costa Neto, Érico Alberto Albuquerque Mir<strong>and</strong>a<br />

COMPARATIVE ANALYSIS OF EROSION MODELING TECHNIQUES IN A BASIN OF<br />

VENEZUELA………………………………………………..……………………………………………………………. 81-104<br />

Adriana Marquez Romance, Edilberto Guevara Perez


Razali <strong>and</strong> Ishak<br />

47<br />

J U E E<br />

Journal of Urban <strong>and</strong> Environmental<br />

Eng<strong>in</strong>eer<strong>in</strong>g, v.4, n.2, p.47-54<br />

ISSN 1982-3932<br />

doi: 10.4090/juee.2010.v4n2.047054<br />

Journal of Urban <strong>and</strong><br />

Environmental Eng<strong>in</strong>eer<strong>in</strong>g<br />

www.journal-uee.org<br />

CLINICAL WASTE HANDLING AND OBSTACLES<br />

IN MALAYSIA<br />

Shaidatul Shida Razali ∗ <strong>and</strong> Mohd Bakri Ishak<br />

Department of Environmental Management, Faculty of Environmental Studies, Universiti Putra Malaysia,<br />

Serdang, Selangor, Malaysia.<br />

Received 22 March 2010; received <strong>in</strong> revised form 22 April 2010; accepted 27 December 2010<br />

Abstract:<br />

Keywords:<br />

As <strong>in</strong> many other <strong>de</strong>velop<strong>in</strong>g countries, the generation of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>in</strong> Malaysia has<br />

<strong>in</strong>creased significantly over the last few <strong>de</strong>ca<strong>de</strong>s. Even though the serious impact of the<br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> on human be<strong>in</strong>gs <strong>and</strong> the environment is significant, only m<strong>in</strong>or attention<br />

is directed to its proper <strong>h<strong>and</strong>l<strong>in</strong>g</strong> <strong>and</strong> legal aspects. This study seeks to exam<strong>in</strong>e the<br />

management of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>in</strong> Selangor’s government hospitals as well as problems<br />

that arise from the current practice of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management. A <strong>de</strong>pth <strong>in</strong>terview<br />

with the responsible concession who h<strong>and</strong>les the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management <strong>in</strong> those<br />

hospitals also has been taken. In general, it was found that the consortium’s<br />

adm<strong>in</strong>istration was reasonably aware of the importance of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management.<br />

However, significant voids were presented that need to be addressed <strong>in</strong> future <strong>in</strong>clud<strong>in</strong>g<br />

efficient segregation, better <strong>h<strong>and</strong>l<strong>in</strong>g</strong> <strong>and</strong> transfer means, as well as the need for<br />

tra<strong>in</strong><strong>in</strong>g <strong>and</strong> awareness programs for the personnel. Other <strong>obstacles</strong> faced by<br />

consortiums were to h<strong>and</strong>le the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>in</strong>clud<strong>in</strong>g the operational costs. Waste<br />

m<strong>in</strong>imiz<strong>in</strong>g <strong>and</strong> recycl<strong>in</strong>g, as well as the alternative treatment methods for <strong>in</strong>c<strong>in</strong>eration<br />

are regar<strong>de</strong>d to be major challenges <strong>in</strong> the future.<br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>, management, <strong>obstacles</strong><br />

© 2010 Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE). All rights reserved.<br />

∗ Correspon<strong>de</strong>nce to: Shaidatul Shida Razali, Tel.: +60102177483.<br />

E-mail: shida_upm@yahoo.com<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.47-54, 2010


Razali <strong>and</strong> Ishak<br />

48<br />

INTRODUCTION<br />

Medic<strong>in</strong>e is one of the important sectors show<strong>in</strong>g<br />

enhancement throughout the recent <strong>de</strong>ca<strong>de</strong>s (Birp<strong>in</strong>ar et<br />

al., 2008). A hospital is midpo<strong>in</strong>t that supplies various<br />

healthcare services to the community. Its activity may<br />

<strong>in</strong>clu<strong>de</strong> curative, rehabilitation, preventive, <strong>and</strong><br />

promot<strong>in</strong>g of health education. In un<strong>de</strong>rtak<strong>in</strong>g the<br />

activities, the hospital may also generate <strong>waste</strong> (Chaerul<br />

et al., 2008). However, the fraction of <strong>waste</strong> generated<br />

at medical <strong>in</strong>stitutions has not attracted the level of<br />

attention as other types of <strong>waste</strong>s, especially <strong>in</strong><br />

<strong>de</strong>velop<strong>in</strong>g countries (Birp<strong>in</strong>ar et al., 2008). Even<br />

though concrete steps like propos<strong>in</strong>g a policy <strong>and</strong> laws<br />

to regulate <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management, there is still<br />

problems presence due to several factors. Lack of<br />

tra<strong>in</strong><strong>in</strong>g, awareness, <strong>and</strong> f<strong>in</strong>ancial resources had been<br />

seemed as factors contribute to the mismanagement of<br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>.<br />

Cl<strong>in</strong>ical <strong>waste</strong>s differ from any other <strong>waste</strong>s that<br />

be<strong>in</strong>g produced <strong>in</strong> hospitals. Sharps, human tissues or<br />

body parts <strong>and</strong> other <strong>in</strong>fectious materials conta<strong>in</strong> <strong>in</strong><br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> poses potential health <strong>and</strong> environmental<br />

risks (Bareja et al., 2000). By weight, approximately 15<br />

– 25% of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> is consi<strong>de</strong>red <strong>in</strong>fectious (Sh<strong>in</strong>ee<br />

et al., 2008). Even though the current practices of<br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management are different from hospital to<br />

hospital, the problematic are similar for all healthcare<br />

<strong>in</strong>stitutional from segregation, collection, packag<strong>in</strong>g,<br />

storage, transport, treatment <strong>and</strong> disposal (Tsanoka et<br />

al., 2007).<br />

Environmental pollution, unpleasant odors<br />

encourages <strong>in</strong>sects, ro<strong>de</strong>nts <strong>and</strong> worms to breed that<br />

may lead to transmission of disease like cholera,<br />

hepatitis or typhoid through <strong>in</strong>juries from contam<strong>in</strong>ated<br />

sharps (Abdulla et al., 2008).<br />

Proper manner of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management is<br />

greatly important to avoid health risks <strong>and</strong> damage to<br />

the flora, fauna <strong>and</strong> the environment (Yong, et al.,<br />

2009).<br />

Cl<strong>in</strong>ical Waste Management <strong>in</strong> Malaysia<br />

Up until 1980s, Malaysia has no proper system for the<br />

management of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>. With the emergence of<br />

HIV, M<strong>in</strong>istry of Health <strong>in</strong> collaboration with<br />

Department of Environment took an <strong>in</strong>itiative to revise<br />

policies <strong>and</strong> gui<strong>de</strong>l<strong>in</strong>es for prevention <strong>and</strong> control of<br />

<strong>in</strong>fectious disease <strong>and</strong> <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>h<strong>and</strong>l<strong>in</strong>g</strong>.<br />

It is estimated that total bed’s strength is about 47<br />

000 <strong>and</strong> 35 000 came from government’s hospital with<br />

the occupancy rate 65%. Cl<strong>in</strong>ical <strong>waste</strong> <strong>in</strong> Malaysia<br />

may be <strong>de</strong>f<strong>in</strong>ed as:<br />

i. Any <strong>waste</strong> which consist wholly or partly of human<br />

animal tissue, blood or other body fluids, excretions,<br />

drugs or other pharmaceutical products, swabs or<br />

dress<strong>in</strong>gs, syr<strong>in</strong>ges, needles or other sharp <strong>in</strong>struments,<br />

be<strong>in</strong>g <strong>waste</strong> which unless ren<strong>de</strong>red safe may cause<br />

hazardous to any person com<strong>in</strong>g <strong>in</strong>to contact with it.<br />

ii. Any other <strong>waste</strong> aris<strong>in</strong>g from medical, nurs<strong>in</strong>g,<br />

<strong>de</strong>ntal, veter<strong>in</strong>ary, pharmaceutical or similar practice,<br />

<strong>in</strong>vestigation, treatment, care, teach<strong>in</strong>g or research, or<br />

the collection of blood for transfusion, be<strong>in</strong>g <strong>waste</strong><br />

which may cause <strong>in</strong>fection to any person com<strong>in</strong>g <strong>in</strong>to<br />

contact with it.<br />

Currently, <strong>cl<strong>in</strong>ical</strong> is reported together with<br />

pharmaceutical <strong>waste</strong>. The total <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong><br />

generated is about 8000 tonnes per year <strong>and</strong> DOE<br />

(2005) estimated that the generation rate for <strong>cl<strong>in</strong>ical</strong><br />

<strong>waste</strong> varies from 0.3 to 0.8 kg per occupied bed per<br />

day.<br />

Cl<strong>in</strong>ical Waste Problems <strong>and</strong> Obstacles<br />

In Brazil, law of environment No. 7 (1982), law of the<br />

atmospheric <strong>and</strong> air protection (1992), <strong>and</strong> law of<br />

transport of hazardous materials (2005) <strong>de</strong>als with<br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management, but problems such as<br />

<strong>waste</strong> transported to on-site storage conta<strong>in</strong>ers via<br />

uncovered trolleys, conta<strong>in</strong>ers placed near the ma<strong>in</strong><br />

street with<strong>in</strong> the hospitals build<strong>in</strong>gs or located outsi<strong>de</strong><br />

at the street curb, <strong>waste</strong> simply dumped <strong>in</strong> the corner<br />

of hospital room until it could be transported off-site,<br />

use of open trucks <strong>and</strong> lack of tra<strong>in</strong><strong>in</strong>g (Sawalem,<br />

2008).<br />

Same goes to Korea. Korea National Assembly<br />

customized the Waste Management Act <strong>in</strong> 1999 to<br />

enhanced control from the generation of medical <strong>waste</strong><br />

to its f<strong>in</strong>al <strong>de</strong>st<strong>in</strong>ation. The Korea M<strong>in</strong>istry of<br />

Environment (MOE) had given the responsibility for<br />

implement<strong>in</strong>g the act. The Korea MOE spread several<br />

regulations for <strong>de</strong>f<strong>in</strong>ition, segregation, packag<strong>in</strong>g,<br />

track<strong>in</strong>g, <strong>and</strong> disposal of medical <strong>waste</strong> but yet, the<br />

mismanagement still arise that medical <strong>waste</strong> was<br />

often mixed <strong>and</strong> <strong>waste</strong> m<strong>in</strong>imization <strong>and</strong> recycl<strong>in</strong>g are<br />

still not well-promoted (Jang et al., 2006).<br />

In 2002, Croatia endorsed the Directive on the<br />

management of <strong>waste</strong> produced dur<strong>in</strong>g healthcare<br />

(Republic of Croatia, 2000). The Directive portrays an<br />

overall system of <strong>waste</strong> management; sort<strong>in</strong>g at the<br />

po<strong>in</strong>t of generation, collection, transportation, storage<br />

<strong>and</strong> treatment but only a small number of medical<br />

<strong>in</strong>stitutions report their <strong>waste</strong> to the Registry due to the<br />

weakness of Registry function.<br />

These <strong>de</strong>prived management si<strong>de</strong>s are due to the<br />

lack of sensitivity from the management of the<br />

facilities, mean<strong>in</strong>g there seems to be some lack of<br />

awareness concern<strong>in</strong>g health risks towards the<br />

community members as well as environmental issues,<br />

<strong>and</strong> due to economic problems <strong>in</strong> the country that<br />

prevent the government from a<strong>de</strong>quately support<strong>in</strong>g a<br />

healthcare policy (Silva et al., 2005; Abdulla et al.,<br />

2008).<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.47-54, 2010


Razali <strong>and</strong> Ishak<br />

49<br />

Concern<strong>in</strong>g this, this paper aimed to:<br />

(a) To exam<strong>in</strong>e the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management <strong>in</strong><br />

Selangor (one of the state <strong>in</strong> Malaysia) government’s<br />

hospitals.<br />

(b) To analyze problems faced <strong>in</strong> the management<br />

means.<br />

METHODOLOGY<br />

The methodological framework can be <strong>de</strong>scribed as<br />

follows (Fig. 1):<br />

Study site<br />

The study took place <strong>in</strong> Selangor, Malaysia. Located on<br />

the west coast of pen<strong>in</strong>sular Malaysia <strong>and</strong> cover<strong>in</strong>g<br />

8000 square kilometers, Selangor is boun<strong>de</strong>d on the<br />

north by Perak, on the east by Pahang <strong>and</strong> Negeri<br />

Sembilan, <strong>and</strong> on the west by the Straits of Malacca.<br />

Selangor has been called the gateway of Malaysia. It<br />

is also the <strong>in</strong>dustrial hub of Malaysia; the country’s<br />

largest <strong>in</strong>dustrial site is located <strong>in</strong> Shah Alam, the states<br />

capital, just 25 kilometers from Kuala Lumpur. It is the<br />

most populous state <strong>in</strong> the country with a total<br />

population of 2.7 million <strong>in</strong>habitants. Despite be<strong>in</strong>g<br />

<strong>in</strong>dustry-based, the state is blessed with natural forests,<br />

waterfalls, hills, <strong>and</strong> lakes to complement its many manma<strong>de</strong><br />

attractions.<br />

There are 10 government hospitals <strong>in</strong> Selangor,<br />

which are located at Kajang, Serdang, Kuala Kubu<br />

Bharu, Ampang, Selayang, Sungai Buloh, Bant<strong>in</strong>g,<br />

Sabak Bernam, Klang <strong>and</strong> Tanjung Karang.<br />

Data Collection<br />

The first step <strong>in</strong> collect<strong>in</strong>g the data was to <strong>de</strong>term<strong>in</strong>e the<br />

panelists. The panelists were the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong><br />

supervisor <strong>in</strong> each hospital. Panelists were then<br />

<strong>in</strong>terviewed. Interviews were helpful <strong>in</strong> obta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>formation about common practices <strong>in</strong> the management<br />

of the <strong>waste</strong> (Bdour, et al., 2007). Questions were asked<br />

basically about the management of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>in</strong><br />

terms of collection, transportation, treatment, disposal<br />

<strong>and</strong> tra<strong>in</strong><strong>in</strong>g. The <strong>in</strong>formants were also asked about the<br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management dur<strong>in</strong>g H1N1 acute <strong>and</strong> the<br />

challenges <strong>in</strong>volved as well as the problems faced. The<br />

number of <strong>waste</strong>s generated was also asked.<br />

A form for the panelists to provi<strong>de</strong> the <strong>in</strong>formation<br />

regard<strong>in</strong>g <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> generation <strong>and</strong> tra<strong>in</strong><strong>in</strong>g was<br />

also distributed.<br />

Data Analysis<br />

The recor<strong>de</strong>d <strong>in</strong>terviews were then transferred <strong>in</strong>to<br />

transcripts. Then, the transcripts were sent back to the<br />

<strong>in</strong>terviewees for the process of validation. In this<br />

process, the panelists may make any correction if they<br />

wish to.<br />

RESULTS AND DISCUSSION<br />

Background <strong>in</strong>formation <strong>and</strong> <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong><br />

generation<br />

The quantity of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>de</strong>pends upon several<br />

factors such as the size of hospital, the segregation<br />

program of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>and</strong> the medical activities.<br />

Table 1 <strong>and</strong> Fig. 2 presents <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> generated<br />

from all general hospitals <strong>in</strong> Selangor throughout the<br />

year 2009. There are 10 government hospitals <strong>in</strong><br />

Selangor <strong>and</strong> the number of beds ranges from 93 to 864<br />

with a mean of 335.9. However, <strong>in</strong> this study, we will<br />

look upon to just n<strong>in</strong>e hospitals because one of the<br />

hospitals refused to give cooperation. Consi<strong>de</strong>r<strong>in</strong>g the<br />

occupancy bed is 100%, the average generation rates of<br />

total <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>in</strong> Selangor’s government hospitals<br />

were estimated to be 1.355 kg/bed/day.<br />

Fig. 1 Research framework.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.47-54, 2010


50<br />

Razali <strong>and</strong> Ishak<br />

Table 1 Generated <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> for Selangor’s government hospital for 2009 (<strong>in</strong> kg)<br />

A B C D E F G H I<br />

Jan 13 022.6 10 935.3 2 184.2 24 749.37 16 978.1 23 304.2 2 672.0 2 253.3 30 424.0<br />

Feb 12 866.5 10 932.7 1 904.0 23 506.5 17 202.1 22 451.3 2 362.5 1 985.8 29 549.9<br />

March 14 683.3 11 871.6 2 001.7 26 101.3 18 539.6 21 095.4 2 813.4 2 210.8 33 020.4<br />

Apr 1 4707 11 898.1 2 126.8 25 939.3 20 259.4 23 611.2 2 950.3 2 290.7 34 368.2<br />

May 14 878.3 11 553.5 1 688.8 25 233.0 20 482.9 25 452.5 2 965.2 2 535.1 34 787.3<br />

June 14 298.3 10 366.3 2 077.1 24 002.3 19 600.1 36 896.3 2 739.1 2 415.4 32 917.0<br />

July 17 397.3 11 490.7 2 286.9 25 363.7 20 958.1 27 572.3 3 154.9 2 495.4 34 164.5<br />

Aug 1 6906.0 12 848.1 2 465.0 27 630.9 20 361.5 26 459.0 3 073.1 2 597.9 36 435.4<br />

Sept 14 587.5 11 498.8 1 676.7 23 141.3 18 306.3 23 121.2 2 840.5 2 519.0 31 556.9<br />

Oct 17 701.8 13 953.3 2 383.9 26 959.6 21 693.7 25 528.7 2 999.1 2 685.4 36 815.7<br />

Nov 16 498.9 12 753.2 1 981.0 25 414.1 19 948.7 23 678.4 2 853.2 2 595.9 33 005.9<br />

Dec 17 381.4 13 698.6 2 010.9 26 757.5 20 901.1 24 702.4 3 013.1 2 666.1 33 709.1<br />

Table 2. Specialties <strong>in</strong> each hospital<br />

Services<br />

Anaesthesiology<br />

Dermatology<br />

Herpetology<br />

Nephrology<br />

Paediatric<br />

Psychiatry<br />

Haematology<br />

Obstetric <strong>and</strong> Genecology<br />

Orthopaedic <strong>and</strong> Traumatology<br />

Ophthalmology<br />

Teeth & Mouth Operation<br />

Radiology<br />

Haemodialysis<br />

Otorh<strong>in</strong>olaryngology (ENT)<br />

Urology<br />

Cardiothoracic<br />

Ear, Mouth & Throat<br />

Plastic Surgery<br />

Paediatric <strong>and</strong> Neonatology<br />

Rehabilitation<br />

Neurosurgery<br />

■ <strong>in</strong>dicates the service available at the hospital.<br />

Hospital<br />

A B C D E F G H I<br />

Fig. 2 Reported generation of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>in</strong> Selangor’s<br />

government hospital.<br />

Fig. 3 Generated <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> presented <strong>in</strong> months.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.47-54, 2010


Razali <strong>and</strong> Ishak<br />

51<br />

181<br />

306<br />

150<br />

778<br />

382<br />

340<br />

114 93<br />

A B C D E F G H I<br />

Hospital's name<br />

Fig. 4 Number of beds <strong>in</strong> Selangor’s government hospital.<br />

Figure 4 illustrates the number of beds <strong>in</strong> Selangor’s<br />

government hospitals.<br />

Almost all hospitals offer same services; general<br />

medical, general surgery, emergency, pathology <strong>and</strong><br />

maternity. Hospital F offers a lot of specialties that are<br />

not available <strong>in</strong> other hospitals. Table 3 presents the<br />

specialties offered <strong>in</strong> all hospitals.<br />

From the table, the number of <strong>waste</strong> generated is<br />

<strong>de</strong>pend<strong>in</strong>g on the number of beds <strong>and</strong> <strong>de</strong>partments <strong>in</strong><br />

the hospitals. Hospital J, which has the highest number<br />

of beds (864 beds), produced the highest amount of<br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> (406 753.7 kg). Also, the location of the<br />

hospital <strong>in</strong>fluenced the number of <strong>waste</strong> produced. For<br />

example, Hospital D, H <strong>and</strong> I produced <strong>waste</strong>s less than<br />

50 000 kg because they are located at the rural area,<br />

compare to other hospitals that are located <strong>in</strong> urban area.<br />

There is no specific reason to why the number of<br />

<strong>waste</strong>s <strong>de</strong>creased <strong>in</strong> September but H1N1 outbreak<br />

could be the possible explanation of why the number of<br />

<strong>waste</strong>s <strong>in</strong>creased <strong>and</strong> became the month with the highest<br />

production of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>s throughout the whole year.<br />

Accord<strong>in</strong>g to the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> Supervisors, there are<br />

a few units that had been i<strong>de</strong>ntified to generate the most<br />

<strong>waste</strong>s.<br />

Abu: Usually GOT (General Operation Theatre),<br />

maternity, <strong>and</strong> ICU (Intensive Care Unit). But the rest is<br />

normal; however, it is hard to say that. It <strong>de</strong>pends on the<br />

patients. Sometimes, there is no patient enter<strong>in</strong>g ICU,<br />

which means there is no <strong>waste</strong>.<br />

Ahmad: Ward 2 (<strong>de</strong>ngue cases), labor room, GOT,<br />

emergency.<br />

Based on the <strong>in</strong>terview, it can be conclu<strong>de</strong>d that high<br />

production of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>s comes from Operation<br />

Theatre, maternity, Intensive Care Unit, Emergency <strong>and</strong><br />

<strong>de</strong>ngue cases ward.<br />

Cl<strong>in</strong>ical <strong>waste</strong> collection, storage, transportation <strong>and</strong><br />

<strong>in</strong>c<strong>in</strong>eration<br />

The collection usually starts at 08:30 am until 11:30 am.<br />

Porter with well-equipped Personal Protection<br />

864<br />

Equipment (PPE) then pushes the yellow cart <strong>and</strong> start<br />

do<strong>in</strong>g collection from unit to unit. The PPE that are<br />

be<strong>in</strong>g used <strong>in</strong>clu<strong>de</strong> apron, glove <strong>and</strong> boot. The fullyfilled<br />

yellow bags with the <strong>waste</strong>s will then be<br />

transferred to the cart <strong>and</strong> the process will be repeated<br />

until all the <strong>waste</strong> has been collected. Then, they will<br />

send the <strong>waste</strong> to the cold storage. Here, they will wait<br />

for the liaison officer or the hospital verifier to witness<br />

the weigh<strong>in</strong>g process. The weigh<strong>in</strong>g process is usually<br />

conducted from 11:30 am to 12:30 pm. While do<strong>in</strong>g the<br />

collection, there are some porters that are be<strong>in</strong>g<br />

assigned to clean the b<strong>in</strong>. They will change the used b<strong>in</strong><br />

with a new b<strong>in</strong>. To clean the b<strong>in</strong>, 100 ml of a chemical<br />

named SteriQuat were mixed with 250 L of water.<br />

Then, the b<strong>in</strong> will be dried. The b<strong>in</strong> must be washed<br />

daily.<br />

While for the disposable sharps <strong>and</strong> needles, a<br />

specific b<strong>in</strong> that is called sharp b<strong>in</strong> was used. After it is<br />

¾ filled, porter will close the cap <strong>and</strong> it will be collected<br />

<strong>and</strong> transferred to the cart. Unlike other yellow b<strong>in</strong>s, this<br />

sharp b<strong>in</strong> will not go<strong>in</strong>g to be washed. It will be<br />

<strong>in</strong>c<strong>in</strong>erated <strong>and</strong> the <strong>waste</strong>s <strong>in</strong>si<strong>de</strong> it are not go<strong>in</strong>g to be<br />

transferred to other place.<br />

For a small hospital which produces less <strong>cl<strong>in</strong>ical</strong><br />

<strong>waste</strong>, the <strong>waste</strong> will be store <strong>in</strong> a refrigerator with the<br />

temperature range of -1 to -5°C while for the hospital<br />

which produce large amount of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>, there is<br />

no refrigerator provi<strong>de</strong>d. This is because for the hospital<br />

which produce small amount of <strong>waste</strong>, the lorry will<br />

collect the <strong>waste</strong> three times per week while for the<br />

hospital which produce large amount of <strong>waste</strong>, the lorry<br />

will come daily to collect the <strong>waste</strong>. The lorry will send<br />

the <strong>waste</strong> to the <strong>in</strong>c<strong>in</strong>erator plant <strong>in</strong> Teluk Panglima<br />

Garang. The time for the lorry to come <strong>and</strong> collect the<br />

<strong>waste</strong> is from 12:00 noon to 05:30 pm.<br />

Dur<strong>in</strong>g the H1N1 outbreak, the management of<br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>in</strong> the H1N1 ward is slightly different.<br />

The hospital briefed to the porter who was assigned to<br />

collect the <strong>waste</strong>. Only one person can be assigned. At<br />

one time, he then will be given a H1N1 immunization.<br />

The <strong>waste</strong>s that have a H1N1 contact will be placed <strong>in</strong> a<br />

yellow bag <strong>and</strong> be<strong>in</strong>g stored <strong>in</strong> a labeled yellow cart.<br />

When the lorry comes, this yellow cart has the priority<br />

to be collected <strong>and</strong> <strong>in</strong>c<strong>in</strong>erated when they reach the<br />

<strong>in</strong>c<strong>in</strong>eration plant at Teluk Panglima Garang.<br />

A flowchart of the <strong>in</strong>c<strong>in</strong>eration system is be<strong>in</strong>g<br />

<strong>de</strong>scribed <strong>in</strong> Fig. 4. The system consists of a <strong>waste</strong><br />

fee<strong>de</strong>r, a primary combustion chamber (rotary type), a<br />

secondary combustion chamber, a <strong>waste</strong> heat boiler, dry<br />

air pollution control, <strong>and</strong> a 24-h gas-emission<br />

monitor<strong>in</strong>g <strong>de</strong>vice. The melt<strong>in</strong>g of the ash occurs <strong>in</strong> the<br />

secondary combustion chamber at 1 200°C (Azni et al.,<br />

2005).<br />

With the capacity of 500 kg/h, this <strong>in</strong>c<strong>in</strong>erator<br />

operates 24 hours. Table 3 summarizes the specification<br />

of the <strong>in</strong>c<strong>in</strong>erator.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.47-54, 2010


Razali <strong>and</strong> Ishak<br />

52<br />

Fig. 5 Flow diagram of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>in</strong>c<strong>in</strong>erator.<br />

Table 3 Specifications of the <strong>in</strong>c<strong>in</strong>erator<br />

Operation time<br />

24h<br />

Type of fuel<br />

Diesel<br />

Type of feed<br />

Hospital <strong>waste</strong><br />

Treatment capacity<br />

500 kg/h<br />

Amount of flue gas<br />

20 000 m³/h<br />

Amount of slag produced 10%<br />

Temperature <strong>in</strong> Primary Chamber<br />

950° C<br />

Temperature <strong>in</strong> Secondary Chamber<br />

1 200° C<br />

Source: Azni et al. (2005).<br />

The <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management <strong>in</strong> Selangor’s<br />

government hospital can be simplified as follows:<br />

Tra<strong>in</strong><strong>in</strong>g <strong>and</strong> Awareness<br />

The concession company is the one who is responsible<br />

to conduct the tra<strong>in</strong><strong>in</strong>gs. There are two groups of people<br />

who are <strong>in</strong>volved <strong>in</strong> the tra<strong>in</strong><strong>in</strong>gs. They are the porter<br />

<strong>and</strong> the user (hospital staffs). The porter will go for<br />

tra<strong>in</strong><strong>in</strong>gs at least three times a year. The tra<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>volves <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> collection procedure, procedure<br />

on wear<strong>in</strong>g Personal Protection Equipment (PPE),<br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> service management, procedure on<br />

wash<strong>in</strong>g the bag hol<strong>de</strong>r, procedure on fill<strong>in</strong>g the record<br />

sheet, procedure on fill<strong>in</strong>g bag hol<strong>de</strong>r wash<strong>in</strong>g form,<br />

customer relationship program, <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong><br />

segregation, procedure on h<strong>and</strong>le the acci<strong>de</strong>nt <strong>and</strong><br />

health. The tra<strong>in</strong><strong>in</strong>g will be given throughout the year or<br />

when acci<strong>de</strong>nt occurs.<br />

For the user, the tra<strong>in</strong><strong>in</strong>g will be given three times a<br />

year or upon request. Usually, the hospital will ask the<br />

concession company to conduct tra<strong>in</strong><strong>in</strong>g for user when<br />

there is a new staff. The tra<strong>in</strong><strong>in</strong>gs <strong>in</strong>volve i<strong>de</strong>ntify<strong>in</strong>g<br />

the types of <strong>waste</strong>, <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> segregation, <strong>cl<strong>in</strong>ical</strong><br />

<strong>waste</strong> <strong>h<strong>and</strong>l<strong>in</strong>g</strong>, safety <strong>and</strong> health.<br />

Unfortunately, there is no specific tra<strong>in</strong><strong>in</strong>g for the<br />

public. The only way to educate the public, especially<br />

on the segregation of <strong>waste</strong> is through posters. The<br />

poster will be p<strong>in</strong>ned-up on top of the b<strong>in</strong> to give<br />

awareness to the public regard<strong>in</strong>g the segregation.<br />

Problems <strong>and</strong> Obstacles<br />

Fig. 6 Cl<strong>in</strong>ical Waste Pathway <strong>in</strong> Selangor’s Government Hospital.<br />

Although there is a management system <strong>in</strong> <strong>cl<strong>in</strong>ical</strong><br />

<strong>waste</strong> <strong>h<strong>and</strong>l<strong>in</strong>g</strong> <strong>in</strong> Malaysia, there are several problems<br />

<strong>and</strong> <strong>obstacles</strong> that had been found throughout the study.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.47-54, 2010


Razali <strong>and</strong> Ishak<br />

53<br />

Ahmad: Usually, doctors always throw needles<br />

everywhere, sometimes <strong>in</strong> the yellow bag. That will<br />

cause problems.<br />

Ali: The problems arise while we are do<strong>in</strong>g the<br />

collection, the people from the district cl<strong>in</strong>ics come, <strong>and</strong><br />

the problem is that they like to store the <strong>waste</strong> outsi<strong>de</strong><br />

the fence but they are not allowed to do so.<br />

Abu: If every user is be<strong>in</strong>g given a room to place the<br />

b<strong>in</strong>s <strong>and</strong> do the clean<strong>in</strong>g process, it would be easier,<br />

avoid<strong>in</strong>g transportation <strong>in</strong> the elevator <strong>and</strong> contact with<br />

public, which would cause trouble to publics.<br />

Abu: The price should be <strong>in</strong>creased because the<br />

groceries’ price is <strong>in</strong>creas<strong>in</strong>g, plastic <strong>and</strong> all the b<strong>in</strong>s.<br />

The price is not the same as 10 or 15 years ago. Look at<br />

the current economy; I th<strong>in</strong>k we should <strong>in</strong>crease the<br />

price.<br />

Abu: There is no dry<strong>in</strong>g mach<strong>in</strong>e.<br />

A<strong>in</strong>i: Porters have no <strong>in</strong>fectious control towards patients<br />

or hospital. They open the door <strong>and</strong> collect the <strong>waste</strong> by<br />

us<strong>in</strong>g the same h<strong>and</strong>.<br />

A<strong>in</strong>i: The problem we face now is that even we had<br />

given the tra<strong>in</strong><strong>in</strong>g, not all patients know about it. In the<br />

yellow b<strong>in</strong>, they are not allowed to throw the <strong>cl<strong>in</strong>ical</strong><br />

<strong>waste</strong>. We cannot open the bag back because it is<br />

already mixed. There is no awareness from the public.<br />

Adila: If we do the collection <strong>in</strong> the ward, we will carry<br />

the plastic bag to the outsi<strong>de</strong>. The large wheel b<strong>in</strong><br />

cannot be pull <strong>in</strong>si<strong>de</strong> the ward. That is the weakness<br />

because we have to carry the yellow bag to the outsi<strong>de</strong>.<br />

It would spill on the floor.<br />

Mala: for the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>, there are too much<br />

procedures <strong>and</strong> too much contact. There are too much<br />

th<strong>in</strong>gs that we need to follow.<br />

From the <strong>in</strong>terview, there are several problems <strong>in</strong><br />

manag<strong>in</strong>g <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>. The user’s attitu<strong>de</strong> has been<br />

i<strong>de</strong>ntified as one of it. Even though tra<strong>in</strong><strong>in</strong>g had been<br />

given, their self awareness still consi<strong>de</strong>red as low. The<br />

second problem is regard<strong>in</strong>g the <strong>waste</strong> from district<br />

health centre. For district health centre, there is no<br />

specific concession company to manage <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong><br />

as government hospitals does. They need to send their<br />

<strong>waste</strong> to the nearest government hospital by their own.<br />

The problem arises when they tend to put the <strong>waste</strong><br />

outsi<strong>de</strong> the fence of the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> storage. This is<br />

dangerous because it will expose the <strong>waste</strong> to the public<br />

as well as animals such as dogs <strong>and</strong> cats. The vaporized<br />

<strong>waste</strong> might spread the <strong>in</strong>fectious disease through the<br />

air. Space had been i<strong>de</strong>ntified as one of the problems <strong>in</strong><br />

manag<strong>in</strong>g <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>.<br />

There is no enough space provi<strong>de</strong>d for the hospital<br />

support services <strong>in</strong> the hospital. For <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>, they<br />

need a large space especially to wash <strong>and</strong> dry the b<strong>in</strong>.<br />

Because of this limitation, some b<strong>in</strong>s are not be<strong>in</strong>g<br />

washed properly or not be<strong>in</strong>g washed at all. Also, us<strong>in</strong>g<br />

a traditional approach to dry the b<strong>in</strong>s proved to be a<br />

major problem too. A dry<strong>in</strong>g mach<strong>in</strong>e for the b<strong>in</strong>s is<br />

nee<strong>de</strong>d especially for the hospitals which produces high<br />

amount of <strong>waste</strong>s.<br />

When the agreement was first signed, both parties<br />

agreed to update the service charge from time to time.<br />

Unfortunately, s<strong>in</strong>ce it was signed <strong>in</strong> 1992, there is no<br />

revision ma<strong>de</strong> regard<strong>in</strong>g the price. The current price is<br />

RM5.20 per kilograms. The price should be revised due<br />

to the <strong>in</strong>creas<strong>in</strong>g price of raw materials <strong>and</strong><br />

transportation costs.<br />

The problem also occurs from the <strong>h<strong>and</strong>l<strong>in</strong>g</strong> of the<br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>. By us<strong>in</strong>g the same h<strong>and</strong> to collect the<br />

<strong>waste</strong> <strong>and</strong> to open the door, the probability for the<br />

<strong>in</strong>fectious disease to spread becomes higher. When the<br />

porter carries the bags to the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> cart outsi<strong>de</strong><br />

the ward, there is a probability of the <strong>in</strong>fection<br />

spread<strong>in</strong>g through the spillage on the floor occurs.<br />

Public awareness has been i<strong>de</strong>ntified as one of the<br />

problem. Because of the low public awareness on the<br />

management or <strong>h<strong>and</strong>l<strong>in</strong>g</strong> of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>, they tend to<br />

mix up the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>and</strong> the general <strong>waste</strong>. This<br />

will <strong>in</strong>crease the disposal cost because the general <strong>waste</strong><br />

will be treated as <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> once it is contacted with<br />

the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>.<br />

There are several agencies that responsible to the<br />

<strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management. Due to this, a lot of<br />

requirements <strong>and</strong> procedures need to be followed. This<br />

seems as the problems to the concession company <strong>in</strong><br />

<strong>de</strong>al<strong>in</strong>g with <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management.<br />

CONCLUSION<br />

This study helped <strong>in</strong> establish<strong>in</strong>g database, <strong>in</strong>formation<br />

<strong>and</strong> statistics on the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> sources, generation,<br />

collection, transportation, treatment <strong>and</strong> disposal. It also<br />

highlighted the problems <strong>and</strong> <strong>obstacles</strong> faced dur<strong>in</strong>g its<br />

<strong>h<strong>and</strong>l<strong>in</strong>g</strong>. Also, it has provi<strong>de</strong>d suggestions for policy<br />

makers <strong>and</strong> further <strong>in</strong>formation to facilitate policy<br />

<strong>de</strong>velopment <strong>and</strong> improve <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management.<br />

The management of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> has been of major<br />

concern due to its potential high risks to human health<br />

<strong>and</strong> the environment. The current practices for the<br />

<strong>h<strong>and</strong>l<strong>in</strong>g</strong>, transportation, storage <strong>and</strong> disposal of <strong>waste</strong>s<br />

generated at the hospitals needs to be changed <strong>and</strong><br />

improved. Generally, the problems <strong>and</strong> <strong>obstacles</strong> arise<br />

from the <strong>h<strong>and</strong>l<strong>in</strong>g</strong> of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> are non-segregated<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.47-54, 2010


Razali <strong>and</strong> Ishak<br />

54<br />

<strong>waste</strong>, awareness <strong>and</strong> attitu<strong>de</strong>s among hospital’s staffs<br />

<strong>and</strong> patients, collection of <strong>waste</strong> from district healthcare<br />

centre, facilities <strong>and</strong> spaces provi<strong>de</strong>d, service charge<br />

<strong>and</strong> documentations.<br />

Hospital’s <strong>de</strong>sign is very important. It is the first step<br />

to allocate spaces for the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management;<br />

either from collection, storage <strong>and</strong> disposal. Abu had<br />

stated before, “If every user is be<strong>in</strong>g given a room to<br />

place the b<strong>in</strong>s <strong>and</strong> do the clean<strong>in</strong>g process, it would be<br />

easier. No elevator’s problem, contact with public <strong>and</strong><br />

caus<strong>in</strong>g trouble to publics”. It seems that tra<strong>in</strong><strong>in</strong>g <strong>and</strong><br />

supervision is very important to educate not only the<br />

porter, hospital’s staff but also all the patients to make<br />

sure there’s no misuse of b<strong>in</strong>s that had be<strong>in</strong>g provi<strong>de</strong>d.<br />

Other than that, improvements <strong>and</strong> research <strong>and</strong><br />

<strong>de</strong>velopment activity (R&D) should be carried out<br />

cont<strong>in</strong>uously to combat the problem that might not<br />

occur before but tend to be hazard such as what has<br />

be<strong>in</strong>g highlighted by Ani <strong>and</strong> Adila about <strong>in</strong>fectious<br />

control. The policy also should be revised to make it<br />

more un<strong>de</strong>rst<strong>and</strong>able <strong>and</strong> will not cause the difficulty as<br />

what Mala had told, “For the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong>, there are<br />

too much procedures <strong>and</strong> too much contact. There are<br />

too much th<strong>in</strong>gs that we need to follow.”<br />

Improvements of <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> management require<br />

all parties to <strong>in</strong>volve. It also requires strategic <strong>and</strong><br />

systematic plann<strong>in</strong>g that aim the goal to controll<strong>in</strong>g<br />

costs, educate the users <strong>and</strong> publics, un<strong>de</strong>rst<strong>and</strong>able<br />

policy <strong>and</strong> to manage the <strong>cl<strong>in</strong>ical</strong> <strong>waste</strong> <strong>in</strong> proper<br />

manner as it can reduce the hazards <strong>and</strong> risks to the<br />

ecosystem <strong>and</strong> the community.<br />

REFERENCES<br />

Abdulla, F., Qdais, H.A. & Rabi, A. (2008) Site <strong>in</strong>vestigation on<br />

medical <strong>waste</strong> management practices <strong>in</strong> Northern Jordan. Waste<br />

Manag. 28(2), 450–458. doi: 10.1016/j.wasman.2007.02.035.<br />

Azni, I., Katayon, S., Ratnasamy, M. & Johari, M.M.N.M (2005)<br />

Stabilization <strong>and</strong> utilization of hospital <strong>waste</strong> as road <strong>and</strong> asphalt<br />

aggregate. J. Mater. Cycles Waste Manag. 7(1), 33–37. doi:<br />

10.1007/s10163-004-0123-0.<br />

Baveja, G., Muralidhar, S. & Aggarwal, P. (2000) Medical <strong>waste</strong><br />

management – an overview. Hospital Today 5(9), 485–486.<br />

Birp<strong>in</strong>ar, M. E., Bilgili, M. S. & Erdorgan, T. (2008). Medical <strong>waste</strong><br />

management <strong>in</strong> Turkey: a case study of Istanbul. Waste Manag.<br />

29(1), 445–448. doi: 10.1016/j.wasman.2008.03.015.<br />

Chaerul, M., Tanaka, M. & Shekdar, A.V. (2008) A Syatem dynamic<br />

approach for hospital <strong>waste</strong> management. Waste Manag. 28(2),<br />

442–449. doi: 10.1016/j.wasman.2007.01.007.<br />

Jang, Y.C., Lee, C., Yoon, O.S. & Kim, H. (2006) Medical <strong>waste</strong><br />

management <strong>in</strong> Korea. J. Environ. Manag. 80(2), 107–115. doi:<br />

10.1016/j.jenvman.2005.08.018.<br />

Sawalem, M., Selic, E. & Herbell, J.-D. (2008). Hospital <strong>waste</strong><br />

management <strong>in</strong> Libya: a case study. Waste Manag. 29(4), 1370–<br />

1375. doi: 10.1016/j.wasman.2008.08.028.<br />

Sh<strong>in</strong>ee, E., Gombajav, E., Nishimura, A., Hamajima, N. & Ito, K.<br />

(2008) Healthcare <strong>waste</strong> management <strong>in</strong> the capital city of<br />

Mangolia. Waste Manag. 28(2), 435–444. doi:<br />

10.1016/j.wasman.2006.12.022.<br />

Silva, C.E.D., Hoppe, A.E., Ravanello, M.M. & Mello, N. (2005)<br />

Medical Wastes Management <strong>in</strong> the South of Brazil. Waste<br />

Manag. 25(6), 600–605. doi: 10.1016/j.wasman.2004.03.002.<br />

Tsanoka, M., Anagnostopoulou, E. & Gidarakos, E. (2007) Hospital<br />

<strong>waste</strong> management <strong>and</strong> toxicity evaluation: a case study. Waste<br />

Manag. 27(7), 912–920. doi: 10.1016/j.wasman.2006.04.019.<br />

Yong, Z., Gang, X., Guanx<strong>in</strong>g, W., Tao, Z. & Dawei, J (2009).<br />

Medical <strong>waste</strong> management <strong>in</strong> Ch<strong>in</strong>a (2009). Waste Manag.<br />

29(4), 1376–1382. doi: 10.1016/j.wasman.2008.10.023.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.47-54, 2010


Massara <strong>and</strong> Udaeta<br />

55<br />

J U E E<br />

Journal of Urban <strong>and</strong> Environmental<br />

Eng<strong>in</strong>eer<strong>in</strong>g, v.4 , n.2, p.55-62<br />

ISSN 1982-3932<br />

doi: 10.4090/juee.2010.v4n2.055062<br />

Journal of Urban <strong>and</strong><br />

Environmental Eng<strong>in</strong>eer<strong>in</strong>g<br />

www.journal-uee.org<br />

MULTI-CRITERIA EVALUATION OF THE EXPANSION OF<br />

NATURAL GAS DISTRIBUTION NETWORK BY THE URBAN<br />

DYNAMICS<br />

Vanessa M. Massara 1∗ , Miguel E. M. Udaeta 1<br />

1 Department of Petroleum <strong>and</strong> Natural Gas, Energy <strong>and</strong> Electrotechnics Institute, University of São Paulo, Brazil<br />

Received 28 June 2009; received <strong>in</strong> revised form 30 September 2009; accepted 02 January 2010<br />

Abstract:<br />

Keywords:<br />

The objective of this work is to analyze the expansion of the <strong>in</strong>frastructure of natural<br />

gas distribution, i<strong>de</strong>ntify<strong>in</strong>g priorities from large metropolis us<strong>in</strong>g the energy plann<strong>in</strong>g<br />

based on urban <strong>de</strong>sign tools like urban dynamics <strong>and</strong> techniques like AHP (analytic<br />

hierarchy process). The methodology proposed uses matrices consi<strong>de</strong>r<strong>in</strong>g the relations<br />

between the concept of urban dynamics, quality of life <strong>and</strong> the possibilities of natural<br />

gas displac<strong>in</strong>g other energy forms. The matrices are ma<strong>de</strong> up of <strong>in</strong>formation about<br />

social <strong>and</strong> urban <strong>de</strong>velopment, costs of establish<strong>in</strong>g the <strong>in</strong>frastructure <strong>and</strong> projections of<br />

the consumption potential <strong>in</strong> various sectors. Relat<strong>in</strong>g the consumption to urban<br />

<strong>de</strong>velopment parameters <strong>and</strong> the real estate future of the areas <strong>in</strong> study, the<br />

methodology allows <strong>in</strong>dicat<strong>in</strong>g for each district, the viability of implement<strong>in</strong>g a gas<br />

network. As conclusion, the mo<strong>de</strong>l presents the <strong>in</strong>tegration between the cities profile<br />

<strong>and</strong> the natural gas use, by means of a growth natural gas on districts of São Paulo City<br />

as a specific case study.<br />

Energy, natural gas, <strong>in</strong>frastructure, urban <strong>de</strong>velopment, analytic hierarchy process<br />

© 2010 Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE). All rights reserved.<br />

∗ Correspon<strong>de</strong>nce to: Vanessa Meloni Massara, Tel.: +55 11 9860-8116.<br />

E-mail: vanessa.massara@gmail.com<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.55-62, 2010


Massara <strong>and</strong> Udaeta<br />

56<br />

INTRODUCTION<br />

Natural gas (NG) is currently the third largest source of<br />

primary energy <strong>in</strong> the world, surpassed only by oil <strong>and</strong><br />

coal (EIA, 2008).<br />

In the ANP (Brazilian National Agency of Oil,<br />

Natural Gas <strong>and</strong> Biofuels) surveys for the next years,<br />

new natural gas fields will be <strong>in</strong>com<strong>in</strong>g <strong>in</strong> Brazil. For<br />

<strong>in</strong>stance, the Manati field will duplicate <strong>de</strong> actual gas<br />

production <strong>in</strong> state of Bahia solv<strong>in</strong>g <strong>in</strong> the short-term<br />

the problem of natural gas unsatisfied <strong>de</strong>m<strong>and</strong>. In the<br />

Espírito Santo state, the Peroá-Cangoa field emerges as<br />

an opportunity of complement<strong>in</strong>g the gas for the<br />

Brazilian northeastern <strong>and</strong> southeastern regions <strong>and</strong> to<br />

reliability the Campos Bas<strong>in</strong> production <strong>in</strong> the state of<br />

Rio <strong>de</strong> Janeiro. But the Mexilhão field <strong>in</strong> the São Paulo<br />

state, Santos Bas<strong>in</strong>, as a prelu<strong>de</strong> of the context of the<br />

pre-salt reservoirs, will be anticipat<strong>in</strong>g the gas<br />

production as <strong>de</strong>f<strong>in</strong>ition of the fe<strong>de</strong>ral Brazilian<br />

adm<strong>in</strong>istration (BNDES, 2006). Also <strong>in</strong> January of<br />

2008, <strong>in</strong> the pre-salt hydrocarbons offshore Brazilian<br />

reservoirs of Santos Bas<strong>in</strong> (state of São Paulo) another<br />

well was discovered. The reserve that was entitled<br />

Jupiter is a large natural <strong>de</strong>posit for natural gas <strong>and</strong><br />

light-oil, <strong>in</strong> <strong>de</strong>ep waters estimated <strong>in</strong> very large gas<br />

mega-field that, <strong>de</strong>spite <strong>de</strong>m<strong>and</strong><strong>in</strong>g large <strong>in</strong>vestments,<br />

will make Brazil double its reserves (GASBRASIL,<br />

2008). With this favorable forecast of natural gas supply<br />

<strong>and</strong> consi<strong>de</strong>r<strong>in</strong>g its various uses, this work focuses on<br />

market gas <strong>de</strong>m<strong>and</strong> <strong>in</strong> sectors like resi<strong>de</strong>ntial,<br />

commercial, services <strong>and</strong> <strong>in</strong>dustrial.<br />

In this work, an analytical methodology that<br />

<strong>in</strong>tegrates the un<strong>de</strong>rst<strong>and</strong><strong>in</strong>g of the urban dynamics to<br />

the strategies of expansion <strong>in</strong> the natural gas distribution<br />

network is consi<strong>de</strong>red, characteriz<strong>in</strong>g gas consumption<br />

possibilities <strong>and</strong> attractiveness for the districts,<br />

compos<strong>in</strong>g a city.<br />

The methodology is <strong>de</strong>veloped by gather<strong>in</strong>g<br />

<strong>in</strong>formation such as family <strong>in</strong>come, <strong>de</strong>mographic<br />

<strong>de</strong>nsity <strong>and</strong> construction area, percentage of l<strong>and</strong> use,<br />

number of households as well as commercial, service<br />

<strong>and</strong> <strong>in</strong>dustrial establishments, number of real estate as<br />

well as <strong>in</strong>dicative <strong>in</strong>formation released by the Urban<br />

Plan of the city regard<strong>in</strong>g the <strong>in</strong>crements <strong>in</strong> the<br />

peripheral districts. By relat<strong>in</strong>g the gas consumption<br />

estimated by each type of l<strong>and</strong> occupation <strong>and</strong> the cost<br />

for exp<strong>and</strong><strong>in</strong>g the gas distribution network, the mo<strong>de</strong>l<br />

will <strong>in</strong>dicate, for each neighborhood, the viability of<br />

implement<strong>in</strong>g a gas network as well as the places with<br />

potential for grow<strong>in</strong>g <strong>de</strong>nsity <strong>in</strong> the exist<strong>in</strong>g gas<br />

distribution system. In this paper, examples of essential<br />

<strong>in</strong>formation that compose the methodology are<br />

presented for six districts of São Paulo city (Brazil):<br />

Ipiranga,Tatuapé, Penha, Vila Matil<strong>de</strong>, Socorro <strong>and</strong> Vila<br />

Formosa, which have different socioeconomic <strong>and</strong><br />

geographical profiles. F<strong>in</strong>ally, the mo<strong>de</strong>l tested for São<br />

Paulo will be generalized <strong>in</strong> a computer mo<strong>de</strong>l, which<br />

allows its use <strong>in</strong> other Brazilian cities, po<strong>in</strong>t<strong>in</strong>g out the<br />

possibilities of natural gas as a f<strong>in</strong>al option of energy <strong>in</strong><br />

the urban uses, besi<strong>de</strong>s present<strong>in</strong>g gui<strong>de</strong>l<strong>in</strong>es for the<br />

Urban Plans <strong>and</strong> the susta<strong>in</strong>able gas <strong>in</strong>frastructure<br />

<strong>in</strong>corporation <strong>in</strong> the cities (Udaeta et al., 2004).<br />

METHODOLOGY<br />

The methodology based on urban <strong>in</strong>dicators (Massara,<br />

2007) has the ma<strong>in</strong> objective of <strong>de</strong>velop<strong>in</strong>g procedures<br />

that allow to analyze <strong>and</strong> to gui<strong>de</strong> the expansion <strong>and</strong> the<br />

grow<strong>in</strong>g <strong>de</strong>nsity of the natural gas network <strong>in</strong>si<strong>de</strong> a<br />

municipal district through the study of the <strong>de</strong>velopment<br />

among several parameters <strong>and</strong> also to analyze the urban<br />

dynamics that <strong>de</strong>term<strong>in</strong>es the expansion of the<br />

metropolitan natural gas <strong>in</strong>frastructure (Williams, 1962;<br />

Forrester, 1969). The systemic mo<strong>de</strong>l was elaborated<br />

accord<strong>in</strong>g to the follow<strong>in</strong>g stages:<br />

• I<strong>de</strong>ntification, characterization <strong>and</strong> organization of<br />

the ma<strong>in</strong> <strong>in</strong>terventionary factors;<br />

• Def<strong>in</strong>ition of the study cells (streets, districts,<br />

suburbs) accord<strong>in</strong>g to the availability of<br />

<strong>in</strong>formation about the parameters;<br />

• Hierarchization of quantitative <strong>and</strong> qualitative<br />

parameters through the attribution scale of<br />

priorities that unifies the parameters units, so that<br />

they can mathematically be treated;<br />

• Evaluation of the system with the purpose of<br />

direct<strong>in</strong>g the choice based <strong>in</strong> theoretical gui<strong>de</strong>l<strong>in</strong>es<br />

<strong>and</strong> also <strong>in</strong> the application of the Analytic<br />

Hierarchy Process (AHP) support<strong>in</strong>g the computer<br />

mo<strong>de</strong>l (Saaty & Vargas, 1982);<br />

• Validation of the <strong>de</strong>cision-mak<strong>in</strong>g process for the<br />

plann<strong>in</strong>g of the expansion of natural gas<br />

distribution <strong>in</strong>frastructure through case study <strong>in</strong><br />

the city of São Paulo <strong>and</strong> comparison with the<br />

results obta<strong>in</strong>ed through the mo<strong>de</strong>l <strong>and</strong> the<br />

mapp<strong>in</strong>g of the existent implanted net.<br />

• Validation through comparison with the Analytic<br />

Hierarchy Process (Saaty, 2006).<br />

In this prelim<strong>in</strong>ary analysis, all the parameters have<br />

been used with <strong>in</strong>fluence distribution <strong>in</strong>dices <strong>in</strong> <strong>in</strong>tervals<br />

from 1 to 5. The attribution of this scale is related to the<br />

use of the card<strong>in</strong>al <strong>and</strong> semantic scales (Allen, 1987). At<br />

the end of the study, it will be possible to <strong>de</strong>term<strong>in</strong>e<br />

whether this l<strong>in</strong>ear scale is valid or not, via test <strong>and</strong><br />

comparison with analysis of multiple-criteria mo<strong>de</strong>ls<br />

that also use the priority scale as a tool <strong>in</strong> the <strong>de</strong>cisionmak<strong>in</strong>g<br />

process (Saaty, 1980). Similarly, the algorithm<br />

used <strong>in</strong> this paper for the <strong>de</strong>term<strong>in</strong>ation of the<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.55-62, 2010


Massara <strong>and</strong> Udaeta<br />

57<br />

attractiveness <strong>in</strong><strong>de</strong>x must be revised <strong>and</strong> compared with<br />

the results obta<strong>in</strong>ed accord<strong>in</strong>g to the AHP methods.<br />

The chosen hierarchization is the same used by the<br />

AHP (Saaty, 1980; 2006), which allows the verification<br />

between algorithms of this method <strong>and</strong> that one of the<br />

proposal mo<strong>de</strong>l<strong>in</strong>g (<strong>in</strong> this work), accord<strong>in</strong>g to the<br />

association presented <strong>in</strong> Table 1.<br />

The proposed mo<strong>de</strong>l <strong>and</strong> the <strong>in</strong>formation systems<br />

The sets of data are composed of four systems referr<strong>in</strong>g<br />

to the study area, accord<strong>in</strong>g to the Brazilian official<br />

<strong>de</strong>nom<strong>in</strong>ation “SEMPLA” (São Paulo, 2002). These<br />

systems establish an attractiveness <strong>in</strong><strong>de</strong>x for natural gas<br />

<strong>in</strong>frastructure expansion with regards to the urban<br />

<strong>de</strong>velopment of the cities.<br />

First System: Life Quality Indicators (LQ)<br />

This system is represented by three factors, all of which<br />

represent numerical values that are distributed <strong>in</strong> the<br />

five groups that have been <strong>in</strong>itially <strong>de</strong>scribed.<br />

Social Exclusion In<strong>de</strong>x (SEI): it has the objective of<br />

i<strong>de</strong>ntify<strong>in</strong>g the social <strong>de</strong>velopment <strong>de</strong>gree of the<br />

districts (Sposati, 2000) consi<strong>de</strong>r<strong>in</strong>g the existence of<br />

social equipments (green areas, bus l<strong>in</strong>es, number of<br />

schools <strong>and</strong> hospitals). The f<strong>in</strong>al <strong>in</strong><strong>de</strong>x attributed to each<br />

one of the districts lies with<strong>in</strong> the <strong>in</strong>terval that ranges<br />

between -1.00 (reflect<strong>in</strong>g the worst exclusion situation,<br />

i.e., the first group) <strong>and</strong> +1.00 (reflect<strong>in</strong>g the best<br />

<strong>in</strong>clusion situation, i.e., the fifth group).<br />

Human Development In<strong>de</strong>x (HDI): This is an adaptation<br />

of the <strong>in</strong><strong>de</strong>x created by the United Nations Organization<br />

(UNO), with the objective of compar<strong>in</strong>g the <strong>de</strong>gree of<br />

human <strong>de</strong>velopment accord<strong>in</strong>g to the districts. It<br />

comprises factors such as education <strong>and</strong> basic<br />

conditions of health <strong>in</strong> each district (IBGE, 2008).<br />

These <strong>in</strong>dicators are transformed <strong>in</strong> <strong>in</strong>tervals that range<br />

between 0 (first group, the worst <strong>de</strong>velopment<br />

condition) <strong>and</strong> 1 (fifth group, referr<strong>in</strong>g to the best<br />

conditions).<br />

Priority Infrastructure (WS, SS, SI): water supply, sewer<br />

system <strong>and</strong> streets illum<strong>in</strong>ation are consi<strong>de</strong>red “priority<br />

<strong>in</strong>frastructures” (São Paulo, 2002). This parameter<br />

corresponds to the i<strong>de</strong>a that a given district will not be<br />

attractive to natural gas network if it still does not<br />

possess such <strong>in</strong>frastructure. The <strong>in</strong><strong>de</strong>x consi<strong>de</strong>rs the<br />

mean percentage of the actual conditions of the three<br />

nets, expressed <strong>in</strong> five groups <strong>in</strong> <strong>in</strong>tervals of 20%.<br />

Table 1. Adaptation of AHP scale to natural gas study<br />

Group Semantic scale for natural gas<br />

AHP<br />

scale<br />

1 Low attractivity to network <strong>in</strong>stallation 1<br />

2<br />

Low to medium attractivity to the<br />

<strong>in</strong>stallation of the network<br />

3<br />

3<br />

Medium attractivity to the <strong>in</strong>stallation<br />

of the network<br />

5<br />

4<br />

Medium to high attractivity to the<br />

<strong>in</strong>stallation of the network<br />

7<br />

5<br />

High attractivity to the <strong>in</strong>stallation of<br />

the network<br />

9<br />

Source: Massara (2007) based on Saaty (2006).<br />

Second System: Urban Plan Indicators (UP)<br />

These <strong>in</strong>dicators comb<strong>in</strong>e qualitative parameters (l<strong>and</strong><br />

use, urban <strong>de</strong>velopment <strong>and</strong> zon<strong>in</strong>g) <strong>and</strong> quantitative<br />

(urbanization rate <strong>and</strong> real estate). For the analysis of<br />

non-numerical values, the systems are based on the<br />

mapp<strong>in</strong>g <strong>and</strong> classification of the Urban Plan of São<br />

Paulo city <strong>and</strong> its adaptation for any city, <strong>in</strong> or<strong>de</strong>r to<br />

verify the types of l<strong>and</strong> occupation (resi<strong>de</strong>ntial,<br />

commercial, <strong>in</strong>dustrial <strong>and</strong> services) <strong>and</strong> their expansion<br />

perspectives. This is carried out with the purpose of<br />

effect<strong>in</strong>g the elaboration of a neighborhood profile with<br />

larger ten<strong>de</strong>ncy to <strong>in</strong>dustrial <strong>de</strong>velopments (higher<br />

attractiveness for natural gas), <strong>and</strong> follows the natural<br />

gas consumption projection listed below.<br />

L<strong>and</strong> Use (Lures, LUcom, LUserv, LU<strong>in</strong>d): consi<strong>de</strong>r<strong>in</strong>g<br />

the largest percentage of streets with certa<strong>in</strong> use type,<br />

this concept is based <strong>in</strong> the occupation characteristic of<br />

the city districts represented <strong>in</strong> the urban plan map (São<br />

Paulo, 2006). Although the municipality consi<strong>de</strong>rs<br />

several occupation categories <strong>in</strong> view of the natural gas<br />

attractiveness, groups have been classified accord<strong>in</strong>g to<br />

five ma<strong>in</strong> uses:<br />

1st. Group: horizontal resi<strong>de</strong>ntial occupation;<br />

2nd. Group: mixed use (commercial <strong>and</strong> resi<strong>de</strong>ntial<br />

horizontal);<br />

3rd. Group: vertical resi<strong>de</strong>ntial occupation;<br />

4th. Group: mixed use (commercial, services <strong>and</strong><br />

resi<strong>de</strong>ntial vertical);<br />

5th. Group: mixed use (resi<strong>de</strong>ntial <strong>and</strong> <strong>in</strong>dustrial).<br />

Urban Development (UD): the basis of this concept is<br />

the Urban Plan of São Paulo city (São Paulo, 2002;<br />

2006), correspond<strong>in</strong>g to five “macroareas” that<br />

comprehend the present specifications <strong>and</strong> the future<br />

urban <strong>de</strong>velopments, as represented <strong>in</strong> the follow<strong>in</strong>g<br />

five groups:<br />

1st. Group: environmental protection – limits of public<br />

areas <strong>and</strong> preservation areas;<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.55-62, 2010


58<br />

Massara <strong>and</strong> Udaeta<br />

2nd. Group: urbanization <strong>and</strong> urban qualification – areas<br />

predom<strong>in</strong>antly occupied by low <strong>in</strong>come<br />

families with high concentration of<br />

irregular constructions;<br />

3rd. Group: requalification – areas with good<br />

<strong>in</strong>frastructure although present<strong>in</strong>g many<br />

empty properties;<br />

4th. Group: urbanization <strong>in</strong> consolidation – areas <strong>in</strong><br />

condition to attract real estate <strong>in</strong>vestments<br />

<strong>in</strong> resi<strong>de</strong>nces, services <strong>and</strong> commercial<br />

establishments;<br />

5th. Group: consolidated urbanization – areas formed by<br />

consolidated neighborhoods <strong>in</strong>habited by<br />

population of medium <strong>and</strong> high <strong>in</strong>come<br />

<strong>and</strong> good urbanization conditions.<br />

L<strong>and</strong> Use Rule (Zon<strong>in</strong>g - Z): This refers to the rule<br />

imposed by the Municipality (São Paulo, 2002; 2006)<br />

that limits l<strong>and</strong> use <strong>and</strong> the <strong>de</strong>st<strong>in</strong>ation of the several<br />

sections of the city for <strong>de</strong>term<strong>in</strong>ed uses (tra<strong>de</strong>, services,<br />

hous<strong>in</strong>g, <strong>in</strong>dustries). The natural gas attractiveness<br />

predom<strong>in</strong>ance is, <strong>in</strong> this case, represented by the<br />

follow<strong>in</strong>g five groups:<br />

1st. Group: resi<strong>de</strong>ntial zone of low <strong>de</strong>nsity / zone of<br />

environmental protection;<br />

2nd. Group: resi<strong>de</strong>ntial zone of medium <strong>de</strong>nsity /<br />

mixed zone of low <strong>de</strong>nsity;<br />

3rd. Group: resi<strong>de</strong>ntial zone of high <strong>de</strong>nsity / mixed<br />

zone of medium <strong>de</strong>nsity / special uses;<br />

4th. Group: mixed zone of high <strong>de</strong>nsity;<br />

5th. Group: great <strong>in</strong>dustrial zone occupation.<br />

The <strong>de</strong>f<strong>in</strong>ition of “mixed zone” corresponds to the<br />

comb<strong>in</strong>ation of the resi<strong>de</strong>ntial use, services <strong>and</strong><br />

commercial uses.<br />

Urbanization Rate (UR): corresponds to the percentage<br />

of the total district area occupied by urban use (blen<strong>de</strong>d<br />

resi<strong>de</strong>nces with commerce, services <strong>and</strong> <strong>in</strong>dustries) as<br />

compared to the total population (São Paulo, 2006;<br />

IBGE, 2008), which is represented <strong>in</strong> <strong>in</strong>tervals of 20%.<br />

Real Estate for resi<strong>de</strong>ntial <strong>and</strong> service market (REres,<br />

REserv): this concept is related to the Construction<br />

Co<strong>de</strong> about build<strong>in</strong>g facilities for natural gas <strong>in</strong> new<br />

constructions (International Co<strong>de</strong> Council, 2000), which<br />

must <strong>in</strong>crease the consumption of natural gas. In or<strong>de</strong>r<br />

to attribute the attractiveness <strong>in</strong><strong>de</strong>x, five groups have<br />

been selected which were based on the largest <strong>and</strong> the<br />

smallest number of district releases as reported <strong>in</strong> a<br />

survey by EMBRAESP (2008).<br />

Third System: Potential of Natural Gas<br />

Consumption Indicators (PNGC)<br />

In this data system, the characteristics of the<br />

neighborhoods <strong>in</strong> terms of street extensions are stored.<br />

All parameters are numerical values, thus simplify<strong>in</strong>g<br />

the creation of the five groups us<strong>in</strong>g the numerical<br />

simple division of values that are obta<strong>in</strong>ed by the<br />

Brazilian <strong>in</strong>stitutions IBGE (2008) <strong>and</strong> São Paulo<br />

(2002; 2006), as follows.<br />

Demographic Density (DD): corresponds to the ratio<br />

between the number of resi<strong>de</strong>nt people <strong>and</strong> the total area<br />

of the district (SEADE, 2008), consi<strong>de</strong>r<strong>in</strong>g that “larger<br />

people concentrations generate larger energy <strong>de</strong>m<strong>and</strong>”.<br />

Family Income (FI): corresponds to the m<strong>in</strong>imum wages<br />

<strong>in</strong> the homes of the district (IBGE, 2008; SEADE,<br />

2008), consi<strong>de</strong>r<strong>in</strong>g the relationship between “<strong>in</strong>come<br />

<strong>and</strong> energy consumption possibilities”.<br />

Stratification accord<strong>in</strong>g to the type of l<strong>and</strong> use,<br />

households <strong>and</strong> economic activities (Sres, Scom, Sserv,<br />

S<strong>in</strong>d): the basis of this method consi<strong>de</strong>rs that both the<br />

<strong>de</strong>m<strong>and</strong> for natural gas <strong>and</strong> the attractiveness of the<br />

district receiv<strong>in</strong>g the canalized gas system <strong>in</strong>crease with<br />

the number of domiciles or establishments with<br />

economic activities <strong>in</strong> a specific district (Groenendaal,<br />

1998). The division <strong>in</strong> establishments is ma<strong>de</strong> through<br />

the Economic Activities Cadaster (IBGE, 2003) <strong>and</strong> for<br />

the households through the “Census” (IBGE, 2008;<br />

SEADE, 2008). Those data enter <strong>in</strong> the file as “number<br />

of units” <strong>and</strong> the system automatically transforms them<br />

<strong>in</strong> <strong>in</strong>fluence <strong>in</strong>dices from 1 to 9, accord<strong>in</strong>g to the lowest<br />

<strong>and</strong> the highest numbers obta<strong>in</strong>ed for each district.<br />

Besi<strong>de</strong>s the <strong>in</strong>ternal scale, the program allows the<br />

<strong>in</strong>sertion by the user of one external <strong>in</strong>fluence that is<br />

multiplied by the attributed value. This comes already<br />

as a function of the number of units that dist<strong>in</strong>guish the<br />

activities that are more appropriate to the use of natural<br />

gas or, for other reasons, are more attractive to the<br />

natural gas concessionaire.<br />

In the follow<strong>in</strong>g example, the external <strong>in</strong>fluence has<br />

not been attributed. All parameters have only the<br />

<strong>in</strong>ternal scale from 1 to 9.<br />

Fourth System: Civil Construction Indicators (CC)<br />

The function of this system is to represent values<br />

associated with the cost of the un<strong>de</strong>rground<br />

<strong>in</strong>frastructure implementation. As for other numerical<br />

parameters, the five groups have been elaborated by<br />

simple division of the acquired values expressed by the<br />

four factors below.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.55-62, 2010


Massara <strong>and</strong> Udaeta<br />

59<br />

Natural Gas Infrastructure Extension (E): corresponds<br />

to the distance between areas that can be served <strong>and</strong><br />

others that are effectively atten<strong>de</strong>d by natural gas. The<br />

rule for the <strong>in</strong>fluence attribution is “the smaller the<br />

distance, the larger the <strong>in</strong>fluence attributed for natural<br />

gas attractiveness”.<br />

Natural Gas Distribution Ramification (D): corresponds<br />

to the total sum of the <strong>in</strong>ternal streets that may be<br />

atten<strong>de</strong>d by natural gas supply systems. The parameters<br />

are also consi<strong>de</strong>red <strong>in</strong> the rule: “the smaller the distance,<br />

the larger the <strong>in</strong>fluence”. Thus, districts partially located<br />

<strong>in</strong> served areas are attributed “five” as the <strong>in</strong>fluence<br />

<strong>in</strong><strong>de</strong>x, express<strong>in</strong>g the best attractiveness conditions.<br />

Built Density (BDres, BDcom, BDserv, BD<strong>in</strong>d): this<br />

factor is obta<strong>in</strong>ed by the ratio between the built area<br />

accord<strong>in</strong>g to the type of l<strong>and</strong> use (resi<strong>de</strong>ntial,<br />

commercial, services <strong>and</strong> <strong>in</strong>dustrial) <strong>and</strong> the total area<br />

of the district (São Paulo, 2006). In districts with high<br />

<strong>in</strong>dustrial <strong>de</strong>nsity, lower <strong>in</strong>vestments with ramifications<br />

are consi<strong>de</strong>red (“capillarity” of the distribution<br />

network).<br />

Avenues <strong>and</strong> Streets of Great Importance Traffic (T):<br />

even with the constructive process evolution, the<br />

parameter <strong>in</strong>dicates the importance of the district as a<br />

connection among neighborhoods <strong>and</strong> other municipal<br />

districts <strong>and</strong> the special attention that must be given to<br />

the <strong>in</strong>terdiction plan. The number of avenues (or streets)<br />

is obta<strong>in</strong>ed by simple consultation of any streets gui<strong>de</strong><br />

<strong>and</strong> by count<strong>in</strong>g avenues <strong>and</strong> streets of larger extension<br />

with<strong>in</strong> any given district.<br />

Accord<strong>in</strong>g to the <strong>de</strong>scription <strong>in</strong> the methodology, all<br />

the values gathered are unified to the same unit<br />

(percentage) <strong>and</strong> divi<strong>de</strong>d <strong>in</strong> five zones of attractiveness<br />

that are converted <strong>in</strong> the hierarchisation scale of 1 to 9.<br />

After the weights are attributed, they are submitted to<br />

the calculation of “Attractiveness <strong>in</strong><strong>de</strong>x”, whose<br />

algorithm is based on the simple sum of the weights for<br />

each area of study as summarized <strong>in</strong> Table 2.<br />

Table 2. Summary of the algorithm for the Attractiveness In<strong>de</strong>x.<br />

Attractivity In<strong>de</strong>x by Information Systems<br />

LQ= (ISE+HDI+WS+SS+SI)/n<br />

UP=<br />

LUres+LUcom+LUserv+LU<strong>in</strong>d+UD+Z+UR+REres+REserv)/n<br />

PNGC= (DD+FI+Sres+Scom+Sserv+S<strong>in</strong>d)/n<br />

CC= (E+D+BDres+BDcom+BDserv+BD<strong>in</strong>d+T)/n<br />

General Attractivity In<strong>de</strong>x<br />

IG= (LQ+UP+PNGC+CC)/n<br />

Source: Massara (2007). Note: n represents the number of<br />

parameters effectively used. The acronyms are <strong>de</strong>scribed <strong>in</strong><br />

methodology.<br />

RESULTS AND DISCUSSION<br />

As suggested <strong>in</strong> the recommendations about natural gas<br />

policy (Meier, 1997; IESP, 2004), the choice of São<br />

Paulo (capital of São Paulo State) as an all-gas city, is to<br />

<strong>de</strong>monstrate the complete utilization of natural gas <strong>in</strong> all<br />

its applications. In the context of this work, the choice<br />

has background <strong>in</strong>:<br />

• The possibility of <strong>in</strong>creas<strong>in</strong>g the <strong>de</strong>nsity of use of<br />

the current grids: the <strong>in</strong>crement of the factor of<br />

utilization of the <strong>in</strong>frastructure implanted <strong>in</strong> the<br />

exp<strong>and</strong>ed center, besi<strong>de</strong>s the extend<strong>in</strong>g the consumption<br />

market can leverage the f<strong>in</strong>anc<strong>in</strong>g of the network<br />

expansion.<br />

• The process of civil construction has evolved with<br />

the use of a no-dig method of cutt<strong>in</strong>g trenches, the<br />

trenchless technology (Istt, 2008; Najafi, 2005). It<br />

reduces the trouble caused by the <strong>in</strong>terdiction of traffic<br />

ways to rebuild the pavement, thus mak<strong>in</strong>g its execution<br />

cheaper, ma<strong>in</strong>ly <strong>in</strong> already consolidated urban areas.<br />

• As mentioned by Mout<strong>in</strong>ho dos Santos et al. (2002,<br />

p. 162): “In the São Paulo municipality, along the roads<br />

at the marg<strong>in</strong>s of Tietê <strong>and</strong> P<strong>in</strong>heiros rivers, the greatest<br />

commercial areas <strong>in</strong> the country are concentrated here,<br />

with various shopp<strong>in</strong>g centers <strong>and</strong> large office<br />

build<strong>in</strong>gs. All of them are located less than 2 km from<br />

the high pressure Comgás (gas utility) pipe-r<strong>in</strong>g, but<br />

rarely it is used”.<br />

This situation will be the same <strong>in</strong> the next years,<br />

accord<strong>in</strong>g to the map (Comgás, 2007). The map of the<br />

gas utility shows the natural gas grid distribution <strong>in</strong> the<br />

city of São Paulo, <strong>in</strong> other words, which district is<br />

already served by the network, permitt<strong>in</strong>g the selection<br />

of areas not served for test<strong>in</strong>g the mo<strong>de</strong>l proposed <strong>in</strong><br />

this work.<br />

Figure 1 shows the city of São Paulo with<strong>in</strong> the<br />

metropolitan region of São Paulo.<br />

Fig. 1. City of São Paulo (ash area) <strong>in</strong>serted <strong>in</strong> the Metropolitan<br />

Region. Source: SEADE (2008).<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.55-62, 2010


60<br />

Massara <strong>and</strong> Udaeta<br />

S<strong>in</strong>ce the case study has been used <strong>in</strong> the city of São<br />

Paulo, it has been divi<strong>de</strong>d <strong>in</strong> 96 districts <strong>in</strong> conformity<br />

with the <strong>in</strong>formation reported by the local Urban Plan<br />

Department (São Paulo, 2002; Massara, 2002).<br />

Figure 2 <strong>in</strong>troduces the position<strong>in</strong>g of the districts<br />

selected <strong>in</strong> this paper, emphasiz<strong>in</strong>g the different<br />

geographical <strong>and</strong> social characteristics of each one.<br />

The selected districts represent areas of the city with<br />

great urban transformations. Some of them face a<br />

process of <strong>in</strong>tensification of the resi<strong>de</strong>ntial real estate<br />

market (Ipiranga, Tatuapé <strong>and</strong> Penha), attract<strong>in</strong>g<br />

<strong>in</strong>vestments <strong>in</strong> several economic activities <strong>in</strong> or<strong>de</strong>r to<br />

respond to that new occupation style. Others have low<br />

family <strong>in</strong>come but possess <strong>in</strong>dustrial areas that must<br />

consume natural gas (Vila Formosa <strong>and</strong> Socorro).<br />

Others present great urban complexity, function<strong>in</strong>g<br />

as a “bedroom cities”, with l<strong>and</strong> use predom<strong>in</strong>antly<br />

composed by habitational groups (Vila Matil<strong>de</strong>).<br />

In or<strong>de</strong>r to <strong>de</strong>monstrate the use of the mo<strong>de</strong>l<br />

<strong>de</strong>veloped <strong>in</strong> this work, for <strong>in</strong>stance, one application is<br />

presented across the Table 3.<br />

Therefore, <strong>in</strong> this example, the follow<strong>in</strong>g<br />

simplifications were consi<strong>de</strong>red:<br />

• Calculation of the attractiveness <strong>in</strong><strong>de</strong>x, us<strong>in</strong>g the<br />

“General” group<strong>in</strong>g (without the division <strong>in</strong><br />

<strong>in</strong>formation systems) <strong>and</strong> its respective rank<strong>in</strong>g;<br />

• Study area: districts;<br />

• Extra weight to emphasize the segments for the<br />

natural gas use = 1.0 for all the activities.<br />

• Algorithm application accord<strong>in</strong>g to the Table 2.<br />

LEGEND:<br />

1 - District of Ipiranga<br />

2 - District of Tatuapé<br />

3 - District of Penha<br />

4 - District of Vila Matil<strong>de</strong><br />

5 - District of Socorro<br />

6 - District of Vila Formosa<br />

Fig 2. The 6 selected districts <strong>in</strong> São Paulo municipality (capital<br />

city). (Note: unscaled figure).<br />

Source: SEADE (2008).<br />

Table 3. Attribution of weights accord<strong>in</strong>g to the four <strong>in</strong>formation<br />

systems<br />

Selected Districts of São Paulo City<br />

Parameters Vila<br />

Ipiranga Tatuapé Penha<br />

Matil<strong>de</strong> Socorro Vila<br />

Formosa<br />

ISE 7 9 7 7 9 9<br />

HDI 3 5 5 5 7 7<br />

WS 9 9 7 9 9 9<br />

SS 9 9 9 9 1 9<br />

SI 9 9 9 5 9 7<br />

LU res 3 5 5 7 3 9<br />

LU com 5 7 7 5 3 3<br />

LU serv 3 9 9 5 1 1<br />

LU <strong>in</strong>d 5 1 1 1 7 1<br />

Z 9 7 7 5 5 7<br />

UD 9 5 5 5 9 9<br />

UR 9 9 9 9 9 9<br />

RE res 5 9 5 1 1 3<br />

RE serv 3 9 9 1 5 1<br />

DD 3 3 5 5 1 5<br />

FI 3 5 1 1 3 3<br />

S res 5 3 5 3 1 3<br />

S com 9 7 9 3 9 5<br />

S serv 5 7 9 5 5 5<br />

S <strong>in</strong>d 9 5 5 1 9 3<br />

D 9 9 3 5 9 3<br />

E 5 7 1 5 9 5<br />

T 1 1 1 3 1 3<br />

BD res 5 9 7 7 3 9<br />

BC com 9 3 7 5 3 9<br />

BC serv 9 3 7 5 3 9<br />

BC <strong>in</strong>d 1 5 3 1 9 1<br />

Source : Massara (2007) based on Sea<strong>de</strong> (2008), São Paulo (2006).<br />

Table 4. Results for the case-study – The general attractiveness<br />

<strong>in</strong><strong>de</strong>x <strong>and</strong> its respective rank<strong>in</strong>g<br />

District<br />

AHP<br />

General<br />

General AHP<br />

<strong>in</strong><strong>de</strong>x<br />

<strong>in</strong><strong>de</strong>x<br />

Rank<strong>in</strong>g rank<strong>in</strong>g<br />

(%)<br />

Ipiranga 6,1 18,9% 2º 2º<br />

Tatuapé 6,3 22,2% 1º 1º<br />

Penha 5,9 16,8% 3º 3º<br />

Vila Matil<strong>de</strong> 4,7 10% 6º 6º<br />

Socorro 5,4 15,6% 5º 5º<br />

Vila Formosa 5,6 16,5% 4º 4º<br />

Source: Massara (2007) based on Saaty (2006).<br />

Table 4 resumes the attractiveness rank<strong>in</strong>g for five<br />

municipal districts for the natural gas expansion<br />

projection. From the results listed there<strong>in</strong>, one may<br />

conclu<strong>de</strong> that the districts with better positions<br />

contemplate mixed l<strong>and</strong> use (Tatuapé is the best<br />

example of which) <strong>and</strong> equality of consumption<br />

projection <strong>in</strong> all uses, associated to a larger<br />

<strong>de</strong>mographic <strong>de</strong>nsity <strong>and</strong> larger family <strong>in</strong>come.<br />

The first units <strong>in</strong> the rank<strong>in</strong>g of the mo<strong>de</strong>l are<br />

districts with the largest <strong>de</strong>velopment <strong>in</strong> the real-estate<br />

market, largest leeway of zon<strong>in</strong>g. These districts are<br />

nearest to the areas already served <strong>and</strong>, of course, have<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.55-62, 2010


Massara <strong>and</strong> Udaeta<br />

61<br />

the largest forecast of natural gas consumption, ma<strong>in</strong>ly,<br />

<strong>in</strong> the vertical resi<strong>de</strong>ntial use (with highlight for the<br />

follow<strong>in</strong>g districts: Ipiranga, Tatuapé <strong>and</strong> Penha).<br />

The rest of the districts concentrate the least <strong>in</strong>come,<br />

horizontal resi<strong>de</strong>ntial use <strong>and</strong> a small commercial,<br />

services <strong>and</strong> <strong>in</strong>dustrial concentration (Vila Formosa <strong>and</strong><br />

Socorro). Apart from the characteristics of the<br />

<strong>in</strong>termediate group, the last classification (Vila Matil<strong>de</strong>)<br />

is <strong>in</strong> an area with environmental limitations to<br />

expansion <strong>and</strong>, therefore, of small urban <strong>de</strong>velopment.<br />

The comparison between the rank<strong>in</strong>g us<strong>in</strong>g AHP<br />

(Saaty, 2006) <strong>and</strong> the mo<strong>de</strong>l rank<strong>in</strong>g (Massara, 2007)<br />

has satisfactory results (presented <strong>in</strong> Table 4).<br />

The mo<strong>de</strong>l based on urban <strong>in</strong>dicators has presented<br />

coherent results when tested <strong>in</strong> the city of São Paulo. It<br />

has been <strong>de</strong>monstrated that the mo<strong>de</strong>l proved to be a<br />

good calculation tool with a reasonable precision<br />

<strong>de</strong>gree, be<strong>in</strong>g easily un<strong>de</strong>rstood <strong>and</strong> function<strong>in</strong>g as an<br />

auxiliary <strong>in</strong> the <strong>de</strong>cision-mak<strong>in</strong>g process for the natural<br />

gas expansion <strong>in</strong>frastructure <strong>in</strong> the Brazilian cities.<br />

However, <strong>in</strong> or<strong>de</strong>r to have greater potential of<br />

expansion of the natural gas grid service, it is necessary<br />

that there exists strengthen<strong>in</strong>g of the relation between<br />

the utilities, network eng<strong>in</strong>eers of natural gas pipel<strong>in</strong>e<br />

facilities <strong>and</strong> all the civil construction related to the<br />

urban plans. In this case, it is good look<strong>in</strong>g for the<br />

<strong>de</strong>velopment of equipment for the diverse purposes that<br />

can utilize natural gas, <strong>in</strong>clud<strong>in</strong>g the formal assist<strong>in</strong>g<br />

from the public entities <strong>in</strong> the implementation of<br />

<strong>in</strong>frastructure <strong>and</strong> <strong>in</strong> advertis<strong>in</strong>g of natural gas use as an<br />

agent for urban <strong>de</strong>velopment as well.<br />

Thus, the creation of a resi<strong>de</strong>ntial <strong>and</strong> commercial<br />

market is based on the current use of PLG (petroleum<br />

liquefied gas) <strong>and</strong> on the gradual <strong>in</strong>troduction of natural<br />

gas <strong>in</strong> daily activities, thus <strong>in</strong>duc<strong>in</strong>g customers to the<br />

use of natural gas <strong>and</strong> enabl<strong>in</strong>g the <strong>de</strong>velopment of<br />

natural gas canalization <strong>and</strong> distribution.<br />

Acknowledgment This work received f<strong>in</strong>ancial<br />

support from the Brazillian agencies Agência Nacional<br />

do Petróleo – ANP (PRH-04), F<strong>in</strong>anciadora <strong>de</strong> Estudos<br />

e Projetos – FINEP <strong>and</strong> M<strong>in</strong>istério da Ciência e<br />

Tecnologia – MCT <strong>and</strong> FAPESP (Fundação <strong>de</strong> Amparo<br />

à Pesquisa do Estado <strong>de</strong> São Paulo) through the research<br />

project Process 03/06441-7 (“New Instruments for<br />

Regional Energy Plann<strong>in</strong>g seek<strong>in</strong>g Susta<strong>in</strong>able<br />

Development”) that permitted the utilization of the<br />

Decision Lens Program.<br />

REFERENCES<br />

Allen, E. (1987) Techniques of atitu<strong>de</strong> scale construction, Appleton<br />

Century Crofts, New York.<br />

BNDES – Banco Nacional <strong>de</strong> Desenvolvimento Econômico e Social.<br />

(2006) Setor <strong>de</strong> Petróleo e Gás: Perfil dos Investimentos, (Gas<br />

<strong>and</strong> Petroleum Sector: Investiment Profile), BNDES, Brasília. (<strong>in</strong><br />

portuguese).<br />

COMGAS – Companhia <strong>de</strong> Gas <strong>de</strong> São Paulo. (2007) Mapa da área<br />

Coberta pela Re<strong>de</strong>, (Distribution Network Map), COMGÁS, São<br />

Paulo. (<strong>in</strong> portuguese).<br />

EMBRAESP - Empresa Brasileira <strong>de</strong> Estudos <strong>de</strong> Patrimônio. (2008)<br />

Relatório anual sobre número <strong>de</strong> lançamentos imobiliários por<br />

região, região (Annual report on the number of real estate<br />

<strong>in</strong>vestments by region), EMBRAESP, São Paulo. (<strong>in</strong> portuguese).<br />

EIA – Energy Information Adm<strong>in</strong>istration. (2008) Annual Energy<br />

Outlook 2008 with Projections to 2030. Available <strong>in</strong>:<br />

http://www.eia.doe.gov/.<br />

Forrester, J.W. (1969) Urban Dynamics,M.I.T. Press, Cambridge.<br />

Gas Brasil. (2008) Newsletter Semanal [on l<strong>in</strong>e]. Available <strong>in</strong>:<br />

http://www.gasbrasil.com.br. (<strong>in</strong> portuguese).<br />

Groenendaal, W.V. (1998) The economic appraisal of natural gas<br />

projects, Oxford University Press for the Oxford Institute for<br />

Energy Studies, New York.<br />

IBGE – Instituto Brasileiro <strong>de</strong> Geografia e Estatística. (2003)<br />

Cadastro Nacional das Ativida<strong>de</strong>s Econômicas (CNAE),<br />

(National cadaster of economic activities) IBGE, Rio <strong>de</strong> Janeiro.<br />

(<strong>in</strong> portuguese).<br />

IBGE – Instituto Brasileiro <strong>de</strong> Geografia e Estatística. (2008)<br />

Cida<strong>de</strong>s, (Cities), IBGE, Rio <strong>de</strong> Janeiro. (<strong>in</strong> portuguese).<br />

IESP – Instituto <strong>de</strong> Engenharia <strong>de</strong> São Paulo. (2004) Recomendações<br />

sobre a política para o gás natural, (Recommendations about<br />

natural gas policy), IESP, São Paulo. (<strong>in</strong> portuguese).<br />

International Co<strong>de</strong> Council. (2000) International build<strong>in</strong>g co<strong>de</strong>.<br />

Falls Church, New York.<br />

ISTT - International Society for Trenchless Technology (2008)<br />

Trenchless techniques.Available <strong>in</strong> http://www.istt.com/.<br />

Massara, V.M. (2002) O perfil da <strong>in</strong>fra-estrutura no Município <strong>de</strong><br />

São Paulo e sua relação com as transformações <strong>de</strong> uso do solo: o<br />

centro exp<strong>and</strong>ido e a região <strong>de</strong> São Miguel Paulista, (The<br />

<strong>in</strong>frastructure profile <strong>in</strong> the city of São Paulo with regards to the<br />

transformations on the l<strong>and</strong> uses: the exp<strong>and</strong>ed center <strong>and</strong> the<br />

region of São Miguel Paulista), Dissertação (Mestrado), Escola<br />

Politécnica da Universida<strong>de</strong> <strong>de</strong> São Paulo. (<strong>in</strong> portuguese).<br />

Massara, V.M. (2007) A D<strong>in</strong>âmica Urbana na Otimização da Infra-<br />

Estrutura para o Gás Natural, (Urban Dynamics <strong>in</strong> the natural<br />

gas <strong>in</strong>frastructure), PhD Thesis, Instituto <strong>de</strong> Eletrotécnica e<br />

Energia da Universida<strong>de</strong> <strong>de</strong> São Paulo.<br />

Méier, E.P. (1997) Memória da <strong>in</strong>fra-estrutura urbana na área<br />

central <strong>de</strong> São Paulo, (Urban Infrastructure Memory <strong>in</strong> tnhe<br />

central área of São Paulo City), Associação Viva o <strong>Centro</strong>, São<br />

Paulo. (<strong>in</strong> portuguese).<br />

Mout<strong>in</strong>ho dos Santos E., Fagá, M.T.W., Villanueva, L.D. &<br />

Zamalloa, G. (2002) Gás natural: estratégias para uma nova<br />

energia no Brasil, (Natural Gas: strategy for a new energy <strong>in</strong><br />

Brasil), Editora Anamblume, FAPESP, PETROBRAS, São Paulo.<br />

(<strong>in</strong> portuguese).<br />

Najafi, M. (2005) Trenchless technology: pipel<strong>in</strong>e <strong>and</strong> utility <strong>de</strong>sign,<br />

construction, <strong>and</strong> renewal, McGraw-Hill, New York.<br />

Saaty, T. (2006) Decision Lens. Programa <strong>de</strong> Computador, London.<br />

Saaty T. (1980) The Analytic Hierarchy Process: Plann<strong>in</strong>g, Priority<br />

Sett<strong>in</strong>g, Resource Allocation, McGraw-Hill, London.<br />

Saaty, T.; Vargas, L.G. (1982). The logic of priorities, applications<br />

<strong>in</strong> bus<strong>in</strong>ess, energy, healthy, transportation. Nijhoff, Boston.<br />

São Paulo – Secretaria Municipal <strong>de</strong> Planejamento Urbano. (2002)<br />

Plano Diretor estratégico do Município <strong>de</strong> São Paulo 2002-2012,<br />

(Strategic directory plann<strong>in</strong>g <strong>in</strong> the citybof São Paulo), SEMPLA,<br />

São Paulo. (<strong>in</strong> portuguese).<br />

São Paulo – Secretaria Municipal <strong>de</strong> Planejamento Urbano. (2006)<br />

D<strong>in</strong>âmica Urbana, SEMPLA, São Paulo. (<strong>in</strong> portuguese).<br />

SEADE – Fundação Sistema Estadual <strong>de</strong> Análise <strong>de</strong> Dados. (2008)<br />

Pesquisa Municipal Unificada, (Unified municipal research).<br />

SEADE, São Paulo. (<strong>in</strong> portuguese).<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.55-62, 2010


62<br />

Massara <strong>and</strong> Udaeta<br />

Sposati, A. (2000) Mapa da Exclusão Social da cida<strong>de</strong> <strong>de</strong> São<br />

Paulo, (Social Exclusion Map), São Paulo, CDRom. (<strong>in</strong><br />

portuguese).<br />

Udaeta, M.E.M;., Grimoni, J.A.B. & Galvão, L.C.R. (2004)<br />

Iniciação a Conceitos <strong>de</strong> Sistemas Energéticos para o<br />

Desenvolvimento Limpo, (Initiation to Energy Systems Concepts<br />

for the Clean Development), EDUSP, São Paulo. (<strong>in</strong> portuguese).<br />

Williams, N. (1966) The structure of urban zon<strong>in</strong>g <strong>and</strong> its dynamics<br />

<strong>in</strong> urban plann<strong>in</strong>g <strong>and</strong> <strong>de</strong>velopment, Buttenheim Pub. Corp., New<br />

York.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.55-62, 2010


Gonçalves Neto <strong>and</strong> Lollo<br />

63<br />

J U E E<br />

Journal of Urban <strong>and</strong> Environmental<br />

Eng<strong>in</strong>eer<strong>in</strong>g, v.4 , n.2, p.63-73<br />

ISSN 1982-3932<br />

doi: 10.4090/juee.2010.v4n2.063073<br />

Journal of Urban <strong>and</strong><br />

Environmental Eng<strong>in</strong>eer<strong>in</strong>g<br />

www.journal-uee.org<br />

ANALYSIS OF NEIGHBORHOOD IMPACTS ARISING FROM<br />

IMPLEMENTATION OF SUPERMARKETS IN CITY OF SÃO<br />

CARLOS<br />

Pedro Silveira Gonçalves Neto* <strong>and</strong> José Augusto <strong>de</strong> Lollo<br />

Urban Eng<strong>in</strong>eer<strong>in</strong>g Post-graduation Program, São Carlos University, Brazil<br />

Received 18 March 2010; received <strong>in</strong> revised form 27 October 2010; accepted 16 November 2010<br />

Abstract:<br />

Keywords:<br />

The study <strong>in</strong>clu<strong>de</strong>d supermarkets of different sizes (small, medium <strong>and</strong> large - <strong>de</strong>f<strong>in</strong>ed<br />

based on the area occupied by the project <strong>and</strong> volume of activity) located <strong>in</strong> São Carlos<br />

(São Paulo state, Brazil) to evaluate the <strong>in</strong>fluence of the size of the project impacts<br />

neighborhood generated by these supermarkets. It was consi<strong>de</strong>red the <strong>in</strong>fluence of<br />

factors like the location of enterprises, size of the build<strong>in</strong>g, <strong>and</strong> areas of <strong>in</strong>fluence<br />

contribute to the <strong>in</strong>creased population <strong>de</strong>nsity <strong>and</strong> change of use of build<strong>in</strong>gs s<strong>in</strong>ce it<br />

was post-<strong>de</strong>ployment analysis. The relationship between the variables of the spatial<br />

impacts was ma<strong>de</strong> possible by the use of geographic <strong>in</strong>formation system. It was noted<br />

that the legislation does not have suitable conditions to gui<strong>de</strong> the studies of urban<br />

impacts due to the complex <strong>in</strong>tegration between the urban <strong>and</strong> impact<strong>in</strong>g components.<br />

Urban plann<strong>in</strong>g, Law 10257/2001, neighborhood impacts, supermarket cluster<br />

© 2010 Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE). All rights reserved.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.63-73, 2010


Gonçalves Neto <strong>and</strong> Lollo<br />

64<br />

INTRODUCTION<br />

São Carlos is a Brazilian municipality located <strong>in</strong> the<br />

state of São Paulo, near its geographic center <strong>and</strong> <strong>in</strong> a<br />

distance of 231 km from the state capital. With a<br />

population of around 220 463 <strong>in</strong>habitants (IBGE, 2009),<br />

distributed a total area of 1 141 km², is the 14 th largest<br />

city <strong>in</strong> the state <strong>in</strong> number of resi<strong>de</strong>nts. The city is an<br />

important regional center, with the economy based on<br />

<strong>in</strong>dustrial <strong>and</strong> agricultural activities (<strong>in</strong> this sector, there<br />

is the production of sugarcane, oranges, milk <strong>and</strong><br />

chicken).<br />

Served by a several bus <strong>and</strong> rail systems, São Carlos<br />

has units of production of some mult<strong>in</strong>ational<br />

companies, among them Volkswagen, Faber-Castell,<br />

Electrolux, Husqvarna <strong>and</strong> Tecumseh <strong>and</strong> some units of<br />

domestic companies, among which Toalhas São Carlos,<br />

Tapetes São Carlos, Papel São Carlos, Brazil Prom<strong>in</strong>as,<br />

Card<strong>in</strong>ali, Opto Electronics <strong>and</strong> Lat<strong>in</strong>a.<br />

In the light of local needs, <strong>and</strong> <strong>in</strong> certa<strong>in</strong> aspects,<br />

regional, the city has a network of tra<strong>de</strong> <strong>and</strong> services<br />

distributed <strong>in</strong> high street shops, gas stations<br />

convenience, several supermarket cha<strong>in</strong>s <strong>and</strong> a shopp<strong>in</strong>g<br />

center of Iguatemi group. In the field of research, they<br />

present the Fe<strong>de</strong>ral University of São Carlos (UFSCar)<br />

<strong>and</strong> the University of São Paulo (USP), also are present<br />

<strong>in</strong> the city two centers of technical <strong>de</strong>velopment at<br />

Embrapa.<br />

Despite these qualifications, the occupation of urban<br />

space took place <strong>in</strong> a disor<strong>de</strong>rly way, due to high<br />

population growth <strong>and</strong> the absence of laws to propose a<br />

direction to the use <strong>and</strong> occupation. The result can be<br />

seen <strong>in</strong> the segregation experienced by the population<br />

<strong>and</strong> the <strong>in</strong>effectiveness of urban <strong>in</strong>frastructure for<br />

subsequent <strong>de</strong>ployment of large build<strong>in</strong>gs without the<br />

proper review with<strong>in</strong> the current legal parameters.<br />

Accord<strong>in</strong>g Lollo (2006), s<strong>in</strong>ce the adoption of the<br />

Neighborhood Impact Study as a tool for urban<br />

management by the City Statute, the technical means<br />

has an <strong>in</strong>strument whose purpose is to analyze the<br />

behavior of high <strong>de</strong>nsity, however, the fact there is an<br />

adm<strong>in</strong>istrative mechanism of this magnitu<strong>de</strong>, does not<br />

represent a significant advance <strong>in</strong> public adm<strong>in</strong>istration<br />

s<strong>in</strong>ce there is no st<strong>and</strong>ardized evaluation system for<br />

such analysis <strong>and</strong> the means are not known for the<br />

correct application of such <strong>in</strong>struments.<br />

Mol<strong>in</strong>a (2008) states that the City Statute is subject<br />

to many discussions of how to apply the study of<br />

neighborhood impacts <strong>and</strong> what requirements that<br />

should be consi<strong>de</strong>red for the analysis of impacts, s<strong>in</strong>ce<br />

this document is of recent creation. It is emphasized that<br />

the proposition <strong>and</strong> use of <strong>in</strong>struments of control <strong>and</strong><br />

supervision of urban <strong>de</strong>nsification activity <strong>in</strong> Brazil is<br />

typical of a certa<strong>in</strong> size of cities (especially capitals <strong>and</strong><br />

major cities with<strong>in</strong> the states), while <strong>in</strong> small <strong>and</strong><br />

medium cities, such <strong>in</strong>struments do not exist or are not<br />

applied.<br />

The Neighborhood Impact Study has been practiced<br />

by most government (Mol<strong>in</strong>a, 2008) to <strong>in</strong>dicate the<br />

<strong>de</strong>velopments of greatest potential impact on the<br />

dimensions of these, but is overlooked aspects which<br />

relate to the use <strong>and</strong> occupation of l<strong>and</strong>, traffic<br />

generation <strong>and</strong> urban plann<strong>in</strong>g.<br />

In view of this, this study addressed the urban<br />

impacts aris<strong>in</strong>g from Neighborhood Impact Study post<strong>de</strong>ployment<br />

supermarket which fit this group<strong>in</strong>g,<br />

(Decree n. 19.915/98 apud L<strong>in</strong>dau et al., 2009), <strong>in</strong> the<br />

municipality of São Carlos <strong>and</strong> propose strategies to<br />

support impact assessments of the neighborhood.<br />

For this, we used the methodology <strong>de</strong>veloped by<br />

Lollo (2006) which produced an impact study of<br />

neighborhood <strong>in</strong> the same region whose focus was on<br />

bus<strong>in</strong>ess <strong>in</strong>formation technology. It was based on the<br />

parameters required by Fe<strong>de</strong>ral Law 10.257/2001,<br />

report<strong>in</strong>g <strong>and</strong> questionnaires to st<strong>and</strong>ardize the<br />

quantification of variables that had more than one<br />

<strong>in</strong>terpretation.<br />

THE NEIGHBORHOOD IMPACT STUDY (NIS)<br />

The Neighborhood Impact Study un<strong>de</strong>r the City Statute<br />

guarantees the negotiation between the private <strong>in</strong>terests<br />

of entrepreneurs <strong>and</strong> the right to urban environmental<br />

quality of city resi<strong>de</strong>nts, especially those who live <strong>and</strong><br />

travel <strong>in</strong> the vic<strong>in</strong>ity of the project un<strong>de</strong>r study.<br />

The NIS, when established <strong>in</strong> the Organic Law of<br />

Municipalities, provi<strong>de</strong>s for the participation of society<br />

<strong>in</strong> the analysis of each new <strong>de</strong>velopment to be built,<br />

thereby exercis<strong>in</strong>g <strong>de</strong>mocracy <strong>and</strong> <strong>in</strong>clusion of local<br />

communities that participate <strong>in</strong> the <strong>de</strong>cisions of what is<br />

best for their city. Some authors such as Leão-Aguiar et<br />

al. (2005, p. 2) argue that “the charge required for the<br />

preparation of the NIS, fills an important gap <strong>in</strong> the<br />

legislation, with regard to build<strong>in</strong>gs or activities that<br />

damage the local environment”.<br />

Urban growth has <strong>in</strong>creased <strong>de</strong>m<strong>and</strong> <strong>and</strong> need for<br />

new jobs, hous<strong>in</strong>g options public transportation <strong>and</strong><br />

pollution control, as well as the provision of basic<br />

services like water, sanitation, education <strong>and</strong> health.<br />

Regard<strong>in</strong>g the social content, urban growth contributed<br />

with the <strong>in</strong>tensification of segregation s<strong>in</strong>ce the<br />

<strong>in</strong>habitants, accord<strong>in</strong>g to Gregori (2004, p. 6) “are<br />

forced to live <strong>in</strong> poor neighborhoods of large cities,<br />

which have given the poor quality of life <strong>in</strong> cities, <strong>and</strong><br />

directly contributed to environmental <strong>de</strong>gradation <strong>and</strong><br />

<strong>in</strong>creas<strong>in</strong>g poverty <strong>in</strong> urban society”.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.63-73, 2010


Gonçalves Neto <strong>and</strong> Lollo<br />

65<br />

It is noteworthy that the Statute, the collective<br />

<strong>in</strong>terest should prevail over the use of private property<br />

(Brazil, 2001). With regard to the social function of the<br />

city <strong>and</strong> urban property, people’s participation <strong>in</strong> the<br />

public <strong>in</strong>terest, must ensure <strong>de</strong>mocratic management<br />

<strong>and</strong> equitable distribution of benefits <strong>and</strong> bur<strong>de</strong>ns<br />

result<strong>in</strong>g from the urbanization process.<br />

S<strong>in</strong>ce the population should have access to<br />

<strong>in</strong>tervention, it must be aware about the recovery of<br />

public <strong>in</strong>vestment that provi<strong>de</strong>d the valuation of urban<br />

property <strong>and</strong> appropriateness of economic policy<br />

<strong>in</strong>struments, tax <strong>and</strong> f<strong>in</strong>ancial public spend<strong>in</strong>g on<br />

<strong>de</strong>velopment urban to reach the goals.<br />

The aim of the Neighborhood Impact Study is to<br />

<strong>de</strong>mocratize the system for mak<strong>in</strong>g <strong>de</strong>cisions on major<br />

projects to be un<strong>de</strong>rtaken <strong>in</strong> the city, listen<strong>in</strong>g to<br />

neighborhoods <strong>and</strong> communities that are exposed to the<br />

impacts of large ventures.<br />

The Art. 36 of the City Statute (Brazil, 2001) states<br />

that “the bylaws must <strong>in</strong>clu<strong>de</strong> criteria to <strong>de</strong>f<strong>in</strong>e which<br />

constructions <strong>de</strong>pend of a previous neighborhood<br />

impact study as a condition for approval. These criteria<br />

may vary <strong>de</strong>pend<strong>in</strong>g on the characteristics <strong>and</strong> urban<br />

<strong>in</strong>frastructure of the municipality, <strong>and</strong> may be based on,<br />

for example, the impact of traffic generated, stra<strong>in</strong> on<br />

<strong>in</strong>frastructure, population <strong>de</strong>nsity, shadow<strong>in</strong>g of<br />

neighbor<strong>in</strong>g properties, noise, etc.” (p. 1).<br />

Un<strong>de</strong>r the same Act, art. 37, “the NIS will run to<br />

consi<strong>de</strong>r the positive <strong>and</strong> negative effects of the activity<br />

on the quality of life of people liv<strong>in</strong>g <strong>in</strong> the area <strong>and</strong> its<br />

vic<strong>in</strong>ity, <strong>in</strong>clud<strong>in</strong>g the analysis, at least the follow<strong>in</strong>g<br />

questions: (i) <strong>de</strong>nsity of population, (ii) urban <strong>and</strong><br />

community facilities, (iii) use <strong>and</strong> l<strong>and</strong> cover, (iv)<br />

valuation of real property, (v) generation of traffic <strong>and</strong><br />

<strong>de</strong>m<strong>and</strong> for public transportation, (vi) ventilation <strong>and</strong><br />

light<strong>in</strong>g; ( vii) urban l<strong>and</strong>scape <strong>and</strong> natural <strong>and</strong> cultural<br />

heritage” (p. 1).<br />

The NIR (Neighborhood Impact Report) should be<br />

elaborated from a series of i<strong>de</strong>ntifiers that <strong>in</strong>dicate the<br />

level of impact on the <strong>de</strong>ployment of any new venture<br />

on the urban l<strong>and</strong>scape, human activities that can be<br />

<strong>in</strong>stalled, urban <strong>in</strong>frastructure <strong>and</strong> on natural resources<br />

of the neighborhood (Moreira, 1999).<br />

Moreira (1999) also says that the factors can be<br />

quantified <strong>and</strong> <strong>de</strong>monstrated through mathematical<br />

mo<strong>de</strong>ls, computational, <strong>and</strong> diagnostic reports (or<br />

prelim<strong>in</strong>ary studies).<br />

Accord<strong>in</strong>g to Moreira (1999), the roadmap for the<br />

<strong>de</strong>velopment of a NIR must bear the thought of the<br />

follow<strong>in</strong>g questions: “(i) the impact of new<br />

<strong>de</strong>velopment on the urban l<strong>and</strong>scape, (ii) located on<br />

human activities, (iii) on the move people <strong>and</strong> goods,<br />

(iv) on urban <strong>in</strong>frastructure, <strong>and</strong> (v) on the natural<br />

resources of the neighborhood” (p. 110).<br />

Moreira (1999) also <strong>de</strong>scribes what should be the<br />

end products of a NIR that the script needs to <strong>in</strong>dicate:<br />

“(i) the <strong>de</strong>monstration of the compatibility of the road<br />

system <strong>and</strong> transport, (ii) the <strong>de</strong>monstration of the<br />

compatibility of the dra<strong>in</strong>age system with <strong>in</strong>creased<br />

volume <strong>and</strong> velocity of storm water generated by the<br />

seal<strong>in</strong>g area of <strong>in</strong>tervention, (iii) the <strong>de</strong>monstration of<br />

the feasibility of water supply, sewage collection,<br />

electricity supply, (iv) an <strong>in</strong>dication of urban<br />

transformations <strong>in</strong>duced by the project, <strong>and</strong> (v) the<br />

<strong>in</strong>sertion of the work <strong>in</strong> the l<strong>and</strong>scape” (p. 111).<br />

The observation of the po<strong>in</strong>ts raised by Moreira<br />

(1999) compared to the analytical criteria of the City<br />

Statute (2001) suggests that the discussion on the NIR<br />

tends to spread, because the legislation is not complete<br />

on all possible parameters of analysis urban only serves<br />

“as a gui<strong>de</strong>l<strong>in</strong>e for the preparation of bylaws that<br />

address the evaluation of neighborhood impacts” (Lollo<br />

& Röhm, 2005, p. 39).<br />

About these items of the Statute, Lollo & Röhm<br />

(2005) produced a material that po<strong>in</strong>ts to the aspects<br />

that are not consi<strong>de</strong>rate <strong>in</strong> some neighborhood impact<br />

studies. It was found that the ma<strong>in</strong> problems occur or<br />

disability legislation or disability of the methodology<br />

applied. Follow<strong>in</strong>g the reason<strong>in</strong>g of Lollo & Rohm<br />

(2005, p. 41), “The consequences of the <strong>de</strong>velopment of<br />

Neighborhood Impact Studies that do not properly<br />

<strong>de</strong>scribe or evaluate the conditions of the project,<br />

neighborhood, or components subject to impact, create<br />

bad consequences <strong>in</strong> four spheres, namely: the<br />

environment, for local resi<strong>de</strong>nts, for the general<br />

population <strong>and</strong> to the public government”.<br />

SUGGESTION TO URBAN IMPACT<br />

EVALUATION<br />

The NIR does not yet have a st<strong>and</strong>ardized methodology;<br />

therefore, the discussion over the horizon of reach of<br />

neighborhood impacts is still open. However, over<br />

recent years <strong>and</strong> given the speed at which technology<br />

evolves, one sees a ten<strong>de</strong>ncy to simplify the procedures<br />

for the method of assess<strong>in</strong>g impacts on urban areas, “<strong>in</strong><br />

or<strong>de</strong>r to remove subjectivity from this process <strong>and</strong> thus<br />

shape, streaml<strong>in</strong>e <strong>de</strong>cision-mak<strong>in</strong>g processes” (Lollo &<br />

Röhm, 2005, p. 7).<br />

Lollo <strong>and</strong> Röhm (2005) also argue that this trend is<br />

not unique to the evaluation of neighborhood impacts,<br />

<strong>and</strong> falls with<strong>in</strong> a global context of establish<strong>in</strong>g criteria<br />

for evaluation <strong>and</strong> rank<strong>in</strong>g of environmental impacts as<br />

an alternative to st<strong>and</strong>ardization of the language issue.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.63-73, 2010


66<br />

Gonçalves Neto <strong>and</strong> Lollo<br />

In this sense, the use of Geographic Information<br />

Systems tends to be an excellent alternative to<br />

technological <strong>de</strong>velopment of such activities, because<br />

their use permits, <strong>in</strong> addition to encod<strong>in</strong>g <strong>in</strong>formation<br />

that facilitates their treatment, large sav<strong>in</strong>gs <strong>in</strong> storage<br />

process, updat<strong>in</strong>g <strong>and</strong> analysis data.<br />

The implementation of an urban mo<strong>de</strong>l <strong>in</strong> a<br />

geographic <strong>in</strong>formation system is one of the best ways<br />

to convey to users of the facilities of the urban structure<br />

as the changes could <strong>in</strong>terfere both positively <strong>and</strong><br />

negatively to the <strong>in</strong>habitants of any area <strong>de</strong>pend<strong>in</strong>g on<br />

the facilities that current technology provi<strong>de</strong>s.<br />

An “Urban GIS” can be used as a tool for automation<br />

of the municipal adm<strong>in</strong>istration, therefore, contributes to<br />

urban plann<strong>in</strong>g with <strong>de</strong>scriptive analysis of urban space<br />

which serves to support local government which<br />

<strong>de</strong>m<strong>and</strong>s efficient data transmission due to the grow<strong>in</strong>g<br />

process<strong>in</strong>g public services (Falcoski, 1997).<br />

Falcoski (1997, p. 12) <strong>de</strong>scribes that “<strong>in</strong> general, <strong>in</strong><br />

studies of urban impacts, us<strong>in</strong>g the computational mo<strong>de</strong>l<br />

proposed levels of study <strong>in</strong> the urban scale has<br />

consi<strong>de</strong>rable improvements <strong>in</strong> both macro-analysis well<br />

as <strong>in</strong> micro-analysis, therefore, it is possible to simulate<br />

potential of high <strong>de</strong>nsity, <strong>in</strong>dices to build, compare the<br />

volume <strong>and</strong> verify the proper application of coefficients<br />

<strong>de</strong>term<strong>in</strong>ed by law <strong>and</strong> can create comparisons of urban<br />

mo<strong>de</strong>ls <strong>de</strong>sirable, <strong>and</strong> likely present. With regards to<br />

urban <strong>de</strong>sign, the emphasis is on mechanisms of<br />

regulatory control <strong>and</strong> management (monitor<strong>in</strong>g) of<br />

dynamic spatial <strong>in</strong>formation”.<br />

DATA COLLECTION<br />

The procedure for obta<strong>in</strong><strong>in</strong>g the data followed the<br />

proposal prepared by Lollo (2006), which suggests the<br />

<strong>de</strong>limitation of areas of <strong>in</strong>fluence through the process of<br />

comparison matrix between the variables selected for<br />

the study. Accord<strong>in</strong>g to Leopold et al. (1971) apud<br />

Lollo (2006, p. 173), the matrix system st<strong>and</strong>s out<br />

among the available techniques of impact evaluation<br />

“due to the agility, flexibility <strong>and</strong> simplicity that allows<br />

the survey <strong>and</strong> impact assessment. It’s also wi<strong>de</strong>ly used<br />

when try<strong>in</strong>g to make i<strong>de</strong>ntifications <strong>and</strong> assessments of<br />

environmental impacts if it is agile”. The basic proposal<br />

of an “impact matrix” (Lollo, 2006) suggested <strong>in</strong> this<br />

study is to cross the proposed actions with<br />

environmental factors, <strong>and</strong> assign these crosses<br />

(characteriz<strong>in</strong>g impacts urban) values that represent the<br />

relative importance.<br />

Aim<strong>in</strong>g to represent the <strong>in</strong>fluences of the<br />

<strong>de</strong>velopment phase of the project impacts <strong>in</strong> the urban<br />

environment <strong>and</strong> consi<strong>de</strong>r<strong>in</strong>g the peculiarities of each of<br />

these steps, <strong>in</strong> this work, it was chosen to follow the<br />

mo<strong>de</strong>l proposed by Lollo (2006) who dist<strong>in</strong>guished<br />

stage of <strong>de</strong>velopment where the impact occurs <strong>in</strong> or<strong>de</strong>r<br />

to properly weigh the importance of each impact.<br />

The <strong>de</strong>limitation of the area of <strong>in</strong>fluence of the<br />

companies is extremely important for correct evaluation<br />

of the effects stemm<strong>in</strong>g from neighborhood impacts <strong>and</strong><br />

implications of conflict <strong>in</strong> urban l<strong>and</strong> use, <strong>and</strong> <strong>de</strong>pends,<br />

accord<strong>in</strong>g Lollo (2006, p. 20): “(1) conditions of the<br />

space, (2) the occupation <strong>in</strong> question, (3) impact<br />

analysis”.<br />

Lollo & Gonçalves Neto (2006) also highlight the<br />

importance of a thorough assessment of <strong>in</strong>terventions<br />

<strong>and</strong> the means consi<strong>de</strong>red to establish specific criteria<br />

for <strong>de</strong>f<strong>in</strong><strong>in</strong>g the area of <strong>in</strong>fluence of each factor.<br />

Accord<strong>in</strong>g Lollo (2006, p. 20.), “the <strong>de</strong>term<strong>in</strong><strong>in</strong>g factors<br />

for <strong>de</strong>f<strong>in</strong><strong>in</strong>g the area of <strong>in</strong>fluence are those related to<br />

traffic <strong>and</strong> park<strong>in</strong>g issues because they are the most farreach<strong>in</strong>g”.<br />

For the quantification of the impacts were possible to<br />

be exam<strong>in</strong>ed, was <strong>de</strong>signed a questionnaire based on<br />

studies of Lollo (2006), able to quantify the variables<br />

regar<strong>de</strong>d as quality by implement<strong>in</strong>g a new<br />

<strong>de</strong>velopment <strong>in</strong> the urban area.<br />

The step of the valuation of the impacts i<strong>de</strong>ntified<br />

<strong>and</strong> listed <strong>in</strong> the questionnaire established the relative<br />

values for each result of each impact consi<strong>de</strong>r<strong>in</strong>g their<br />

or<strong>de</strong>r (direct or <strong>in</strong>direct), magnitu<strong>de</strong> (high, medium <strong>and</strong><br />

low) <strong>and</strong> duration (temporary or permanent) shown <strong>in</strong><br />

Table 1. For each of the conditions <strong>de</strong>scribed were<br />

established values (weights) that consi<strong>de</strong>r the relative<br />

importance of impact, allow<strong>in</strong>g the assessment of<br />

impacts (Lollo, 2006).<br />

From this, it was possible to establish a scale for<br />

quantification of the data that were collected <strong>in</strong> the field<br />

by means of questionnaires.<br />

The field survey was the option to ref<strong>in</strong>e the data<br />

volume, because the experiments reported <strong>in</strong> the work<br />

of Lollo (2006) <strong>de</strong>monstrated that <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt of<br />

cooperation by the companies (<strong>in</strong> this case,<br />

supermarkets), some k<strong>in</strong>d of <strong>in</strong>formation was not<br />

reported, which required data collection by visit<strong>in</strong>g the<br />

field.<br />

Table 1. Values adopted for quantify<strong>in</strong>g the impacts i<strong>de</strong>ntified<br />

Classification<br />

Classes<br />

Values<br />

Or<strong>de</strong>r<br />

Direct 3<br />

Indirect 1<br />

High 3<br />

Magnitu<strong>de</strong><br />

Medium 2<br />

Low 1<br />

Duration<br />

Permanent<br />

3<br />

Temporary<br />

1<br />

Source: Lollo (2006).<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.63-73, 2010


Gonçalves Neto <strong>and</strong> Lollo<br />

67<br />

Table 2. Schematic representation of the structure of the matrix of impacts used<br />

Planned<br />

Phase of Company<br />

Impact Available Components Measures Proposed<br />

Intervention<br />

Info Info I+ H+ M- D+ Info<br />

Info Info T+ D- L+ P+ Info<br />

Plann<strong>in</strong>g<br />

Info Info M+ P- T- I- Info<br />

Info Info H- T+ I+ M- Info<br />

Info Info P+ I+ L+ D+ Info<br />

Info Info H+ M T+ P- Info<br />

Info Info D- T+ H+ I- Info<br />

Construction/Adaptation<br />

Info Info L- D- P+ H- Info<br />

Info Info I+ P+ D+ L- Info<br />

Info Info P- H- I- T+ Info<br />

Info Info P- L+ M+ D- Info<br />

Info Info M- I+ T- H- Info<br />

Operation<br />

Info Info D+ H+ P- M- Info<br />

Info Info H- L- T- I- Info<br />

Info Info T- I+ H+ L+ Info<br />

Source: Lollo (2006).<br />

Info Info M+ P+ L- D- Info<br />

Thus, based on the proposed system were consi<strong>de</strong>red<br />

three steps: (1) Plann<strong>in</strong>g, (2) Construction / Adaptation /<br />

Occupancy (as appropriate), <strong>and</strong> (3) Operation, each<br />

represent<strong>in</strong>g different possibility of generat<strong>in</strong>g potential<br />

impacts as shown below.<br />

Still, accord<strong>in</strong>g with Lollo (2006, p. 9): “The<br />

structure <strong>in</strong> module of the matrix gives two clear<br />

advantages. The first is that it allows the impacts are<br />

assessed at each stage, allow<strong>in</strong>g the discussion of the<br />

importance that each phase represents the environmental<br />

quality of the neighborhood, <strong>and</strong> provid<strong>in</strong>g alternatives<br />

to dist<strong>in</strong>guish between bus<strong>in</strong>esses that represent<br />

construction, those result<strong>in</strong>g from adaptations or<br />

extensions to build<strong>in</strong>gs already exist. This situation also<br />

allows treat equally the two situations <strong>de</strong>scribed<br />

(construction × adaptation/upgra<strong>de</strong>), the impacts<br />

generated by the second group are <strong>de</strong>spised. In case of<br />

upgra<strong>de</strong>/expansion, such a proposal still allows only<br />

<strong>in</strong>terventions are valued consistent with the process”.<br />

Aim<strong>in</strong>g to represent the <strong>in</strong>fluences of the<br />

<strong>de</strong>velopment phase of the impacts i<strong>de</strong>ntified <strong>in</strong> the<br />

project, <strong>and</strong> consi<strong>de</strong>r<strong>in</strong>g the peculiarities of each of<br />

these steps, we chose to dist<strong>in</strong>guish the stage of<br />

<strong>de</strong>velopment where the impact occurs <strong>in</strong> or<strong>de</strong>r to<br />

properly weigh the importance of each impact.<br />

The structure <strong>in</strong>clu<strong>de</strong>s the categories of <strong>in</strong>formation<br />

(aspects of the occupation, its consequences,<br />

environmental components assessed, mitigation<br />

measures <strong>and</strong> compensation arrangements) <strong>in</strong> columns,<br />

while the actions themselves are <strong>de</strong>scribed <strong>and</strong> their<br />

impacts are assessed <strong>in</strong> rows of the matrix.<br />

DATA PROCESSING<br />

This phase <strong>in</strong>clu<strong>de</strong>d the selection <strong>and</strong> ref<strong>in</strong>ement of<br />

<strong>in</strong>formation obta<strong>in</strong>ed <strong>and</strong> <strong>de</strong>f<strong>in</strong>ed <strong>in</strong> the stage of data<br />

collection, <strong>in</strong> addition to proper storage of <strong>in</strong>formation<br />

collected <strong>in</strong> a database compatible with the Geographic<br />

Information System from the referenc<strong>in</strong>g of the<br />

enterprises to enable spatial analysis.<br />

Such results of evaluation of responses obta<strong>in</strong>ed by<br />

the use of the questionnaires were fed <strong>in</strong>to a database <strong>in</strong><br />

Access <strong>and</strong> subsequently <strong>in</strong>serted <strong>in</strong>to the environment<br />

of ESRI ArcGIS 9 which <strong>in</strong>terface controls <strong>and</strong><br />

<strong>h<strong>and</strong>l<strong>in</strong>g</strong> are similar to others st<strong>and</strong>ards software of<br />

eng<strong>in</strong>eer<strong>in</strong>g, facilitat<strong>in</strong>g data manipulation <strong>and</strong> vectors.<br />

The structur<strong>in</strong>g of the data followed the proposal<br />

already <strong>in</strong>clu<strong>de</strong>d <strong>in</strong> the work Mart<strong>in</strong>etti (2006), Sacute<br />

(2006) <strong>and</strong> Gonçalves Neto (2006) which related the<br />

type, the relationship of the work, time <strong>and</strong> <strong>in</strong>tensity of<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.63-73, 2010


68<br />

Gonçalves Neto <strong>and</strong> Lollo<br />

activity, but was kept the same geographic <strong>in</strong>formation<br />

system.<br />

The selection of companies whose impacts would be<br />

consi<strong>de</strong>red <strong>in</strong> this proposal was based on the criteria<br />

proposed by Lollo (2006, p. 8) <strong>de</strong>scribed as follows:<br />

“(1) can be i<strong>de</strong>ntified neighborhood impacts occurred<br />

by the time of <strong>de</strong>ployment of bus<strong>in</strong>ess or dur<strong>in</strong>g the<br />

execution of their activities; (2) companies should have<br />

characteristics that allow their classification as<br />

supermarkets, <strong>and</strong> (3) firms should be <strong>in</strong>stalled <strong>in</strong> urban<br />

areas”. Figure 1 shows the companies selected on this<br />

criterion.<br />

The survey of the surround<strong>in</strong>gs of each company on<br />

the map of the city was through sketches prepared<br />

dur<strong>in</strong>g field visits. The visits to the site of each<br />

company had as its <strong>in</strong>itial objective, to answer some<br />

questions that employees of these establishments did not<br />

know or did not respond, but was also serv<strong>in</strong>g to<br />

provi<strong>de</strong> a more reliable location of each company, with<br />

the realization of these sketches.<br />

The simplicity of spatial representation of<br />

neighborhood impacts (<strong>de</strong>f<strong>in</strong>ed area of <strong>in</strong>fluence<br />

surround<strong>in</strong>g each company consi<strong>de</strong>red) significantly<br />

facilitated the structur<strong>in</strong>g of the data mo<strong>de</strong>l <strong>in</strong> GIS.<br />

Thus, tak<strong>in</strong>g up the company as spatial reference data,<br />

the data structure <strong>in</strong> ArcGIS was composed of three<br />

fundamental layers: “Streets”, “Po<strong>in</strong>ts” <strong>and</strong> “Buffers”.<br />

The spatial representation of the companies was<br />

done by us<strong>in</strong>g po<strong>in</strong>ts, based <strong>in</strong> sketches ma<strong>de</strong> <strong>in</strong> field.<br />

The category “Companies” (with mo<strong>de</strong>l data object<br />

type) absorbed the <strong>in</strong>formation about the spatial location<br />

of each company (represented by po<strong>in</strong>ts referenced to<br />

the network of streets), <strong>and</strong> a set of data (as data table)<br />

with all <strong>in</strong>formation obta<strong>in</strong>ed <strong>in</strong> the surveys, which<br />

allowed the evaluation of neighborhood impacts.<br />

The category that has been the basis used for<br />

mapp<strong>in</strong>g the location of firms <strong>and</strong> evaluation of their<br />

areas of <strong>in</strong>fluence was named “Network Logradouros”<br />

(with cadastral data mo<strong>de</strong>l) <strong>and</strong> corresponds to the<br />

spatial representation of the axes of public areas (roads<br />

centers or centerl<strong>in</strong>es) with <strong>de</strong>tails of their name <strong>and</strong><br />

direction of traffic flow.<br />

The database relat<strong>in</strong>g to this category was already<br />

available <strong>in</strong> the laboratory of the Center for GIS (NGeo<br />

- UFSCar), which is used for other aca<strong>de</strong>mic work <strong>and</strong><br />

its upgra<strong>de</strong> has performed steadily.<br />

The category <strong>de</strong>signated as buffers (thematic data<br />

mo<strong>de</strong>l) has the spatial representation of areas of<br />

<strong>in</strong>fluence of the companies studied. A circular buffer<br />

was the choice to st<strong>and</strong>ardize the treatment given to the<br />

spatial area of <strong>in</strong>fluence of all bus<strong>in</strong>esses <strong>and</strong> consi<strong>de</strong>r<br />

that <strong>in</strong> this case, the <strong>in</strong>tensity of impacts can be<br />

consi<strong>de</strong>red uniform <strong>in</strong> all directions.<br />

Fig. 1 Companies selected.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.63-73, 2010


Gonçalves Neto <strong>and</strong> Lollo<br />

69<br />

The location of each company was represented on<br />

the map us<strong>in</strong>g coord<strong>in</strong>ates of the UTM system which<br />

<strong>in</strong>dicates the central po<strong>in</strong>t of the frontage portion<br />

which belongs to the company.<br />

After the conclusion of this Step, the sum of the<br />

weights of the issues data were transported to an<br />

Access base <strong>and</strong> after to ArcGIS. Thus, the goal was<br />

reached by the proposed matrix method: analyze not<br />

just isolated to quantify the impact of a s<strong>in</strong>gle<br />

company, but also enable its comparison with another<br />

company <strong>and</strong> also compare the results with the set of<br />

all companies with respect to the variable of urban<br />

<strong>in</strong>frastructure.<br />

Regard<strong>in</strong>g the classification of neighborhood<br />

impacts, Lollo (2006) proposed the separation of<br />

variables directly related to the impact on urban<br />

<strong>in</strong>frastructure to be evaluated <strong>in</strong> the array: high<br />

<strong>de</strong>nsity population, realty valorization, ventilation<br />

<strong>and</strong> light<strong>in</strong>g, cultural heritage <strong>and</strong> urban<br />

transformations, traffic generation, <strong>de</strong>m<strong>and</strong> for public<br />

transport <strong>and</strong> urban <strong>and</strong> community facilities.<br />

The next phase (impact evaluation) correspon<strong>de</strong>d<br />

to the treatment <strong>in</strong> GIS, of the <strong>in</strong>formation that<br />

com<strong>in</strong>g from the previous steps, so as to allow three<br />

types of analysis: (i) from impact isolated<br />

(<strong>in</strong>terpretation of the causes <strong>and</strong> consequences of<br />

each impact consi<strong>de</strong>red, for each of the areas<br />

assessed); (ii) <strong>in</strong> groups of impacts, accord<strong>in</strong>g to the<br />

classification already given (check<strong>in</strong>g for all areas<br />

assessed, the existence of a group that is more<br />

significant impacts), <strong>and</strong> (iii) the comb<strong>in</strong>ation of<br />

several related impacts (assess the full extent of<br />

impacts generated by each area, to classify the areas<br />

accord<strong>in</strong>g to the total impact generated by each one<br />

<strong>and</strong> see if there are portions of the urban area more<br />

weaker on this type of proposal occupancy).<br />

ANALYSIS AND RESULTS<br />

The work done by Lollo & Gonçalves Neto (2006),<br />

showed that urban impacts may have a direct<br />

relationship to the size of the build<strong>in</strong>g, but <strong>in</strong> the case<br />

of supermarkets <strong>and</strong> even more specifically on the<br />

issue of urban impacts that reality exists, but not<br />

shown be the largest contributor to the <strong>in</strong>tensity of<br />

impacts, partly due to the impossibility of assess<strong>in</strong>g<br />

post-<strong>de</strong>ployment of temporary impacts <strong>de</strong>pend<strong>in</strong>g on<br />

the size of the build<strong>in</strong>g.<br />

The data obta<strong>in</strong>ed showed the prevalence of some<br />

types of impact, especially those related to real estate<br />

appreciation, the high <strong>de</strong>nsity <strong>and</strong> traffic flow.<br />

Table 3 shows the results obta<strong>in</strong>ed through the<br />

use of questionnaires. The companies were i<strong>de</strong>ntified<br />

by symbols <strong>and</strong> each column represents a type of<br />

impact associated with putt<strong>in</strong>g the build<strong>in</strong>g <strong>in</strong> the<br />

urban system.<br />

This table was <strong>in</strong>serted <strong>in</strong>to the database after the<br />

process<strong>in</strong>g of the results obta<strong>in</strong>ed <strong>in</strong> the field <strong>in</strong><br />

numbers <strong>and</strong> <strong>in</strong> the GIS environment, allow<strong>in</strong>g the<br />

Table 3. Urban impacts i<strong>de</strong>ntified <strong>in</strong> the area<br />

ID<br />

Question<br />

Super 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31<br />

M-01 × × × × × × × × × × × × ×<br />

G-01 × × × × × × × × × × × × × × × × ×<br />

G-02 × × × × × × × × × × × × × × ×<br />

G-03 × × × × × × × × × × × × × ×<br />

G-04 × × × × × × × × × × × × × × × ×<br />

M-02 × × × × × × × × × × × × ×<br />

M-03 × × × × × × × × × × × × × ×<br />

P-01 × × × × × × × × × × × × × × × ×<br />

G-05 × × × × × × × × × ×<br />

M-04 × × × × × × × × × × × × × × × ×<br />

G-06 × × × × × × × × × × × × ×<br />

M-05 × × × × × × × × × × × × ×<br />

M-06 × × × × × × × × × × ×<br />

G-07 × × × × × × × × × × × × × × × ×<br />

G-08 × × × × × × × × × × × × × × × × ×<br />

M-07 × × × × × × × × × × × ×<br />

ID SUPER (Supermarket ID) – P: Small Companies; M: Medium Companies; G: Large Companies; Questions: 1 to 10 – Real Estate<br />

Valuations; 11 to 14 – Urban L<strong>and</strong>scapes; 15 to 19 – Public Heritages; 20 to 24 – Traffic Volumes; 25 to 31 – Urban Facilities.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.63-73, 2010


Gonçalves Neto <strong>and</strong> Lollo<br />

70<br />

graphical representation <strong>and</strong> spatial impacts. It is<br />

emphasized here a curious fact with respect to the<br />

results by the field survey. Observ<strong>in</strong>g Table 3, it is<br />

clear that the largest contribution to the amount of<br />

work has been grouped <strong>in</strong>to two ma<strong>in</strong> cores of the<br />

components of analysis: the real estate valuation <strong>and</strong><br />

traffic volumes. The first component of this<br />

observation is directly related to the shift of people to<br />

nearby supermarkets.<br />

In some areas <strong>in</strong> the municipality, the supermarket<br />

was the factor responsible for the attraction of<br />

people, given the existence of some as the Dotto<br />

supermarket that exists <strong>in</strong> the city more than 40<br />

years, this season which saw the promotion of<br />

technological growth of the country, promoted by the<br />

then presi<strong>de</strong>nt, Juscel<strong>in</strong>o Kubitschek, <strong>and</strong> his slogan<br />

of “grow 50 years <strong>in</strong> 5”.<br />

With the com<strong>in</strong>g of mult<strong>in</strong>ationals <strong>in</strong>to the<br />

country, the Brazilian citizen could live further away<br />

from the workplace, therefore the second component<br />

of the observation results, the acquisition of a<br />

material as a vehicle has become easier, moreover,<br />

the urban <strong>de</strong>velopment grown creat<strong>in</strong>g more<br />

pathways to l<strong>in</strong>k the neighborhoods to the<br />

commercial centers.<br />

Therefore, there was a swell<strong>in</strong>g population which<br />

had the opportunity to resi<strong>de</strong> <strong>in</strong> areas far beyond the<br />

commercial centers evi<strong>de</strong>nced by Figs 2 <strong>and</strong> 3.<br />

Fig. 2 Representation <strong>in</strong> "pie charts" of the relationship between the groups “real estate valuation” <strong>and</strong> the sum total of variables.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.63-73, 2010


Gonçalves Neto <strong>and</strong> Lollo<br />

71<br />

Fig. 3 Representation <strong>in</strong> “pie charts” of the relationship between the groups “traffic volume” <strong>and</strong> the sum total of variables.<br />

About the <strong>in</strong>fluence areas of selected supermarkets,<br />

it was observed that <strong>in</strong> several cases, there is the<br />

<strong>in</strong>terpenetration or overlapp<strong>in</strong>g of the l<strong>in</strong>es (Fig. 4).<br />

Accord<strong>in</strong>g Chasco Yrigoyen & Uceta (1998) apud<br />

Sharma et al. (2006), “<strong>in</strong>fluence area or commercial<br />

area of a municipality or a commercial equipment is the<br />

area that has a strong tra<strong>de</strong> <strong>de</strong>pen<strong>de</strong>nce on the place of<br />

study” (p. 112).<br />

The ma<strong>in</strong> occurrences of this group<strong>in</strong>g of <strong>in</strong>fluence<br />

areas appeared frequently <strong>in</strong> the central part of the<br />

municipality (which has different uses of urban l<strong>and</strong>)<br />

<strong>and</strong> near to the Cida<strong>de</strong> Jardim neighborhood which has<br />

a resi<strong>de</strong>ntial character.<br />

This overlap of buffers <strong>de</strong>monstrates the <strong>in</strong>tention of<br />

different companies reach<strong>in</strong>g geographically the same<br />

customer. This can be seen graphically by the existence<br />

of <strong>in</strong>tersections when there is conflict <strong>in</strong> different<br />

spheres of <strong>in</strong>fluence.<br />

In these regions confirmed that the urban impacts<br />

cannot be treated separately because, <strong>de</strong>pend<strong>in</strong>g on the<br />

proximity of the objects of study, the variables of each<br />

company began to <strong>in</strong>terfere with the behavior of others.<br />

The Master Plan of the city of São Carlos does not<br />

refer to possible <strong>in</strong>terferences grouped <strong>in</strong> the period<br />

before the implementation of the venture, <strong>de</strong>al<strong>in</strong>g with<br />

the variables for the study of urban isolation without<br />

admitt<strong>in</strong>g the existence of <strong>in</strong>tegrat<strong>in</strong>g factors for the use<br />

of urban facilities.<br />

This is a problem that occurs <strong>in</strong> the most of the laws<br />

about the subject, because the municipal government<br />

has not been able to produce some material about NIS.<br />

Moreover the NIS does not have a <strong>de</strong>f<strong>in</strong>ite pattern of<br />

fe<strong>de</strong>ral legislation.<br />

We must consi<strong>de</strong>r the efforts ma<strong>de</strong> by municipal<br />

authorities to tread a path of urban sprawl without a<br />

back<strong>in</strong>g of the Fe<strong>de</strong>ration, but the results showed a real<br />

need to reach a st<strong>and</strong>ard that consi<strong>de</strong>rs the variables of<br />

<strong>in</strong>tegration of urban occupation, which must be ad<strong>de</strong>d<br />

the mitigation measures <strong>in</strong> the period prior to<br />

<strong>in</strong>stallation of new <strong>de</strong>velopments.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.63-73, 2010


Gonçalves Neto <strong>and</strong> Lollo<br />

72<br />

Fig. 4 Influence areas of supermarkets.<br />

Fig. 5 Representation <strong>in</strong> proportional symbols of the relationship between the variables “supplier vehicles” <strong>and</strong> the sum of variables.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.63-73, 2010


Gonçalves Neto <strong>and</strong> Lollo<br />

73<br />

CONCLUSIONS<br />

The use of st<strong>and</strong>ardized questionnaire on field<br />

surveys, attached to the <strong>in</strong>formation provi<strong>de</strong>d by the<br />

enterprises <strong>and</strong> ad<strong>de</strong>d the field visits, allowed the<br />

i<strong>de</strong>ntification of impacts on the study.<br />

The ventures consolidated prior to the draft<strong>in</strong>g of<br />

the City Statute were those who obta<strong>in</strong>ed the highest<br />

measurements of impacts because the surround<strong>in</strong>g<br />

urban growth <strong>in</strong> the region, unlike the supermarkets<br />

built or acquired after the Fe<strong>de</strong>ral Law, which have<br />

found a <strong>de</strong>veloped urban structure <strong>and</strong> legal<br />

obligations to be met.<br />

The urban sprawl around the supermarkets was<br />

aggravated by the excessive number of cars<br />

purchased by local resi<strong>de</strong>nts <strong>in</strong> recent years <strong>and</strong><br />

consequently <strong>in</strong>crease of the flow of vehicles on<br />

roads which were not scaled enough to support such<br />

a volume of traffic.<br />

This new condition prevents the <strong>de</strong>livery of<br />

products to the supermarket is done effectively,<br />

which contributes directly to the f<strong>in</strong>al assessment of<br />

results, therefore, the variables related to the flow of<br />

vehicles were the largest contributors <strong>in</strong> the f<strong>in</strong>al<br />

results.<br />

Figure 5 shows the quantification of the variable<br />

related to the logistical vehicles com<strong>in</strong>g from<br />

suppliers.<br />

The Master Plan of the city of São Carlos has a<br />

pretty advanced legislation regard<strong>in</strong>g the NIS, but<br />

still treats the components of analysis alone neither a<br />

st<strong>and</strong>ard method for the quantification of the impacts<br />

(of any type), because is backed by the Statute of the<br />

City, which also lacks a st<strong>and</strong>ard for <strong>de</strong>term<strong>in</strong><strong>in</strong>g the<br />

variables nee<strong>de</strong>d for the preparation of any NIR <strong>in</strong><br />

the municipality.<br />

F<strong>in</strong>ally, the NIS is still evolv<strong>in</strong>g <strong>and</strong> needs to be<br />

<strong>de</strong>epened <strong>in</strong> or<strong>de</strong>r to provi<strong>de</strong> conditions to <strong>de</strong>velop<br />

methods that consi<strong>de</strong>r the <strong>in</strong>ter<strong>de</strong>pen<strong>de</strong>nce of<br />

variables <strong>and</strong> its <strong>in</strong>tegration with the urban<br />

environment.<br />

The geographic <strong>in</strong>formation system <strong>in</strong> this case,<br />

was the best option to generate relationships between<br />

variables <strong>and</strong> their spatial representation effectively.<br />

Clearer legislation, sett<strong>in</strong>g st<strong>and</strong>ards, coupled with<br />

a GIS which relates to the <strong>in</strong>tegration of urban<br />

elements contribute to the improvement <strong>in</strong> <strong>de</strong>cisionmak<strong>in</strong>g<br />

by the government.<br />

REFERENCES<br />

Brasil. Law 10.257, July 10 th (2001) Regulates arts. 182 <strong>and</strong> 183<br />

of the Constitution set out the general gui<strong>de</strong>l<strong>in</strong>es of urban<br />

policy <strong>and</strong> other matters. Official Gazette, 10 July 2001.<br />

Falcoski, L.A.N. (1997) Dimensões Morfológicas <strong>de</strong><br />

Desempenho: Instrumentos Urbanísticos <strong>de</strong> Planejamento e<br />

Desenho Urbano. Doctoral Dissertation submitted to the<br />

Graduate Program <strong>in</strong> Environmental Structures College of<br />

Architecture <strong>and</strong> Urbanism, University of São Paulo, USP,<br />

São Paulo, Brazil, 1997.<br />

Gonçalves Neto, P.S. & Röhm, S.A. (2006) Avaliação <strong>de</strong><br />

Impactos na Infra-estrutura Urbana Decorrentes da<br />

Implantação <strong>de</strong> Empresas do Pólo <strong>de</strong> Alta Tecnologia <strong>de</strong> São<br />

Carlos.<br />

Gonçalves Neto, P.S. (2006) Estudo <strong>de</strong> impacto <strong>de</strong> viz<strong>in</strong>hança<br />

por meio do planejamento por <strong>de</strong>sempenho na Região Central<br />

<strong>de</strong> São Carlos. Trabalho <strong>de</strong> Graduação Integrado, UFSCar,<br />

São Carlos.<br />

Gregori, I.C. (2004) Mesa Temática: Cida<strong>de</strong>s e Gestão Urbana,<br />

O Estatuto da Cida<strong>de</strong>: perspectivas e <strong>de</strong>safios dos novos<br />

<strong>in</strong>strumentos <strong>de</strong> reforma urbana. Universida<strong>de</strong> <strong>de</strong> Santa Cruz<br />

do Sul – RS.<br />

IBGE – Brazilian Institue of Geography <strong>and</strong> Statistics (2009)<br />

Cida<strong>de</strong>s@: <strong>in</strong>formations from data base of IBGE,<br />

Rio <strong>de</strong> Janeiro, 2009, Available <strong>in</strong> http://www.ibge.gov.br/<br />

cida<strong>de</strong>sat/<strong>de</strong>fault2.php Accessed on 14 August 2009.<br />

Leão-Aguiar, L., Campos, L.R., Moraes, L.R.S. & Borja, P.C.<br />

(2005) Estudo <strong>de</strong> Impacto <strong>de</strong> Viz<strong>in</strong>hança: Instrumento <strong>de</strong><br />

Gestão Pública para a Cida<strong>de</strong> <strong>de</strong> Salvador.<br />

L<strong>in</strong>dau, L.A., Diógenes, M.C. & P<strong>in</strong>to, A.B. (2009)<br />

Quantificação dos impactos <strong>de</strong> pólos geradores <strong>de</strong> tráfego.<br />

Available <strong>in</strong>: http://www.producao.ufrgs.br/arquivos/<br />

discipl<strong>in</strong>as/412_impactos_polo_gerador_versao_l<strong>in</strong>dau_rev.do<br />

c Accessaed <strong>in</strong> 10 September 2009.<br />

Lollo, J.A. (2006) Utilização <strong>de</strong> Sistema <strong>de</strong> Informações<br />

Geográficas em Estudo <strong>de</strong> Impacto <strong>de</strong> Viz<strong>in</strong>hança: o caso do<br />

Pólo Tecnológico <strong>de</strong> São Carlos.<br />

Lollo, J.A. & Röhm, S.A. (2005) Proposta <strong>de</strong> Matriz para<br />

Levantamento e Avaliação <strong>de</strong> Impactos <strong>de</strong> Viz<strong>in</strong>hança.<br />

Mart<strong>in</strong>etti, T.H. & Röhm, S.A. (2006) Avaliação <strong>de</strong> Impactos <strong>de</strong><br />

Viz<strong>in</strong>hança no Meio Físico us<strong>and</strong>o Sistema <strong>de</strong> Informações<br />

Geográficas – o caso <strong>de</strong> Pólo <strong>de</strong> Alta Tecnologia <strong>de</strong> São<br />

Carlos (SP).<br />

Mol<strong>in</strong>a, V. (2008) Efeito do Porte do Município em Impactos <strong>de</strong><br />

Viz<strong>in</strong>hança Gerados por Supermercados. Research Plan<br />

forwar<strong>de</strong>d to PPGEU/UFSCar, Universida<strong>de</strong> Fe<strong>de</strong>ral <strong>de</strong> São<br />

Carlos, São Carlos, 2008, 3–8.<br />

Moreira, A.C.M.L. (1999) Parâmetros para elaboração do<br />

relatório <strong>de</strong> impacto <strong>de</strong> viz<strong>in</strong>hança. Magaz<strong>in</strong>e of the Graduate<br />

Program <strong>in</strong> Architecture <strong>and</strong> Urbanism of FAU/USP, 7, p.<br />

107–118.<br />

Sacute, B.C.A. & Röhm, S.A. (2006) Avaliação <strong>de</strong> Impactos<br />

Urbanísticos Decorentes da Implantação <strong>de</strong> Empresas do Polo<br />

<strong>de</strong> Alta Tecnologia <strong>de</strong> São Carlos.<br />

Silva, L.R., Kneib, E.C. & Silva, P.C.M. (2006) Proposta<br />

metodológica para <strong>de</strong>f<strong>in</strong>ição da área <strong>de</strong> <strong>in</strong>fluência <strong>de</strong> pólos<br />

geradores <strong>de</strong> viagens consi<strong>de</strong>r<strong>and</strong>o características próprias e<br />

aspectos d<strong>in</strong>âmicos <strong>de</strong> seu entorno. Article Published <strong>in</strong> the J.<br />

Civil Engng, 27, 111–126.<br />

Unifra (2009) Manual <strong>de</strong> Normas para Apresentação <strong>de</strong><br />

Trabalhos Científicos. Available <strong>in</strong> http://www.unifra.br/<br />

cursos/economia/downloads/Normas_UNIFRA_versao1.pdf<br />

Accessed <strong>in</strong> 23 December 2009.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.63-73, 2010


L<strong>in</strong>s, Cruz, Vieira, C. Neto <strong>and</strong> Mir<strong>and</strong>a<br />

74<br />

J U E E<br />

Journal of Urban <strong>and</strong> Environmental<br />

Eng<strong>in</strong>eer<strong>in</strong>g, v.4, n.2, p.74-80<br />

ISSN 1982-3932<br />

doi: 10.4090/juee.2010.v4n2.074080<br />

Journal of Urban <strong>and</strong><br />

Environmental Eng<strong>in</strong>eer<strong>in</strong>g<br />

www.journal-uee.org<br />

DETERMINING INDICATORS OF URBAN HOUSEHOLD<br />

WATER CONSUMPTION THROUGH MULTIVARIATE<br />

STATISTICAL TECHNIQUE<br />

Gledsneli M.L. L<strong>in</strong>s 1 *, Walter S. Cruz 2 , Zedna M.C.L.Vieira 3 , Francisco A.C. Neto 4 <strong>and</strong><br />

Érico A.A. Mir<strong>and</strong>a 5<br />

1 Natural Resources Graduation Program, Fe<strong>de</strong>ral University of Camp<strong>in</strong>a Gr<strong>and</strong>e, Brazil<br />

2 Department of Civil Eng<strong>in</strong>eer<strong>in</strong>g, Fe<strong>de</strong>ral University of Camp<strong>in</strong>a Gr<strong>and</strong>e, Brazil<br />

3<br />

CAPES/National Postdoctoral Program Scholar, Fe<strong>de</strong>ral University of Camp<strong>in</strong>a Gr<strong>and</strong>e, Brazil<br />

4 Civil Eng<strong>in</strong>eer<strong>in</strong>g Un<strong>de</strong>rgraduate Stu<strong>de</strong>nt, Fe<strong>de</strong>ral University of Camp<strong>in</strong>a Gr<strong>and</strong>e, Brazil<br />

5 Department of Economy, Fe<strong>de</strong>ral University of Camp<strong>in</strong>a Gr<strong>and</strong>e, Brazil<br />

Received 09 September 2010; received <strong>in</strong> revised form 30 November 2010; accepted 15 December 2010<br />

Abstract:<br />

Keywords:<br />

Water has a <strong>de</strong>cisive <strong>in</strong>fluence on populations’ life quality – specifically <strong>in</strong> areas like<br />

urban supply, dra<strong>in</strong>age, <strong>and</strong> effluents treatment – due to its sound impact over public<br />

health. Water rational use constitutes the greatest challenge faced by water <strong>de</strong>m<strong>and</strong><br />

management, ma<strong>in</strong>ly with regard to urban household water consumption. This makes it<br />

important to <strong>de</strong>velop researches to assist water managers <strong>and</strong> public policy-makers <strong>in</strong><br />

plann<strong>in</strong>g <strong>and</strong> formulat<strong>in</strong>g water <strong>de</strong>m<strong>and</strong> measures which may allow urban water<br />

rational use to be met. This work utilized the multivariate techniques Factor Analysis<br />

<strong>and</strong> Multiple L<strong>in</strong>ear Regression Analysis – <strong>in</strong> or<strong>de</strong>r to <strong>de</strong>term<strong>in</strong>e the participation level<br />

of socioeconomic <strong>and</strong> climatic variables <strong>in</strong> monthly urban household consumption<br />

changes – apply<strong>in</strong>g them to two districts of Camp<strong>in</strong>a Gr<strong>and</strong>e city (State of Paraíba,<br />

Brazil). The districts were chosen based on socioeconomic criterion (<strong>in</strong>come level) so<br />

as to evaluate their water consumer’s behavior. A 9-year monthly data series (from year<br />

2000 up to 2008) was utilized, compris<strong>in</strong>g family <strong>in</strong>come, water tariff, <strong>and</strong> quantity of<br />

household connections (economies) – as socioeconomic variables – <strong>and</strong> average<br />

temperature <strong>and</strong> precipitation, as climatic variables. For both the selected districts of<br />

Camp<strong>in</strong>a Gr<strong>and</strong>e city, the obta<strong>in</strong>ed results po<strong>in</strong>t out the variables “water tariff” <strong>and</strong><br />

“family <strong>in</strong>come” as <strong>in</strong>dicators of these district’s household consumption.<br />

Household water consumption, factor analysis, l<strong>in</strong>ear regression, urban water<br />

<strong>de</strong>m<strong>and</strong>, water efficient use<br />

© 2010 Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE). All rights reserved.<br />

* Correspon<strong>de</strong>nce to: Gledsneli M. <strong>de</strong> L. L<strong>in</strong>s, Tel.: +55 83 3310 1157; Fax: + 55 83 3310 1388<br />

E-mail: gl<strong>in</strong>s16@yahoo.com.br<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p. 47-80, 2010


L<strong>in</strong>s, Cruz, Vieira, C. Neto <strong>and</strong> Mir<strong>and</strong>a<br />

75<br />

INTRODUCTION<br />

The access to potable water is one of the most serious<br />

problems that urban centres are fac<strong>in</strong>g today all over<br />

the world. Albeit Brazil is privileged <strong>in</strong> terms of<br />

freshwater resources – it <strong>de</strong>ta<strong>in</strong>s about 14% of the<br />

world’s water availability – this richness is very<br />

unequally distributed among its regions: Amazonia<br />

(North region) concentrates 70%; Central-West<br />

region, 15%; South <strong>and</strong> Southeast regions, 6% each<br />

one; <strong>and</strong> Northeast region, just 3% of these resources.<br />

In relation to the ma<strong>in</strong> consumptive water uses,<br />

Brazilian water resources are shared by irrigation<br />

(63%), human supply (18%), <strong>and</strong> <strong>in</strong>dustry (5%)<br />

(ANA, 2007).<br />

Whether these resources are utilized rationally, i.e.,<br />

with economic efficiency, social equity <strong>and</strong><br />

environmental susta<strong>in</strong>ability, <strong>in</strong> the long run they<br />

could become a competitive advantage which would<br />

put Brazil among those countries high on the human<br />

<strong>de</strong>velopment <strong>in</strong><strong>de</strong>x (Lanna, 2008). Nevertheless,<br />

Brazil’s population <strong>and</strong> economic growth occurred<br />

dur<strong>in</strong>g the 20 th century led to a predatory exploration<br />

of its natural resources <strong>in</strong> general, <strong>and</strong>, particularly, of<br />

its water resources (ANA, 2007).<br />

Thus, along with the problems result<strong>in</strong>g from water<br />

scarcity <strong>in</strong> the Northeast region <strong>and</strong> water pollution <strong>in</strong><br />

the Southeast region, Brazilian’s large urban centres –<br />

like São Paulo e Recife – as well as medium size ones<br />

– like Camp<strong>in</strong>a Gr<strong>and</strong>e, State of Paraíba – have faced<br />

water supply crises which subjected population to<br />

tight ration<strong>in</strong>g measures (Tomaz, 2001). This situation<br />

makes evi<strong>de</strong>nt the need for <strong>in</strong>tegrated water resources<br />

management, <strong>and</strong>, more emphatically, the need for<br />

urban water <strong>de</strong>m<strong>and</strong> management measures.<br />

Water <strong>de</strong>m<strong>and</strong> management (WDM) <strong>in</strong>volves<br />

actions <strong>and</strong> sound methods to push the community <strong>in</strong><br />

the direction of an appropriate use of water thus<br />

reduc<strong>in</strong>g water consumption by the f<strong>in</strong>al user <strong>and</strong>, at<br />

the same time, <strong>in</strong>crement<strong>in</strong>g new consumption habits<br />

that would br<strong>in</strong>g no impairment to comfort <strong>and</strong><br />

hygienic necessities as provi<strong>de</strong>d by exist<strong>in</strong>g systems<br />

(USEPA, 1998). Then, water <strong>de</strong>m<strong>and</strong> management<br />

goes beyond consumption management: rather than a<br />

question of organiz<strong>in</strong>g consumption data <strong>and</strong> of<br />

build<strong>in</strong>g graphics, WDM <strong>in</strong>sists on study<strong>in</strong>g these<br />

data <strong>and</strong> on guarantee<strong>in</strong>g the system feedback (L<strong>in</strong>s &<br />

Ribeiro, 2007).<br />

The need for urban water <strong>de</strong>m<strong>and</strong> management<br />

measures, which <strong>in</strong>clu<strong>de</strong>s public policies for<br />

stimulat<strong>in</strong>g household water consumption efficiency,<br />

exceed<strong>in</strong>gly justifies the <strong>de</strong>velopment of researches<br />

that can <strong>in</strong>dicate paths to address this objective.<br />

With<strong>in</strong> this context, this work aims to analyze<br />

possible relationships between socioeconomic<br />

variables, climatic factors, <strong>and</strong> household water<br />

consumption for two districts of Camp<strong>in</strong>a Gr<strong>and</strong>e,<br />

Paraíba, Brazil, based on the multivariate statistical<br />

techniques Factor Analysis <strong>and</strong> Multiple L<strong>in</strong>ear<br />

Regression Analysis <strong>and</strong> consi<strong>de</strong>r<strong>in</strong>g water<br />

potentiality <strong>and</strong> availability, so as to assist water<br />

managers <strong>and</strong> public policy-makers <strong>in</strong> plann<strong>in</strong>g <strong>and</strong><br />

regulat<strong>in</strong>g water consumption.<br />

STUDY CASE<br />

Study area characterization<br />

Camp<strong>in</strong>a Gr<strong>and</strong>e is the second largest city <strong>in</strong> the State<br />

of Paraíba, with a population of over 380 000<br />

<strong>in</strong>habitants (IBGE, 2010), which is divi<strong>de</strong>d along 49<br />

districts. It is an important educational, <strong>in</strong>dustrial <strong>and</strong><br />

technological centre situated <strong>in</strong> a semiarid region <strong>in</strong><br />

northeastern Brazil. Located <strong>in</strong> the highest portion of<br />

the Borborema Plateau’s oriental cliffs, with altitu<strong>de</strong>s<br />

rang<strong>in</strong>g from 500 to 600 m (average altitu<strong>de</strong> of<br />

551 m), the city presents a semiarid equatorial<br />

climate, average temperatures around 25°C, <strong>and</strong> an<br />

average annual ra<strong>in</strong>fall of 730 mm (PMCG, 2002).<br />

Situated with<strong>in</strong> the limits of the Paraíba River bas<strong>in</strong>,<br />

Camp<strong>in</strong>a Gr<strong>and</strong>e, however, lies closely to the bas<strong>in</strong><br />

boundaries <strong>and</strong>, consequently, is not served by the<br />

ma<strong>in</strong> river. Figure 1 shows the city’s localization.<br />

Fig.1 Maps: Brazil <strong>and</strong> Paraíba (Camp<strong>in</strong>a Gr<strong>and</strong>e city).<br />

Water supply has become a historical problem. In<br />

the period from 1997 to 1999, the severe drought that<br />

fell upon the northeastern region of Brazil aggravated<br />

the critical water storage of the Epitácio Pessoa<br />

Reservoir that supplies the city <strong>and</strong> brought about a<br />

very serious crisis <strong>in</strong> water supply, affect<strong>in</strong>g Camp<strong>in</strong>a<br />

Gr<strong>and</strong>e <strong>and</strong> other five cities <strong>in</strong> Borborema’s region<br />

<strong>and</strong> subject<strong>in</strong>g 500 000 people to tight ration<strong>in</strong>g<br />

measures (54% less water <strong>in</strong> its f<strong>in</strong>al phase) between<br />

November 1998 <strong>and</strong> April 2000 (Rêgo et al., 2000;<br />

Galvão et al., 2001).<br />

In 2001 <strong>and</strong> 2002, dur<strong>in</strong>g the dry season, new<br />

ration<strong>in</strong>g measures had to be adopted motivated by the<br />

very low storage levels <strong>in</strong> the reservoir; <strong>in</strong> 2003, due<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p. 47-80, 2010


L<strong>in</strong>s, Cruz, Vieira, C. Neto <strong>and</strong> Mir<strong>and</strong>a<br />

76<br />

to the same reason, a system of consumption quotas<br />

was adopted, for a few months, for all consumers;<br />

revert<strong>in</strong>g this situation, a consi<strong>de</strong>rable <strong>in</strong>crease <strong>in</strong>flow<br />

<strong>in</strong>to the reservoir, registered <strong>in</strong> January 2004, allowed<br />

the accumulation of the reservoir’s maxim storage<br />

volume (411 686 287 m 3 ) <strong>and</strong> avoi<strong>de</strong>d a new – <strong>and</strong><br />

already planned – water ration<strong>in</strong>g (Vieira et al., 2005).<br />

An analysis of the many factors that contributed to<br />

these crises – the city’s geographic location, the lack<br />

of proper water resources management, the adoption<br />

of ration<strong>in</strong>g policies only at times of impend<strong>in</strong>g crisis,<br />

among others – <strong>in</strong>dicates the necessity for effective<br />

water resources management, particularly consi<strong>de</strong>r<strong>in</strong>g<br />

the <strong>de</strong>m<strong>and</strong> si<strong>de</strong> management <strong>and</strong> its potential for<br />

<strong>in</strong>duc<strong>in</strong>g rational consumption, <strong>in</strong> or<strong>de</strong>r to avoid the<br />

occurrence of new crises <strong>in</strong> the city’s water supply<br />

(Vieira, 2002).<br />

Nevertheless, it is important to emphasize that, <strong>in</strong><br />

spite of these crises’ seriousness <strong>and</strong> except for the<br />

ration<strong>in</strong>g measures, no other water <strong>de</strong>m<strong>and</strong><br />

management <strong>in</strong>itiatives have been taken <strong>in</strong> Camp<strong>in</strong>a<br />

Gr<strong>and</strong>e. Besi<strong>de</strong>s some lack of political will, the need<br />

for knowledge about household consumption<br />

characteristics <strong>and</strong> relationships – which could gui<strong>de</strong><br />

public policies formulation – appears as one of the<br />

factors that have ma<strong>de</strong> it difficult to implement urban<br />

water <strong>de</strong>m<strong>and</strong> management <strong>in</strong> Camp<strong>in</strong>a Gr<strong>and</strong>e.<br />

As an example of the very few exist<strong>in</strong>g works that<br />

address this city’s necessity, L<strong>in</strong>s et al. (2008),<br />

utilized Factor Analysis <strong>and</strong> Simple L<strong>in</strong>ear Regression<br />

Analysis (based on data relative to the year 2000) to<br />

i<strong>de</strong>ntify the possible <strong>in</strong>terrelations between the<br />

variable “population per age group” <strong>and</strong> “household<br />

water consumption” <strong>in</strong> Camp<strong>in</strong>a Gr<strong>and</strong>e city; the<br />

obta<strong>in</strong>ed results <strong>in</strong>dicate that, for the predom<strong>in</strong>ant age<br />

group (0 to 49 years old), the city’s average household<br />

water consumption (103 L/<strong>in</strong>habitant·day) is <strong>in</strong>ferior<br />

to the present Brazilian average consumption.<br />

Based on socioeconomic criterion (family <strong>in</strong>come<br />

level), two districts of Camp<strong>in</strong>a Gr<strong>and</strong>e city were<br />

chosen as study area:<br />

• D<strong>in</strong>américa district, compris<strong>in</strong>g an area of<br />

1.33 km 2 , a population of 3626 <strong>in</strong>habitants<br />

(90.7% of which are <strong>in</strong>clu<strong>de</strong>d with<strong>in</strong> the age<br />

group “0 to 49 years old”) <strong>and</strong> an average family<br />

<strong>in</strong>come of US$1,612, which characterizes it as a<br />

medium <strong>in</strong>come district; <strong>and</strong><br />

• Mirante district, compris<strong>in</strong>g an area of 0.52 km 2 ,<br />

a population of 1056 <strong>in</strong>habitants (88% of which<br />

with<strong>in</strong> the age group “0 to 49 years old”) <strong>and</strong> an<br />

average family <strong>in</strong>come of US$6,741, which<br />

characterizes it as a high <strong>in</strong>come district (IBGE,<br />

2008–2009 & SEPLAN/CG, 2000). Figure 2<br />

shows these districts’ location <strong>in</strong> Camp<strong>in</strong>a<br />

Gr<strong>and</strong>e city’s map.<br />

Fig.2 Map of Camp<strong>in</strong>a Gr<strong>and</strong>e city, <strong>in</strong>dicat<strong>in</strong>g D<strong>in</strong>américa <strong>and</strong> Mirante districts location.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p. 47-80, 2010


L<strong>in</strong>s, Cruz, Vieira, C. Neto <strong>and</strong> Mir<strong>and</strong>a<br />

77<br />

METHODOLOGY<br />

Database<br />

The follow<strong>in</strong>g types of monthly data – relat<strong>in</strong>g to the<br />

selected districts – were used <strong>in</strong> this work, all of them<br />

referr<strong>in</strong>g to the period from 2000 to 2008 (9-year data<br />

series): socioeconomic (average family <strong>in</strong>come, water<br />

tariffs applied by the local water supply company, <strong>and</strong><br />

economies, i.e., the number of household connections to<br />

the public water supply system), climatic (average<br />

temperature <strong>and</strong> precipitation), <strong>and</strong> household water<br />

consumption. These data were ma<strong>de</strong> available by<br />

SEPLAN/CG (Camp<strong>in</strong>a Gr<strong>and</strong>e’s Municipal Secretariat<br />

of Plann<strong>in</strong>g), EMBRAPA (Brazilian Enterprise for<br />

Agricultural Research), <strong>and</strong> CAGEPA (Water <strong>and</strong><br />

Sewage Company of Paraíba, the local water supply<br />

company).<br />

Statistical Techniques<br />

This work utilized two multivariate statistical<br />

techniques – Factor Analysis <strong>and</strong> Multiple L<strong>in</strong>ear<br />

Regression Analysis – which were ma<strong>de</strong> viable by the<br />

Statistical Package for the Social Sciences – SPSS.<br />

At first, a Factor Analysis (FA) was carried out<br />

consi<strong>de</strong>r<strong>in</strong>g as variables, for both D<strong>in</strong>américa <strong>and</strong><br />

Mirante districts: monthly average temperature, monthly<br />

average precipitation, economies, monthly water tariffs,<br />

<strong>and</strong> monthly family <strong>in</strong>come.<br />

Factor Analysis is a multivariate statistical analysis<br />

technique which changes the orig<strong>in</strong>al variables set <strong>in</strong>to a<br />

smaller one composed by factors; the or<strong>de</strong>r <strong>in</strong> which<br />

these factors are obta<strong>in</strong>ed corresponds to their<br />

importance with respect to the quantity of variance of<br />

the orig<strong>in</strong>al variables set that each of them can expla<strong>in</strong>.<br />

This means that the first factor expla<strong>in</strong>s the greatest<br />

quantity of variance of the data set; the second factor<br />

expla<strong>in</strong>s the greatest possible quantity of rema<strong>in</strong><strong>de</strong>r<br />

variance; <strong>and</strong> so on. As this work <strong>de</strong>als with a 5-<br />

variable set, the maximum number of factors to be<br />

extracted is five, i.e., equal to the number of orig<strong>in</strong>al<br />

variables. Here, the factor<strong>in</strong>g (extraction of factors)<br />

method utilized was Pr<strong>in</strong>cipal Component Analysis (PCA).<br />

On the other h<strong>and</strong>, as the quantity of variance<br />

expla<strong>in</strong>ed by each factor is represented by the quotient<br />

between the factor’s eigenvalue <strong>and</strong> the number of<br />

variables (or the total number of factors), it is<br />

consi<strong>de</strong>red, <strong>in</strong> general, that only those factors with<br />

eigenvalues greater than or equal to 1 will take part <strong>in</strong><br />

the f<strong>in</strong>al solution. In other words, factors’ eigenvalues<br />

which are less than 1 are elim<strong>in</strong>ated from the f<strong>in</strong>al<br />

solution (Cruz, 1983).<br />

Generally, the factors thus extracted are not easily<br />

<strong>in</strong>terpreted. In or<strong>de</strong>r to facilitate their <strong>in</strong>terpretation, it is<br />

realized a rotation of the coord<strong>in</strong>ate axes which<br />

graphically represent the factors. Accord<strong>in</strong>g to the<br />

rotation method adopted – orthogonal or oblique – the<br />

variables’ coord<strong>in</strong>ates, also called “factors load<strong>in</strong>g,”<br />

represent the projection of the variables’ variance <strong>in</strong> this<br />

new coord<strong>in</strong>ate system. One of the most utilized<br />

methods is the so-called Varimax rotation which aims to<br />

maximize the variance projection of each variable on the<br />

factors. This was the rotation method used <strong>in</strong> this work.<br />

The other multivariate analysis technique utilized<br />

was Multiple L<strong>in</strong>ear Regression Analysis. This<br />

technique shows the l<strong>in</strong>ear comb<strong>in</strong>ation between a<br />

variable, called <strong>de</strong>pen<strong>de</strong>nt variable, <strong>and</strong> a set of<br />

variables called <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt or explicative variables<br />

(Matos, 2000).<br />

This work adopted the significance level of 5% <strong>and</strong>,<br />

for both districts, consi<strong>de</strong>red the “household<br />

consumption” (calculated, for each district, as the<br />

quotient between the total district water consumption<br />

<strong>and</strong> the number of economies) as <strong>de</strong>pen<strong>de</strong>nt variable;<br />

the variables <strong>in</strong>itially suggested as <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt<br />

variables were those which have presented the greatest<br />

load<strong>in</strong>gs on Factor 1, the most important factor. Based<br />

on this set of variables thus <strong>de</strong>f<strong>in</strong>ed, a Multiple L<strong>in</strong>ear<br />

Regression Analysis was performed, <strong>and</strong>, through the<br />

“stepwise method” (i.e., a method executed step-bystep,<br />

which <strong>in</strong>clu<strong>de</strong>s each <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt variable<br />

accord<strong>in</strong>g to its contribution for <strong>in</strong>creas<strong>in</strong>g the<br />

<strong>de</strong>term<strong>in</strong>ation coefficient of the l<strong>in</strong>ear regression<br />

equation), the f<strong>in</strong>al l<strong>in</strong>ear regression equation was<br />

obta<strong>in</strong>ed.<br />

RESULTS FOR DINAMÉRICA DISTRICT<br />

Factor Analysis Application<br />

Table 1 shows the first obta<strong>in</strong>ed results for D<strong>in</strong>américa<br />

district, <strong>in</strong>dicat<strong>in</strong>g the <strong>in</strong>itial eigenvalues <strong>and</strong> the<br />

percentages of variance for each one of the five factors.<br />

Based on the criterion of eigenvalues greater than 1,<br />

two factors were extracted (Factor 1 <strong>and</strong> Factor 2)<br />

which expla<strong>in</strong> nearly 76% of the orig<strong>in</strong>al data set<br />

variance.<br />

Follow<strong>in</strong>g the methodological steps <strong>de</strong>scribed above,<br />

the Varimax method application resulted as shown <strong>in</strong><br />

Table 2. In this case, the socioeconomics variables<br />

(Tariff, Economies <strong>and</strong> Income) represent a high<br />

load<strong>in</strong>g on Factor 1, while the climatic variables<br />

(average temperature T, <strong>and</strong> average precipitation P)<br />

represent a high load<strong>in</strong>g on Factor 2.<br />

Table 1. Total variance expla<strong>in</strong>ed<br />

Factor Eigenvalue Variance (%)<br />

Cumulative<br />

(%)<br />

1 2.473 49.469 49.469<br />

2 1.338 26.768 76.238<br />

3 0.655 13.109 89.347<br />

4 0.481 9.629 98.976<br />

5 5.12.10 -2 1.024 100.000<br />

Extraction Method: Pr<strong>in</strong>cipal Component Analysis.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p. 47-80, 2010


L<strong>in</strong>s, Cruz, Vieira, C. Neto <strong>and</strong> Mir<strong>and</strong>a<br />

78<br />

Table 2. Rotated matrix<br />

Variables Factor 1 Factor 2<br />

T 6.882 × 10 -2 0.831<br />

P -2.458 × 10 -2 - 0.825<br />

Tariff 0.975 9.846 × 10 -2<br />

Economies 0.860 6.362 × 10 -2<br />

Income 0.855 -3.907 × 10 -2<br />

Rotation Method: Varimax rotation.<br />

Multiple L<strong>in</strong>ear Regression Analysis Application<br />

The Multiple L<strong>in</strong>ear Regression Analysis between<br />

“household consumption” <strong>and</strong> the explicative variables<br />

extracted from the Factor Analysis (Factor 1) presented<br />

the f<strong>in</strong>al regression equation as expressed by Eq. (1):<br />

Y = 1.933 + 0.131 X 2 – 8.246×10 -4 X 3 (1)<br />

where Y is the household consumption (m 3 /month); X 2 is<br />

the water supply company’s tariff; <strong>and</strong> X 3 is the monthly<br />

average family <strong>in</strong>come.<br />

This f<strong>in</strong>al regression equation’s <strong>de</strong>term<strong>in</strong>ation<br />

coefficient R 2 is equal to 0.896, which means that 89.6%<br />

of the <strong>de</strong>pen<strong>de</strong>nt variable Y’s variance are expla<strong>in</strong>ed by<br />

the <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt variables X 2 (Tariff) <strong>and</strong> X 3 (Income).<br />

Table 3 shows the Analysis of Variance (ANOVA)<br />

for Eq.(1).<br />

Based on Table 3 analysis, one can verify that<br />

statistics F presents a value equal to 447. Admitt<strong>in</strong>g a<br />

given level of significance, this F’s value must be<br />

compared to a value obta<strong>in</strong>ed from a “Table of F’s<br />

values,” which consi<strong>de</strong>rs the regression <strong>and</strong> residual<br />

number of <strong>de</strong>grees of freedom (df). Only if the F’s value<br />

presented <strong>in</strong> Table 3 is greater than any F’s values<br />

tabulated, for the consi<strong>de</strong>red significance level <strong>and</strong><br />

<strong>de</strong>grees of freedom, it will be possible to say that Eq.(1)<br />

is statistically significant at that adopted significance level.<br />

It is important to emphasize that SPSS’ ANOVA<br />

straightly <strong>in</strong>dicates the value of the smallest significance<br />

level (the sixth column of Table 3) from which Eq. (1)<br />

is statistically significant. In other words, Table 3 (at its<br />

fifth column) <strong>in</strong>dicates the F’s value which is greater<br />

than any tabulated F for significance levels greater than<br />

that one presented at its sixth column.<br />

S<strong>in</strong>ce the adopted significance level (5%, i.e., 0.05)<br />

is greater than the smallest significance level (0.00)<br />

showed by Table 3, it is possible to affirm that F = 447<br />

Table 3 – ANOVA<br />

Mo<strong>de</strong>l<br />

Sum of Mean<br />

df<br />

squares square<br />

Regression 21,81 2 10,9<br />

Residual 2,53 104 ,024<br />

Total 24,34 106<br />

df = <strong>de</strong>grees of freedom; F = Fisher’s statistics;<br />

Sig = Significance level.<br />

F<br />

Sig<br />

447 .00<br />

Table 4. D<strong>in</strong>américa district: coefficients of l<strong>in</strong>ear regression<br />

equation mo<strong>de</strong>l<br />

Mo<strong>de</strong>l B t Sig<br />

Constant<br />

Tariff<br />

Income<br />

1.933<br />

.131<br />

-8.246×10 -4 39.746<br />

27.699<br />

-15.579<br />

.000<br />

.000<br />

.000<br />

B = Unst<strong>and</strong>ardized coefficient; t = t-Stu<strong>de</strong>nt;<br />

Sig = Significance level.<br />

is greater than the tabulated value of F for the 5% –<br />

significance level, <strong>and</strong>, consequently, the obta<strong>in</strong>ed f<strong>in</strong>al<br />

regression equation is statistically significant at this<br />

adopted significance level.<br />

Table 4 <strong>in</strong>dicates the constant part, the partial<br />

regression coefficients, as well as other <strong>in</strong>formation<br />

which are pert<strong>in</strong>ent to the statistical quality analysis of<br />

the <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt variables <strong>in</strong> Eq. (1).<br />

As Table 4 shows, the values assumed by statistics t<br />

are greater than those tabulated for any significance<br />

level which is greater than 0.000 (result presented by<br />

SPSS at the fourth column of Table 4). Thus, the partial<br />

regression coefficients are statistically significant at the<br />

adopted significance level (5%).<br />

Therefore, for D<strong>in</strong>américa district, Eq. (1) can be<br />

consi<strong>de</strong>red as a l<strong>in</strong>ear regression equation mo<strong>de</strong>l which<br />

associates household consumption to the <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt<br />

variables Tariff <strong>and</strong> Income.<br />

RESULTS FOR MIRANTE DISTRICT<br />

Factor Analysis Application<br />

Follow<strong>in</strong>g the methodological steps, Table 5 shows the<br />

first results for Mirante district, i.e., the <strong>in</strong>itial<br />

eigenvalues <strong>and</strong> the percentages of variance for each<br />

one of the five factors. Aga<strong>in</strong>, the criterion of<br />

eigenvalues greater than 1 implied <strong>in</strong> the extraction of<br />

two factors, which expla<strong>in</strong> about 79% of the orig<strong>in</strong>al<br />

data set variance.<br />

The rotated matrix (Varimax Method), shown by<br />

Table 6, presents a result which is similar to that<br />

obta<strong>in</strong>ed for D<strong>in</strong>américa district, i.e., the<br />

socioeconomic variables (Tariff, Economies <strong>and</strong><br />

Income) presented a high load<strong>in</strong>g on Factor 1, while<br />

the same occurred with the climatic variable (T <strong>and</strong><br />

P) <strong>in</strong> relation to Factor 2.<br />

Table 5. Total variance expla<strong>in</strong>ed<br />

Factor Eigenvalue Variance (%)<br />

Cumulative<br />

(%)<br />

1 2.614 52.285 52.285<br />

2 1.336 26.717 79.002<br />

3 0.640 12.800 91.802<br />

4 0.325 6.491 98.293<br />

5 8.53×10 -2 1.707 100.000<br />

Extraction Method: Pr<strong>in</strong>cipal Component Analysis.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p. 47-80, 2010


L<strong>in</strong>s, Cruz, Vieira, C. Neto <strong>and</strong> Mir<strong>and</strong>a<br />

79<br />

Table 6. Rotated matrix.<br />

Variables Factor 1 Factor 2<br />

T 5.491×10 -2 0.836<br />

P - 5.394×10 -2 - 0.817<br />

Tariff 0.941 0.175<br />

Economies 0.944 4.598×10 -2<br />

Income 0.876 -1.992×10 -2<br />

Rotation Method: Varimax rotation.<br />

Multiple L<strong>in</strong>ear Regression Analysis Application<br />

The l<strong>in</strong>ear regression analysis was performed by<br />

consi<strong>de</strong>r<strong>in</strong>g the district’s household consumption <strong>and</strong> its<br />

possible relations to the explicative variables extracted<br />

from the Factor Analysis (Factor 1). The follow<strong>in</strong>g f<strong>in</strong>al<br />

regression equation was obta<strong>in</strong>ed:<br />

Y = 5.970 + 0.104X 2 – 6.13×10 -4 X 3 (2)<br />

where Y is the household consumption (m 3 /month); X 2 is<br />

the water supply company’s tariff; <strong>and</strong> X 3 is the monthly<br />

average family <strong>in</strong>come.<br />

Equation (2) has a <strong>de</strong>term<strong>in</strong>ation coefficient R 2<br />

equal to 0.912, which means that 91.2% of the<br />

<strong>de</strong>pen<strong>de</strong>nt variable Y’s variance are expla<strong>in</strong>ed by the<br />

<strong>in</strong><strong>de</strong>pen<strong>de</strong>nt variables X 2 (Tariff) <strong>and</strong> X 3 (Income).<br />

Table 7 presents the results of the Analysis of<br />

Variance (ANOVA).<br />

The value of statistics F is equal to 537, which is<br />

greater than any F’s values tabulated for the 5% –<br />

significance level (<strong>in</strong> accordance with the explanation<br />

already given for Table 3 analysis). Consequently, this<br />

means that Eq. (2) is statistically significant at this<br />

adopted significance level.<br />

Table 8 shows the constant part, the partial<br />

regression coefficients, <strong>and</strong> other <strong>in</strong>formation related to<br />

the statistical quality analysis of the <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt<br />

variables <strong>in</strong> Eq. (2).<br />

Table 7. ANOVA.<br />

Mo<strong>de</strong>l<br />

Regression<br />

Residual<br />

Total<br />

Sum of<br />

squares<br />

117.35<br />

11.36<br />

128.72<br />

df<br />

2<br />

104<br />

106<br />

Mean<br />

square<br />

58.68<br />

.109<br />

df = <strong>de</strong>grees of freedom; F = Fisher’s statistics;<br />

Sig = Significance level.<br />

F<br />

Sig.<br />

537 .000<br />

Table 8. Mirante district: coefficients of l<strong>in</strong>ear regression equation<br />

mo<strong>de</strong>l.<br />

Mo<strong>de</strong>l B t Sig<br />

Constant<br />

Tariff<br />

Income<br />

5.970<br />

.104<br />

-6.134×10 -4 55.059<br />

32.443<br />

-26.716<br />

.000<br />

.000<br />

.000<br />

B = Unst<strong>and</strong>ardized coefficient; t = t-Stu<strong>de</strong>nt;<br />

Sig = Significance level.<br />

As statistics t values are greater than those tabulated<br />

for any significance level greater than 0.000, the partial<br />

regression coefficients are statistically significant.<br />

Therefore, for Mirante district, Eq. (2) can be<br />

consi<strong>de</strong>red as a l<strong>in</strong>ear regression equation mo<strong>de</strong>l which<br />

associates household consumption to the variables<br />

Tariff <strong>and</strong> Income.<br />

CONCLUSION<br />

Household water consumption is a complex function of<br />

several factors, amongst which are socioeconomic <strong>and</strong><br />

climate ones. For the study case consi<strong>de</strong>red <strong>in</strong> this work,<br />

<strong>and</strong> specifically for the two selected districts, it was<br />

verified that the variables “average temperature” <strong>and</strong><br />

“average precipitation” did not take part <strong>in</strong> the f<strong>in</strong>al<br />

solution, due to the fact that none of them have<br />

presented a high load<strong>in</strong>g on Factor 1, the most important<br />

factor that has been <strong>in</strong>dicated by Factor Analysis<br />

application.<br />

Each obta<strong>in</strong>ed l<strong>in</strong>ear regression equation, Eq. (1) <strong>and</strong><br />

Eq. (2), respectively for D<strong>in</strong>américa <strong>and</strong> Mirante<br />

districts, can be consi<strong>de</strong>red as a l<strong>in</strong>ear regression mo<strong>de</strong>l<br />

which associates household consumption to water tariffs<br />

<strong>and</strong> family <strong>in</strong>come.<br />

Then, the obta<strong>in</strong>ed results po<strong>in</strong>t out the<br />

socioeconomics variables (water tariffs <strong>and</strong> family<br />

<strong>in</strong>come) as <strong>in</strong>dicators of urban household consumption<br />

for these Camp<strong>in</strong>a Gr<strong>and</strong>e city’s districts, so that they<br />

can be utilized to assist <strong>de</strong>cision-makers <strong>and</strong> to afford a<br />

more effective management of this consumption.<br />

The authors suggest that other <strong>in</strong>vestigations must be<br />

realized, <strong>in</strong>clud<strong>in</strong>g different districts <strong>and</strong>/or sectors of<br />

Camp<strong>in</strong>a Gr<strong>and</strong>e city, so as to po<strong>in</strong>t out l<strong>in</strong>ear<br />

regression mo<strong>de</strong>ls which can <strong>in</strong>corporate any variability<br />

with regard to this city’s household water consumption,<br />

as well as to support urban water <strong>de</strong>m<strong>and</strong> public<br />

policies formulation.<br />

Acknowledgements The third author gratefully<br />

acknowledges the scholarship provi<strong>de</strong>d by the Brazilian<br />

Agency CAPES, through the National Postdoctoral<br />

Program (PNPD).<br />

REFERENCES<br />

ANA – Brazilian National Water Agency (2007) Relatório nacional<br />

sobre o gerenciamento da água no Brasil- GEO Brasil Recursos<br />

Hídricos Available <strong>in</strong>: http://www.ana.gov.br. Accessed <strong>in</strong>: 15<br />

May 2010.<br />

Cruz, W.S. (1983) Métodos estatísticos multivariados aplicados à<br />

análise <strong>de</strong> transportes. MSc Thesis, Universida<strong>de</strong> Fe<strong>de</strong>ral da<br />

Paraíba, Campus II, Camp<strong>in</strong>a Gr<strong>and</strong>e, Paraíba, Brasil.<br />

Galvão, C.O., Rêgo, J.C., Ribeiro, M.M.R. & Albuquerque, J.P.T.<br />

(2001) Susta<strong>in</strong>ability characterization <strong>and</strong> mo<strong>de</strong>l<strong>in</strong>g of water<br />

supply management practices. IAHS Publ. 268, 81–88.<br />

IBGE – Instituto Brasileiro <strong>de</strong> Geografia e Estatística (2010). Dados<br />

da cida<strong>de</strong> <strong>de</strong> Camp<strong>in</strong>a Gr<strong>and</strong>e – PB. Available <strong>in</strong>:<br />

http://www.ibge.org.br/cida<strong>de</strong>s. Accessed <strong>in</strong>: 20 May 2010.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p. 47-80, 2010


L<strong>in</strong>s, Cruz, Vieira, C. Neto <strong>and</strong> Mir<strong>and</strong>a<br />

80<br />

IBGE – Instituto Brasileiro <strong>de</strong> Geografia e Estatística (2008-2009)<br />

Pesquisa <strong>de</strong> orçamentos domiciliares. Available <strong>in</strong>:<br />

http://www.ibge.org.br/estadosat/. Accessed <strong>in</strong>: 20 May 2010.<br />

Lanna, A.E.L. (2008) A economia dos recursos hídricos: os <strong>de</strong>safios<br />

da alocação eficiente <strong>de</strong> um recurso (cada vez mais) escasso.<br />

Estudos Avançados, 22(2), 113–130. doi: 10.1590/S0103-<br />

40142008000200008.<br />

L<strong>in</strong>s, G.M.L. & Ribeiro, M.M.R. (2007) Gestão da <strong>de</strong>m<strong>and</strong>a <strong>de</strong> água<br />

em centros urbanos do semiárido nor<strong>de</strong>st<strong>in</strong>o. Proc. XVII<br />

Sem<strong>in</strong>ário Brasileiro <strong>de</strong> Recursos Hídricos, ABRH, São Paulo,<br />

SP, Brasil.<br />

L<strong>in</strong>s, G.M.L., Cruz, W.S. & Mir<strong>and</strong>a, E.A.A (2008) O uso <strong>de</strong><br />

técnicas estatísticas multivariadas na <strong>de</strong>term<strong>in</strong>ação <strong>de</strong> <strong>in</strong>dicadores<br />

<strong>de</strong> consumo doméstico urbano <strong>de</strong> água. Proc. IX Simpósio <strong>de</strong><br />

Recursos Hídricos do Nor<strong>de</strong>ste, ABRH, Salvador, Brazil, 25–28<br />

Nov.<br />

Matos, O.C. (2000) Econometria Básica: teoria e aplicações. São<br />

Paulo: Atlas.<br />

PMCG – Prefeitura Municipal <strong>de</strong> Camp<strong>in</strong>a Gr<strong>and</strong>e (2002) Perfil do<br />

município <strong>de</strong> Camp<strong>in</strong>a Gr<strong>and</strong>e. Available <strong>in</strong>:<br />

http://www.pmcg.pb.gov.br. Accessed <strong>in</strong>: 27 May 2010.<br />

Rêgo, J.C., Ribeiro, M.M.R. & Albuquerque, J.P.T. (2000) Uma<br />

análise da crise <strong>de</strong> 1998–2000 no abastecimento d’água <strong>de</strong><br />

Camp<strong>in</strong>a Gr<strong>and</strong>e-PB. Proc. V Simpósio <strong>de</strong> Recursos Hídricos do<br />

Nor<strong>de</strong>ste, ABRH, Natal, RN, Brasil.<br />

SEPLAN/CG – Secretaria <strong>de</strong> Planejamento <strong>de</strong> Camp<strong>in</strong>a Gr<strong>and</strong>e<br />

(2000) Dados dos bairros – geral/ In: Perfil do município <strong>de</strong><br />

Camp<strong>in</strong>a Gr<strong>and</strong>e. Available <strong>in</strong>: http://www.pmcg.pb.gov.br.<br />

Accessed <strong>in</strong>: 27 May, 2010.<br />

Tomaz, P. (2001) Economia <strong>de</strong> água para empresas e residência:<br />

Um estudo atualizado sobre o uso racional da água. São Paulo:<br />

Editora Navegar, 112p.<br />

USEPA – U.S. Environmental Protection Agency (1998) Water<br />

Conservation Plan Gui<strong>de</strong>l<strong>in</strong>es. Available <strong>in</strong>:<br />

http://www.epa.gov/own. Accessed <strong>in</strong>: 12 December 2000.<br />

Vieira, Z.M.C.L. (2002) Análise <strong>de</strong> conflitos na seleção <strong>de</strong><br />

alternativas <strong>de</strong> gerenciamento da <strong>de</strong>m<strong>and</strong>a urbana <strong>de</strong> água. MSc<br />

Thesis, Fe<strong>de</strong>ral University of Camp<strong>in</strong>a Gr<strong>and</strong>e, 132p.<br />

Vieira, Z.M.C.L., Braga, C.F.C. & Ribeiro, M.M.R. (2005) Conflict<br />

analysis as a <strong>de</strong>cision support tool <strong>in</strong> urban water <strong>de</strong>m<strong>and</strong><br />

management. IAHS Publ. 293, 65–72.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p. 47-80, 2010


Martínez <strong>and</strong> Poleto<br />

81<br />

J U E E<br />

Journal of Urban <strong>and</strong> Environmental<br />

Eng<strong>in</strong>eer<strong>in</strong>g, v.4, n.2, p.81-104<br />

ISSN 1982-3932<br />

doi: 10.4090/juee.2010.v4n2.081104<br />

Journal of Urban <strong>and</strong><br />

Environmental Eng<strong>in</strong>eer<strong>in</strong>g<br />

www.journal-uee.org<br />

COMPARATIVE ANALYSIS OF EROSION MODELING<br />

TECHNIQUES IN A BASIN OF VENEZUELA<br />

Adriana M. Márquez ∗ <strong>and</strong> Edilberto Guevara-Pérez<br />

Centre of Environmental <strong>and</strong> Hydrologic Research, Carabobo University, Venezuela<br />

Received 20 May 2010; received <strong>in</strong> revised form 20 October 2010; accepted 16 December 2010<br />

Abstract:<br />

Keywords:<br />

This paper <strong>in</strong>vestigates a comparative analysis of erosion mo<strong>de</strong>l<strong>in</strong>g techniques<br />

based on <strong>de</strong>term<strong>in</strong>istic mo<strong>de</strong>ls, both empirically-based <strong>and</strong> process-based<br />

mo<strong>de</strong>ls. The empirical mo<strong>de</strong>l<strong>in</strong>g is based on statistical <strong>and</strong> artificial <strong>in</strong>telligence<br />

techniques. In the first, two types of statistical regression mo<strong>de</strong>l structures are<br />

<strong>in</strong>vestigated, a l<strong>in</strong>ear multiple regression mo<strong>de</strong>l structure <strong>and</strong> a nonl<strong>in</strong>ear<br />

multiple regression mo<strong>de</strong>l structure. In the second, tools such as artificial neural<br />

networks (ANN) <strong>and</strong> fuzzy <strong>in</strong>ference system (FIS) are used. The physical<br />

process-based mo<strong>de</strong>l<strong>in</strong>g <strong>in</strong>volves the calibration, validation <strong>and</strong> test<strong>in</strong>g of the<br />

mo<strong>de</strong>ls components: WEPP, EUROSEM <strong>and</strong> CIHAM-UC. The <strong>in</strong>put <strong>and</strong> output<br />

variables of mo<strong>de</strong>ls were collected dur<strong>in</strong>g ra<strong>in</strong>y <strong>and</strong> dry (irrigation) seasons <strong>in</strong><br />

Chirgua river bas<strong>in</strong>, Venezuela for two years (2008–2009). N<strong>in</strong>ety-seven ra<strong>in</strong>fall<br />

storms <strong>and</strong> 300 irrigation events were measured. Satisfactory fit was found <strong>in</strong> the<br />

techniques <strong>in</strong>vestigated, R 2 close to 0.7.<br />

Sediments; hydrological mo<strong>de</strong>ls; soil erosion mo<strong>de</strong>l; regression mo<strong>de</strong>l;<br />

hydrology; runoff; artificial neural networks; fuzzy <strong>in</strong>ference systems<br />

© 2010 Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE). All rights reserved.<br />

∗ Correspon<strong>de</strong>nce to: Adriana Márquez. Telefax: 0058-414-4165856.<br />

E-mail: ammarquez@uc.edu.ve<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

82<br />

INTRODUCTION<br />

The conventional techniques of erosion mo<strong>de</strong>l<strong>in</strong>g are<br />

empirically <strong>and</strong> process-based. The empirical mo<strong>de</strong>ls<br />

<strong>in</strong>clu<strong>de</strong> the Universal Soil Loss Equation (USLE)<br />

(Wischmeier & Smith, 1958), <strong>and</strong> its latter<br />

<strong>de</strong>velopments, Revised Soil Loss Equation (RUSLE)<br />

<strong>and</strong> Modified Universal Soil Loss Equation (MUSLE)<br />

(Renard et al., 1997a, 1997b). The process-based<br />

mo<strong>de</strong>ls are represented, e.g., by the WEPP (Water<br />

Erosion Prediction Project) (Flanagan et al., 2001),<br />

DWEPP (Dynamic Water Erosion Prediction Project)<br />

(Bulyg<strong>in</strong>a et al., 2007) <strong>and</strong> EUROSEM (European Soil<br />

Erosion Mo<strong>de</strong>l) (Morgan et al., 1998). There have been<br />

a large number of studies to calibrate <strong>and</strong> validate the<br />

runoff <strong>and</strong> erosion components of process-based mo<strong>de</strong>ls<br />

(e.g., Flanagan et al., 1995; Klik et al., 1995; Savabi et<br />

al., 1996; Zhang et al., 1996; Near<strong>in</strong>g et al., 1998;<br />

Zeleke, 1999; Ranieri et al., 1999; Santoro et al., 2002;<br />

Bulyg<strong>in</strong> et al., 2002; Laflen et al., 2004; Silva et al.,<br />

2007; Santos et al., 2003). Many erosion mo<strong>de</strong>ls require<br />

a large amount of data for calibration <strong>and</strong> validation as<br />

well as high performance, mean<strong>in</strong>g, the complex<br />

algorithms, execution times that eventually cause<br />

problems, <strong>and</strong> a programm<strong>in</strong>g language necessary to<br />

m<strong>in</strong>imize the time compute. Additionally, the ANN <strong>and</strong><br />

FIS have been proposed as efficient tools for mo<strong>de</strong>l<strong>in</strong>g<br />

<strong>and</strong> hydrology forecast<strong>in</strong>g (e.g., Bishop, 1994; Ja<strong>in</strong> &<br />

Ormsbee, 2002; Panigrahi & Mujundar, 2000). In this<br />

work, process-based mo<strong>de</strong>ls, statistical regression,<br />

ANN’s <strong>and</strong> FIS’s are used to mo<strong>de</strong>l the furrow erosion<br />

process.<br />

It is generally assumed that furrow erosion processes<br />

are similar to rill erosion processes that occur un<strong>de</strong>r<br />

ra<strong>in</strong>fall. There are similarities <strong>in</strong> the processes, but there<br />

are also differences <strong>in</strong> the conditions (Trout & Niebl<strong>in</strong>g,<br />

1993). Most ra<strong>in</strong>fall erosion occurs dur<strong>in</strong>g a few highly<br />

erosive events, while furrow erosion occurs at low-tomo<strong>de</strong>rate<br />

rates dur<strong>in</strong>g several irrigations with controlled<br />

water application. Most irrigation furrows are on slopes<br />

of less than 3%, while most rill erosion research is<br />

carried out on slopes greater than 3%. However, <strong>in</strong> spite<br />

of the controlled <strong>in</strong>flows <strong>and</strong> relatively low slopes, <strong>in</strong><br />

some areas with highly erodible soils, there is<br />

significant furrow irrigation caus<strong>in</strong>g erosion damage<br />

(Koluvec et al., 1993; Trout, 1999). The present study<br />

had two ma<strong>in</strong> objectives: (1) calibrate, validate <strong>and</strong> test<br />

mo<strong>de</strong>ls for the estimation of furrow erosion processes<br />

<strong>and</strong> (2) compare experimentally observed furrow<br />

erosion processes with simulated results by different<br />

methods.<br />

MODEL DESCRIPTION<br />

Water Erosion Prediction Project<br />

WEPP mo<strong>de</strong>l was <strong>de</strong>veloped by the United States<br />

Department of Agriculture – Agricultural Research<br />

Service (USDA-ARS). This mo<strong>de</strong>l is based on steadystate<br />

equation assum<strong>in</strong>g a uniform downslope overl<strong>and</strong><br />

flow; therefore, variables are expressed on a total width<br />

or total area basis (Foster & Meyer, 1975; Foster, 1982;<br />

Foster & Lane, 1987; Foster, 1990). WEPP<br />

dist<strong>in</strong>guishes erosion processes <strong>in</strong>volved <strong>in</strong> <strong>in</strong>terrill <strong>and</strong><br />

rill erosion. The basic relationship is given by:<br />

∂ ( CA)<br />

∂(<br />

CQ<br />

+<br />

) = S<br />

(1)<br />

∂t<br />

∂x<br />

where C is the concentration of sediment <strong>in</strong> the flow<br />

(kg/m 3 ), A the cross-sectional area of flow (m 2 ), Q the<br />

flow discharge (m 3 /s), t the time (s), x the distance<br />

downslope (m), the term ∂ ( CQ)<br />

/ ∂x<br />

the rate of change<br />

of sediment with the distance, ∂ ( CA)<br />

/ ∂t<br />

the storage<br />

rate of sediment with<strong>in</strong> the flow <strong>de</strong>pth, S the source/s<strong>in</strong>k<br />

term for sediment (kg/s/m 2 ) is given by:<br />

S = D I<br />

+ D R<br />

(2)<br />

By assum<strong>in</strong>g quasi-steady sediment movement, Eq.<br />

(1) is reduced to:<br />

∂ ( CQ)<br />

= D I<br />

+ D R<br />

∂x<br />

( wTc<br />

− CQ) , CQ ≥ wTc<br />

(3)<br />

⎛ CQ ⎞<br />

D<br />

⎜1<br />

⎟<br />

c − , CQ ≤ wTc<br />

= ⎝ wT<br />

D<br />

c ⎠<br />

R<br />

(4)<br />

0.5V<br />

Q<br />

s<br />

where D I is the <strong>in</strong>terrill sediment <strong>de</strong>livery to the rill<br />

(kg/s/m 2 ), D R the flow erosion rate (kg/s/m 2 ), T c the flow<br />

transport capacity <strong>in</strong> the rill (kg/s/m), w the rill width, V s<br />

the particle fall velocity (m/s), Q the flow discharge<br />

(m 3 /s), <strong>and</strong> D c the flow soil <strong>de</strong>tachment capacity<br />

(kg/s/m 2 ) is computed as:<br />

D<br />

c<br />

Kr<br />

( τ − τc<br />

),<br />

0<br />

= ,<br />

τ ≥ τ<br />

c<br />

τ ≤ τ<br />

c<br />

(5)<br />

τ = ρ W<br />

gSR<br />

(6)<br />

where K r is the rill erodibility (s/m), τ the flow shear<br />

stress act<strong>in</strong>g on the soil (Pa), τ c the critical shear stress<br />

(Pa), ρ w the water <strong>de</strong>nsity (kg/m 3 ), g the acceleration<br />

due to gravity (m/s 2 ), S slope (m/m), R hydraulic radius<br />

(m). Rills are assumed to be rectangular with widths that<br />

<strong>de</strong>pend on flow rate.<br />

The simplified form of the equation of Yal<strong>in</strong>, (1963)<br />

to estimate the sediment transport capacity has been<br />

adapted by Foster & Meyer, (1975) as:<br />

T<br />

b<br />

c<br />

= aτ<br />

(7)<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

83<br />

where T c is the sediment transport capacity, a <strong>and</strong> b are<br />

coefficients obta<strong>in</strong>ed by empirical fitt<strong>in</strong>g.<br />

Dynamic Water Erosion Prediction Project<br />

Bulyg<strong>in</strong>a et al. (2007) <strong>de</strong>veloped a dynamic version of<br />

the WEPP mo<strong>de</strong>l, which quantifies the dynamics of<br />

sediments with<strong>in</strong> a storm event. This mo<strong>de</strong>l is based on<br />

Eqs (1)–(6). Many equations of sediment transport were<br />

<strong>de</strong>veloped for stream flow, <strong>and</strong> later on applied to<br />

shallow overl<strong>and</strong> flow <strong>and</strong> channel flow. Accord<strong>in</strong>g to<br />

Alonso et al. (1981) <strong>and</strong> Foster & Meyer, (1972), the<br />

Yal<strong>in</strong> equation applies better for shallow flows<br />

associated with upl<strong>and</strong> erosion. In DWEPP, the Yal<strong>in</strong><br />

flow transport capacity equation is given by:<br />

⎡ 1 ⎤<br />

T c = 0.635Gs<br />

gd ρwτδ⎢1<br />

− ln( 1+ β) ⎥⎦ (8)<br />

⎣ β<br />

δ =<br />

β =<br />

Y<br />

Ycr<br />

0,<br />

−1,<br />

Y < Y<br />

cr<br />

Y ≥ Y<br />

−0.4<br />

0. 5<br />

2<br />

s cr<br />

cr<br />

(9)<br />

.45G Y δ<br />

(10)<br />

τ<br />

Y = (11)<br />

ρ ( G −1 gd<br />

w s )<br />

where G s is the particle specific gravity, d the particle<br />

diameter (m), δ <strong>and</strong> β are calculated by Eqs (8) <strong>and</strong> (9),<br />

respectively, Y is the dimensionless shear stress from<br />

the Shields diagram <strong>and</strong> Y cr the dimensionless critical<br />

shear stress from the Shields diagram.<br />

European Soil Erosion Mo<strong>de</strong>l<br />

The European Soil Erosion Mo<strong>de</strong>l (EUROSEM) was<br />

<strong>de</strong>veloped by Morgan et al. (1998). It is based on the<br />

Eqs (1) <strong>and</strong> (2), which simulate sediment transport,<br />

erosion <strong>and</strong> <strong>de</strong>position over the l<strong>and</strong> surface by rill <strong>and</strong><br />

<strong>in</strong>terill processes <strong>in</strong> s<strong>in</strong>gle storms for both, <strong>in</strong>dividual<br />

fields <strong>and</strong> small catchments. Mo<strong>de</strong>l output for one<br />

s<strong>in</strong>gle storm <strong>in</strong>clu<strong>de</strong>s total runoff, total soil loss,<br />

hydrographs <strong>and</strong> sediment graphs. The soil <strong>de</strong>tachment<br />

by runoff is mo<strong>de</strong>led <strong>in</strong> terms of a generalized erosion<strong>de</strong>position<br />

theory proposed by Smith et al. (1995).<br />

Accord<strong>in</strong>g to it, D R is the flow erosion rate (kg/s/m 2 ),<br />

(positive for erosion <strong>and</strong> negative for <strong>de</strong>position); the<br />

flow transport capacity concentration (T c ) represents the<br />

sediment concentration at which the flow erosion rate<br />

<strong>and</strong> correspond<strong>in</strong>g <strong>de</strong>position rate are <strong>in</strong> balance. A<br />

general equation for flow erosion rate is expressed <strong>in</strong><br />

terms of the settl<strong>in</strong>g velocity <strong>and</strong> flow transport capacity<br />

concentration, as follows:<br />

D<br />

R<br />

= V ( T − C)<br />

(12)<br />

s<br />

c<br />

The runoff capacity to transport <strong>de</strong>tached soil<br />

particles is expressed <strong>in</strong> terms of the concentration, T c<br />

(kg/m 3 ) is mo<strong>de</strong>led as a function of unit stream power<br />

us<strong>in</strong>g the relationship of Govers (1985):<br />

b<br />

c<br />

= a( ω− ωc<br />

(13)<br />

T )<br />

ω = VS<br />

(14)<br />

where ω c is the critical value of unit stream power, ω<br />

the unit stream power (m/s), V s the particle fall velocity<br />

(m/s), a <strong>and</strong> b are experimentally <strong>de</strong>rived coefficients<br />

<strong>de</strong>pend<strong>in</strong>g on particle size, S the slope (%) <strong>and</strong> V the<br />

mean flow velocity (m/s).<br />

Erosion mo<strong>de</strong>l of CIHAM-UC<br />

At the present, an erosion mo<strong>de</strong>l is be<strong>in</strong>g <strong>de</strong>veloped at<br />

the Centre of Environmental <strong>and</strong> Hydrologic Research,<br />

based on Eqs (1)–(3) <strong>and</strong> Eq. (15) of Simons et al.<br />

(1981), which is based on power relationships that<br />

estimate sediment transport based on the flow <strong>de</strong>pth h<br />

<strong>and</strong> velocity V.<br />

These power relationships were <strong>de</strong>veloped from a<br />

computer solution of the bedload transport equation of<br />

Meyer-Peter & Müller, (1948). Guevara & Márquez,<br />

(2009) propose it to estimate the sediment transport<br />

capacity <strong>in</strong> rill, <strong>and</strong> can be expressed as follows:<br />

b c<br />

T<br />

c<br />

= ah V<br />

(15)<br />

where T c is the flow transport capacity (kg/s/m), a, b<br />

<strong>and</strong> c are parameters estimated by empirical adjustment,<br />

V the flow velocity (m/s) <strong>and</strong> h the flow <strong>de</strong>pth (m).<br />

The flow erosion rate D R (kg/s/m 2 ) is <strong>de</strong>scribed <strong>in</strong><br />

terms of the generalized theory of erosion-<strong>de</strong>position<br />

modify<strong>in</strong>g proposal by Smith et al. (1995). This<br />

condition can be expressed as:<br />

DR = T w − f CV<br />

(16)<br />

c<br />

where V s is the particle fall velocity (m/s), w the furrow<br />

width (m), f s =A ec /A rill, similarity factor, A ec experimental<br />

cyl<strong>in</strong><strong>de</strong>r area from hydrometer test method (D422)<br />

(American Society for Test<strong>in</strong>g <strong>and</strong> Materials, 2007).<br />

L<strong>in</strong>ear Multiple Regression Mo<strong>de</strong>l<br />

The L<strong>in</strong>ear Multiple Regression Mo<strong>de</strong>l (LMRM) used is<br />

based on the structure given by:<br />

s<br />

D P P P P (17)<br />

R<br />

= β1 t<br />

+ β2<br />

t −1<br />

+ β3<br />

t −2<br />

+ ... + β12<br />

t−6<br />

where D R is the flow erosion rate (mg/s/m 2 ) at time t, β s<br />

represents the regression coefficients to be <strong>de</strong>term<strong>in</strong>ed;<br />

P s represents the ra<strong>in</strong>falls correspond to <strong>de</strong>f<strong>in</strong>ed time<br />

s<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

84<br />

<strong>in</strong>tervals with<strong>in</strong> a s<strong>in</strong>gle storm; <strong>and</strong> t <strong>in</strong><strong>de</strong>x represent<strong>in</strong>g<br />

time.<br />

Nonl<strong>in</strong>ear Multiple Regression Mo<strong>de</strong>l<br />

The Non-L<strong>in</strong>ear Multiple Regression Mo<strong>de</strong>l (NLMRM)<br />

used is based on the structure given by:<br />

n n<br />

n<br />

n<br />

D<br />

R<br />

= β1 P t + β2P<br />

t−1<br />

+ β3P<br />

t−2<br />

+ ... + β12P<br />

t−6<br />

(18)<br />

where n is the or<strong>de</strong>r of polynomial regression. The rest<br />

of the variables are expla<strong>in</strong>ed earlier.<br />

Artificial Neural Networks<br />

Neural networks are composed of simple elements<br />

operat<strong>in</strong>g <strong>in</strong> parallel, <strong>in</strong>spired by biological nervous<br />

systems. As <strong>in</strong> nature, the connections between<br />

elements largely <strong>de</strong>term<strong>in</strong>e the network function. A<br />

neural network can be tra<strong>in</strong>ed to perform a particular<br />

function by adjust<strong>in</strong>g the values of the connections<br />

(weights) between elements. Typically, neural networks<br />

are adjusted, or tra<strong>in</strong>ed, so that a particular <strong>in</strong>put leads<br />

to a specific target output. Figure 1 illustrates such a<br />

situation. The network is adjusted, based on a<br />

comparison of the output <strong>and</strong> the target, until the<br />

network output matches the target (Demuth et al.,<br />

2009).<br />

Target<br />

In this network, each element of the <strong>in</strong>put vector p is<br />

connected to each neuron <strong>in</strong>put through the weight<br />

matrix w. By consi<strong>de</strong>r<strong>in</strong>g a neuron with a s<strong>in</strong>gle R-<br />

element <strong>in</strong>put vector, p, the <strong>in</strong>dividual element <strong>in</strong>puts<br />

p 1 , p 2 ,…p R , are multiplied by weights w 1,1 , w 1,2 , ... w 1,R<br />

<strong>and</strong> the weighted values are fed to the summ<strong>in</strong>g<br />

junction, as shown <strong>in</strong> Fig. 2. This sum is Wp, the dot<br />

product of the (s<strong>in</strong>gle row) matrix W <strong>and</strong> the vector p.<br />

The neuron has a bias b, which is summed with the<br />

weighted <strong>in</strong>puts to form the net <strong>in</strong>put n. This sum, n, is<br />

the argument of the transfer function f <strong>de</strong>f<strong>in</strong>ed as<br />

follows:<br />

n<br />

= ,<br />

w1 ,1 p1<br />

+ w1,2<br />

p2<br />

+ ... + w1<br />

R pR<br />

+ b (19)<br />

This expression can be written as:<br />

n ( i)<br />

= Wp + b<br />

(20)<br />

where, the ith neuron has a summ<strong>in</strong>g that gathers its<br />

weighted <strong>in</strong>puts <strong>and</strong> bias to form its own scalar output n<br />

(i). The various n(i) taken together form an S-element<br />

net <strong>in</strong>put vector n.<br />

The sigmoid transfer function is commonly used <strong>in</strong><br />

backpropagation networks, <strong>in</strong> part because it is<br />

differentiable. As shown <strong>in</strong> Fig. 3, the sigmoid transfer<br />

function takes the <strong>in</strong>put, which can have any value<br />

between plus <strong>and</strong> m<strong>in</strong>us <strong>in</strong>f<strong>in</strong>ity, <strong>and</strong> squashes the<br />

output <strong>in</strong>to the range 0 to 1.<br />

Input<br />

Adjust<br />

Weights<br />

Neural<br />

Network<br />

Output<br />

Compare<br />

a<br />

+1<br />

Fig. 1 Scheme Input/Output to ANN.<br />

0<br />

n<br />

Neuron Mo<strong>de</strong>l<br />

One or more of the neurons can be comb<strong>in</strong>ed <strong>in</strong> a layer,<br />

<strong>and</strong> a particular network could conta<strong>in</strong> one or more such<br />

layers. A one-layer network with R <strong>in</strong>put elements <strong>and</strong> S<br />

neurons is shown <strong>in</strong> Fig. 2 as follows:<br />

p 1<br />

p 2<br />

p R<br />

Inputs<br />

w 1,1<br />

w 1,R<br />

Layer of Neurons<br />

Σ<br />

1<br />

Σ<br />

1<br />

Σ<br />

1<br />

b 1<br />

b 2<br />

b s<br />

Fig. 2 S<strong>in</strong>gle layer network architecture of neurons.<br />

n 1<br />

n 2<br />

n s<br />

f<br />

f<br />

f<br />

a = f (Wp + b)<br />

a 1<br />

a 2<br />

a s<br />

-1<br />

a = logsig(n)<br />

Fig. 3 Log-Sigmoid transfer function.<br />

a<br />

+1<br />

-1<br />

a = purel<strong>in</strong>(n)<br />

Fig. 4 L<strong>in</strong>eal transfer function.<br />

Occasionally, the L<strong>in</strong>ear Transfer Function Purel<strong>in</strong> is<br />

used <strong>in</strong> backpropagation networks. The l<strong>in</strong>ear transfer<br />

function is illustrated <strong>in</strong> Fig. 4.<br />

The symbol <strong>in</strong> the square to the right of each transfer<br />

function graph shown represents the associated transfer<br />

function. These icons replace the general f <strong>in</strong> boxes of<br />

network diagrams to show the particular transfer<br />

function be<strong>in</strong>g used.<br />

n<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

85<br />

Feedforward Network<br />

Feedforward networks often have one or more hid<strong>de</strong>n<br />

layers of sigmoid neurons followed by an output layer<br />

of l<strong>in</strong>ear neurons. Multiple layers of neurons with<br />

nonl<strong>in</strong>ear transfer functions allow the network to learn<br />

nonl<strong>in</strong>ear <strong>and</strong> l<strong>in</strong>ear relationships between <strong>in</strong>put <strong>and</strong><br />

output vectors. The l<strong>in</strong>ear output layer lets the network<br />

produce values outsi<strong>de</strong> the range –1 to +1. To <strong>de</strong>scribe<br />

networks hav<strong>in</strong>g multiple layers, the notation must be<br />

exten<strong>de</strong>d. Specifically, it needs to make a dist<strong>in</strong>ction<br />

between weight matrices that are connected to <strong>in</strong>puts<br />

<strong>and</strong> weight matrices that are connected between layers.<br />

A network can have several layers <strong>and</strong> it uses layer<br />

weight (LW) matrices as well as <strong>in</strong>put weight (IW)<br />

matrices. The network shown <strong>in</strong> Fig. 5 has R <strong>in</strong>puts, S 1<br />

neurons <strong>in</strong> the first layer, <strong>and</strong> S 2 neurons <strong>in</strong> the second<br />

layer. A constant <strong>in</strong>put 1 is fed to the bias for each<br />

neuron. Note that the outputs of each <strong>in</strong>termediate layer<br />

are the <strong>in</strong>puts to the follow<strong>in</strong>g layer. Thus layer 2 can be<br />

analyzed as a one-layer network with S 1 <strong>in</strong>puts, S 2<br />

neurons, <strong>and</strong> an S 2 ×S 1 weight matrix W 2 . The <strong>in</strong>put to<br />

layer 2 is a 1 ; the output is a 2 . Now that all the vectors<br />

<strong>and</strong> matrices of layer 2 have been i<strong>de</strong>ntified, it can be<br />

treated as a s<strong>in</strong>gle-layer network on its own. This<br />

approach can be taken with any layer of the network.<br />

Fuzzy Logic<br />

Input<br />

Inputs Terms<br />

Fig. 6 Diagram of a fuzzy <strong>in</strong>ference system.<br />

Fuzzy logic has two different mean<strong>in</strong>gs. In a narrow<br />

sense, fuzzy logic is a logical system, which is an<br />

extension of multivalued logic. However, <strong>in</strong> a wi<strong>de</strong>r<br />

sense fuzzy logic (FL) is almost synonymous with the<br />

theory of fuzzy sets, a theory which relates to classes of<br />

objects with unsharp boundaries, <strong>in</strong> which membership<br />

is a matter of <strong>de</strong>gree. The po<strong>in</strong>t of fuzzy logic is to map<br />

an <strong>in</strong>put space to an output space, <strong>and</strong> the primary<br />

mechanism for do<strong>in</strong>g this is a list of if-then statements<br />

called rules. All rules are evaluated <strong>in</strong> parallel, <strong>and</strong> the<br />

or<strong>de</strong>r of the rules is unimportant. The general<br />

<strong>de</strong>scription of a fuzzy system is shown <strong>in</strong> Fig. 6<br />

(MATLAB, 2010).<br />

Fuzzy Inference System<br />

Rules<br />

Output<br />

Outputs Terms<br />

Input<br />

p<br />

Rx1<br />

1<br />

R<br />

I<br />

W<br />

S 1 x<br />

R<br />

b 1<br />

S 1 x<br />

Hid<strong>de</strong>n Layer<br />

+<br />

n<br />

1<br />

S 1 x1<br />

S 1<br />

a 1<br />

S 1 x1<br />

Output<br />

Layer<br />

S 2 x1<br />

a 2 =purel<strong>in</strong> (LW 2, 1<br />

a 1 +b 2 )<br />

Fig. 5 Archictecture of a feedforward network.<br />

1<br />

L<br />

W<br />

S 2 x<br />

S 1<br />

b<br />

+<br />

n<br />

2<br />

S 2 x<br />

1<br />

a 2 =y<br />

S 2 x1<br />

S 2<br />

Fuzzy <strong>in</strong>ference is the process of formulat<strong>in</strong>g the<br />

mapp<strong>in</strong>g from a given <strong>in</strong>put to an output us<strong>in</strong>g fuzzy<br />

logic. The process of fuzzy <strong>in</strong>ference <strong>in</strong>volves three<br />

components: (1) membership functions, (2) logical<br />

operations <strong>and</strong> (3) If-Then rules. (1) A membership<br />

function (MF) is a curve that <strong>de</strong>f<strong>in</strong>es how each po<strong>in</strong>t <strong>in</strong><br />

the <strong>in</strong>put space is mapped to a membership value (or<br />

<strong>de</strong>gree of membership) between 0 <strong>and</strong> 1. Membership<br />

functions commonly used are as follows: the piece-wise<br />

l<strong>in</strong>ear functions, the Gaussian distribution function, the<br />

sigmoid curve, quadratic <strong>and</strong> cubic polynomial curves,<br />

(2) the logical operations, one particular<br />

correspon<strong>de</strong>nce between two-valued <strong>and</strong> multivalued<br />

logical operations can be <strong>de</strong>f<strong>in</strong>ed by the fuzzy<br />

<strong>in</strong>tersection or conjunction (AND), fuzzy union or<br />

disjunction (OR), <strong>and</strong> fuzzy complement (NOT). (3) If-<br />

Then rules are used to formulate the conditional<br />

statements that comprise fuzzy logic.<br />

Table 1. Description of study area<br />

Subbas<strong>in</strong><br />

Geographic Location Area L<strong>and</strong> Use<br />

Zone<br />

Agriculture Avian<br />

North Coord<strong>in</strong>ate West Coord<strong>in</strong>ate (ha)<br />

Domestic % Other<br />

%<br />

%<br />

High<br />

I 10º 13′ 55″ 10º 15′ 00″ 68º 12′ 10″ 68º 11′ 05″ 244.38 95.30 2.70 2 0<br />

II 10º 13′ 00″ 10º 14′ 00″ 68º 11′ 10″ 68º 12′ 00″ 209.21 87.99 4.46 6.13 1.42<br />

Medium III 10º 10′ 10″ 10º 11′ 50″ 68º 11′ 10″ 68º 10′ 20″ 320.64 93.04 0.74 6.22 0<br />

IV 10º 11′ 50″ 10º 12′ 20″ 68º 11′ 30″ 68º 10′ 30″ 162.58 77.78 5.56 16.66 0<br />

Low V 10º 12′ 25″ 10º 13′ 10″ 68º 11′ 10″ 68º 11′ 50″ 131.74 83.33 5.56 16.67 0<br />

VI 10º 12′ 18″ 10º 15′ 45″ 68º 11′ 67″ 68º 15′ 07″ 250.64 94.04 0.84 7 0<br />

Percentage Average 88.58 3.31 9.11 0.24<br />

Total 1319.19 1169 44 120 3.16<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

86<br />

Two types of fuzzy <strong>in</strong>ference systems can be<br />

implemented: Mamdani-type <strong>and</strong> Sugeno-type.<br />

These two types of <strong>in</strong>ference systems vary somewhat<br />

<strong>in</strong> the way outputs are <strong>de</strong>term<strong>in</strong>ed. In this<br />

<strong>in</strong>vestigation Sugeno-type system is used, which can<br />

be used to mo<strong>de</strong>l any <strong>in</strong>ference system <strong>in</strong> which the<br />

output membership functions are either l<strong>in</strong>ear or<br />

constant.<br />

Fuzzy Mo<strong>de</strong>l<strong>in</strong>g Scenario<br />

To apply fuzzy <strong>in</strong>ference to a system for which a<br />

collection of <strong>in</strong>put/output data mo<strong>de</strong>ls, a mo<strong>de</strong>l<br />

structure based on characteristics of variables <strong>in</strong> a<br />

system does not necessarily have been<br />

pre<strong>de</strong>term<strong>in</strong>ed. In some mo<strong>de</strong>l<strong>in</strong>g situations, the<br />

membership functions cannot be discerned from<br />

look<strong>in</strong>g at data. Rather than choos<strong>in</strong>g the parameters<br />

associated with a given membership function<br />

arbitrarily, these parameters could be chosen so as to<br />

tailor the membership functions to the <strong>in</strong>put/output<br />

data <strong>in</strong> or<strong>de</strong>r to account for these types of variations<br />

<strong>in</strong> the data values. In such cases, neuro-adaptive<br />

learn<strong>in</strong>g techniques <strong>in</strong>corporated <strong>in</strong> the ANFIS<br />

comm<strong>and</strong> of MATLAB can be used. The acronym<br />

ANFIS <strong>de</strong>rives its name from adaptive neuro-fuzzy<br />

<strong>in</strong>ference system. Us<strong>in</strong>g a given <strong>in</strong>put/output data<br />

set, the toolbox function ANFIS constructs a fuzzy<br />

<strong>in</strong>ference system (FIS) whose membership function<br />

parameters are tuned (adjusted) us<strong>in</strong>g either a<br />

backpropagation algorithm alone or <strong>in</strong> comb<strong>in</strong>ation<br />

with a least squares type of method. This adjustment<br />

allows to fuzzy systems to learn from the data they<br />

are mo<strong>de</strong>l<strong>in</strong>g.<br />

FIS structure <strong>and</strong> parameter adjustment A<br />

network-type structure similar to that of a neural<br />

network, which maps <strong>in</strong>puts through <strong>in</strong>put<br />

membership functions <strong>and</strong> associated parameters,<br />

<strong>and</strong> then through output membership functions <strong>and</strong><br />

associated parameters to outputs, can be used to<br />

<strong>in</strong>terpret the <strong>in</strong>put/output map. The parameters<br />

associated with the membership functions changes<br />

through the learn<strong>in</strong>g process. The computation of<br />

these parameters (or their adjustment) is facilitated<br />

by a gradient vector. This gradient vector provi<strong>de</strong>s a<br />

measure of how well the fuzzy <strong>in</strong>ference system is<br />

mo<strong>de</strong>l<strong>in</strong>g the <strong>in</strong>put/output data for a given set of<br />

parameters. When the gradient vector is obta<strong>in</strong>ed,<br />

any of several optimization rout<strong>in</strong>es can be applied<br />

<strong>in</strong> or<strong>de</strong>r to adjust the parameters to reduce some<br />

error measure. This error measure is usually <strong>de</strong>f<strong>in</strong>ed<br />

by the sum of the squared difference between actual<br />

<strong>and</strong> <strong>de</strong>sired outputs. ANFIS uses either back<br />

propagation or a comb<strong>in</strong>ation of least squares<br />

estimation <strong>and</strong> backpropagation for membership<br />

function parameter estimation.<br />

MATERIALS AND METHODS<br />

Measurements were ma<strong>de</strong> <strong>in</strong> Chirgua River Bas<strong>in</strong>,<br />

located <strong>in</strong> the north central region of Venezuela dur<strong>in</strong>g<br />

2008–2009. Each subbas<strong>in</strong> was divi<strong>de</strong>d <strong>in</strong>to zones,<br />

which were classified as follows: high: I <strong>and</strong> II,<br />

medium: III, low: IV, V <strong>and</strong> VI. Each zone is ma<strong>in</strong>ly<br />

used for agricultural purposes. Information on the<br />

location, area <strong>and</strong> l<strong>and</strong> use is shown <strong>in</strong> Table 1. Five<br />

fields were selected with the follow<strong>in</strong>g slopes <strong>in</strong> tillage<br />

orientation: 0.008 ± 0.0055 m/m; 0.01 ± 0.00197 m/m;<br />

0.015 ± 0.0006 m/m; 0.025 ± 0.0033 m/m <strong>and</strong> 0.13 ±<br />

0.0156 m/m, whose soils range from silty s<strong>and</strong> to silty<br />

clay. Two types of crops usually are grown <strong>in</strong> rotation,<br />

accord<strong>in</strong>g to the season: dry (potato: Solanum<br />

Tuberosum) <strong>and</strong> ra<strong>in</strong>y (corn: Zea Mays); whose<br />

<strong>de</strong>velopment cycles have the follow<strong>in</strong>g time periods: 12<br />

<strong>and</strong> 18 weeks, respectively.<br />

The irrigation events for the whole cycle lasted as<br />

follows: two hours for the first ten weeks <strong>and</strong> one hour<br />

for the last two weeks. A spr<strong>in</strong>kler irrigation system was<br />

used to provi<strong>de</strong> water to crops. The <strong>in</strong>flow rate that was<br />

applied to furrows varied between 0.4 <strong>and</strong> 0.6 L/s. A<br />

plot of 64 wheel-compacted furrows on each field was<br />

split <strong>in</strong>to eigth, 8-furrow blocks. The tests were carried<br />

out <strong>in</strong> three furrows with a width <strong>and</strong> length as varied as<br />

follows: 0.3 <strong>and</strong> 0.35 m; 100 <strong>and</strong> 200 m, respectively.<br />

Furrows were divi<strong>de</strong>d <strong>in</strong>to four equal-length sections<br />

(¼, ½, ¾, <strong>and</strong> at the end of the furrow), <strong>and</strong><br />

measurement stations were established at the<br />

downstream end of each section. Flows were measured<br />

us<strong>in</strong>g a steel plate with a 60º V-notch weir, by apply<strong>in</strong>g<br />

the volumetric method. The number of measurements<br />

carried out dur<strong>in</strong>g the dry <strong>and</strong> ra<strong>in</strong>y seasons were 300<br />

<strong>and</strong> 162, respectively, which <strong>in</strong>clu<strong>de</strong>d: a) Soil physical<br />

properties: undisturbed samples were captured to<br />

<strong>de</strong>term<strong>in</strong>e through laboratory analysis saturated<br />

hydraulic conductivity, specific gravity, shear stress,<br />

moisture content, Atterberg limits <strong>and</strong> particle size<br />

(hydrometer <strong>and</strong> sieve analysis). Infiltration rates were<br />

measured with a s<strong>in</strong>gle-r<strong>in</strong>g <strong>in</strong>filtrometer (diameter 30<br />

cm), which was driven up to 5 cm <strong>de</strong>ep <strong>in</strong>to the soil.<br />

(Table 2 <strong>and</strong> Fig. 7), b) Flow physical properties: flow<br />

rates <strong>and</strong> sediment concentrations were measured at<br />

time <strong>in</strong>tervals rang<strong>in</strong>g from 20 to 120 m<strong>in</strong> at a time,<br />

after the arrival of water to each measur<strong>in</strong>g station.<br />

Sediment concentration was <strong>de</strong>term<strong>in</strong>ed by apply<strong>in</strong>g the<br />

2 540 B method (American Public Health Association,<br />

1995). 120 irrigation events were measured <strong>in</strong> five<br />

different agricultural fields (5 fields × 24 events / field =<br />

120 irrigation events). Dur<strong>in</strong>g the ra<strong>in</strong>y season the<br />

follow<strong>in</strong>g events were measured: 73 for 2 hours, 24 for<br />

an hour <strong>and</strong> 20 for half an hour, with a precipitation<br />

gauge attached to an electronic storage unit, which has<br />

follow<strong>in</strong>g geographic location: °W 68º 10’ 50’’<strong>and</strong><br />

°N 10º 11’ 45’’. Total data were divi<strong>de</strong>d <strong>in</strong>to three<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

87<br />

groups: 60% for calibration, 20% for validation <strong>and</strong><br />

20% for test<strong>in</strong>g.<br />

Mo<strong>de</strong>ls data<br />

Table 2 shows soil physical properties. Soil is<br />

composed of soil particles, where approximately less<br />

than 3% represents < 2.00 mm, 46.1% represents <<br />

0.074 mm (f<strong>in</strong>e fraction) <strong>and</strong> 50.9% represents >0.074<br />

mm (f<strong>in</strong>est fraction: silt <strong>and</strong> clay). Saturated hydraulic<br />

conductivity is close to 1 mm/h <strong>in</strong> most areas, which is<br />

classified as low to lower (Terzaghi & Peck, 1967). The<br />

friction angle varies from 29.8 to 32.7º. The cohesion<br />

varies from 0.1 to 0.43 kgf/cm 2 . The <strong>in</strong>itial <strong>and</strong> f<strong>in</strong>al<br />

moisture contents of the soil vary from 7.1 to 21.8%;<br />

from 26.1 to 54%, respectively. The porosity varies<br />

from 0.4 to 0.5 cm 3 /cm 3 . The liquid limit, plastic limit<br />

<strong>and</strong> plasticity <strong>in</strong><strong>de</strong>x range respectively as follows: 26.2<br />

<strong>and</strong> 33.2%; 23 <strong>and</strong> 28%; 4.3 <strong>and</strong> 5.2%. Specific gravity<br />

of solids varies from 2.5 to 2.6. Soil type varies from<br />

organic silt (OL) to plasticity low silty s<strong>and</strong> (SM) (e.g.,<br />

Lambe & Whitman, 1972; Juarez & Rico, 1991) (Table<br />

2).<br />

Infiltration rates for silty soil are highly variable.<br />

Figure 7(a) shows the cumulative <strong>in</strong>filtration versus<br />

time for 582 <strong>in</strong>filtrometer tests over one period, which<br />

last 2.28 h each. Infiltration <strong>de</strong>pths at the end of this<br />

time have a mean of 22.39 mm <strong>and</strong> a st<strong>and</strong>ard <strong>de</strong>viation<br />

of 21.02 mm. Infiltration <strong>de</strong>pths greater than 22.39 mm<br />

are measured dur<strong>in</strong>g the ra<strong>in</strong>y season, where ra<strong>in</strong>fall<br />

events occur less frequently than those of irrigation,<br />

therefore the storage capacity of the soil is higher than<br />

those available dur<strong>in</strong>g the irrigation period. Figure 7(b)<br />

shows the histogram for the cumulative <strong>in</strong>filtration at<br />

t = 2.28 h, together with the correspond<strong>in</strong>g probability<br />

<strong>de</strong>nsity functions. Exponential <strong>and</strong> Weibull functions<br />

result <strong>in</strong> the best fit.<br />

Table 2. Soil physical properties<br />

Soil physical<br />

Zone<br />

Properties I II III IV V VI<br />

µ σ CV µ σ CV µ σ CV µ σ CV µ σ CV µ σ CV<br />

Texture<br />

PReta<strong>in</strong>ed Percentage on Sieve<br />

>9.51mm<br />

(Sieve 3/8″) 3.9 4.4 112.9 0.0 0.0 - 1.2 1.1 93.2 1.2 1.5 126.5 0.0 0.0 - 0.3 0.5 146.9<br />

9.51 – 4.76 mm<br />

(Sieve # 4) 2.6 1.9 70.1 4.0 4.5 110.6 1.3 0.8 63.3 1.4 1.3 94.1 0.9 0.3 38.2 2.2 2.1 96.8<br />

4.76 – 2.00 mm<br />

(Sieve # 10) 4.0 2.5 61.8 5.5 5.3 95.3 2.7 1.1 39.0 2.7 1.5 55.9 3.7 2.8 75.9 0,7 1.3 188.2<br />

2.00 – 0.84 mm<br />

(Sieve # 20) 6.7 3.6 54.0 10.9 7.8 71.7 5.7 2.1 36.5 5.6 2.0 34.9 8.3 4.1 49.2 7.2 3.5 48.2<br />

0.84 – 0.42 mm<br />

(Sieve # 40) 10.9 5.2 47.3 14.5 6.4 44.2 8.7 2.8 32.1 8,3 1.8 22.1 13.8 3.9 28.7 10.4 3.7 36.1<br />

0.42 – 0,149 mm<br />

(Sieve # 100) 22.6 5.2 23.0 31.2 9.8 31.6 15.7 2.9 18.4 18.8 3.1 16.4 19.0 3.3 17.5 32.5 8.0 24.7<br />

0.149 – 0.074 mm<br />

(Sieve #200) 14.4 6.3 43.8 28.3 12,6 44.6 13.0 3.4 26.1 15.1 2.5 16.6 15.7 5.1 32.2 28.5 11.5 40.2<br />

< 0.074 mm<br />

Plate 34.9 9.3 26.6 5.9 3.5 60.3 51.7 9.5 18.4 48.2 8.6 17.9 38.7 7.8 20.2 18.3 12.0 65.8<br />

Total Percentage Average<br />

S<strong>and</strong> (%) 46.4 4.2 9.1 30.7 5.6 18.4 46.1 1.6 3.5 46.2 2.1 4.6 46.1 1.6 3.5 46.1 1.6 3.5<br />

Silt (%) 49.5 2.7 5.5 36.7 11.7 31.9 46.9 2.3 4.9 46.9 2.3 4.9 49.5 2.7 5.5 46.9 2.3 4.9<br />

Clay (%) 4.1 2.0 48.4 19.9 8.2 41.3 7.0 2.4 33.9 6.9 2.5 36.2 6.6 1.8 27.6 7.0 2.4 33.9<br />

Hydraulic Properties<br />

K s ¹ (mm/h) 0.4 0.1 33.3 24.0 22.7 94.3 0.9 0.6 60.6 1.4 0.6 41.8 0.9 0.6 60.6 0.9 0.6 60.6<br />

Structural Properties<br />

Friction Angle (º) 29.9 3.9 12.9 29.8 1.1 3.8 29.8 1.1 3.8 32.7 1.1 3.4 31.8 1.9 5.9 32.7 1.1 3.4<br />

Cohesion<br />

(kgf/cm 2 ) 0.3 0.0 15.4 0.1 0.0 60.0 0.1 0.0 60.0 0.3 0.0 6.7 0.43 0.03 7.0 0.3 0,0 6.7<br />

Phase Relations<br />

Initial moisture<br />

content (%) 21.8 11.5 52.6 7.1 3.5 49.2 18.9 11.8 62.5 15.0 7.1 47.2 20.7 10.6 51.3 18.9 11.8 62.5<br />

F<strong>in</strong>al moisture<br />

content (%) 26.1 11.5 44.0 51.0 11.7 22.9 40.5 7.7 19.0 54.0 12.6 23.4 40.5 7.7 19.0 40.5 7.7 19.0<br />

Porosity<br />

(cm 3 /cm 3 ) 0.4 0.1 13.5 0.4 0.1 11.6 0.4 0.1 14.6 0.4 0.1 18.9 0.5 0.1 16.7 0.4 0.1 14.6<br />

Liquid limit (%) 26.2 2.5 9.4 30.7 4.1 13.3 32.4 4.4 13.4 29.6 2.0 6.8 33.2 4.2 12.8 32.4 4.4 13.4<br />

Plastic limit (%) 23.1 5.0 21.6 26.2 3.7 14.0 27.1 2.9 10.6 25.2 3.4 13.6 28.3 3.9 13.9 27.1 2.9 10.6<br />

Plasticity <strong>in</strong><strong>de</strong>x<br />

(%) 5.1 2.2 43.8 4.5 2.5 54.3 5.2 4.0 76.0 4.3 2.6 60.0 4.9 1.2 25.0 5.2 4.0 76.0<br />

Specific gravity 2.6 0.1 3.9 2.5 0.1 4.8 2.5 0.1 4.3 2.6 0.2 7.7 2.7 0.1 3.7 2.5 0.1 4.3<br />

¹ Satured hydraulic conductivity, µ: mean, σ: st<strong>and</strong>ard <strong>de</strong>viation, CV: coefficient of variation <strong>in</strong> percentage (%)<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

88<br />

Fig. 7 Cumulative <strong>in</strong>filtration <strong>de</strong>pth: (a) temporal variation, <strong>and</strong> (b) frequency histogram <strong>and</strong> predicted Weibull probability<br />

<strong>de</strong>nsity function.<br />

Discharge, Q (L/s)<br />

Time (h)<br />

Fig. 8 Measured hydrographs for different slope furrows dur<strong>in</strong>g each irrigation.<br />

Dur<strong>in</strong>g the dry season, runoff is stabilized after the<br />

first half hour when the irrigation is applied. The time<br />

for flow stabilization is approximately one hour; which<br />

occurs faster <strong>in</strong> the furrows where the slope was equal<br />

to 0.8% (Fig. 8). Flow rate at steady state varies from<br />

0.3 to 0.5 L/s, <strong>de</strong>creas<strong>in</strong>g from 0.05 to 0.1 L/s after the<br />

seventh irrigation. The effect of the coverage radio of<br />

the spr<strong>in</strong>kler on flow vary<strong>in</strong>g between the different<br />

furrows is low with<strong>in</strong> an irrigation event.<br />

A comparison of the sediment load dur<strong>in</strong>g irrigation<br />

<strong>and</strong> ra<strong>in</strong> events of one <strong>and</strong> two hours is shown <strong>in</strong> Fig. 9.<br />

The maximum sediment load observed dur<strong>in</strong>g the<br />

irrigation <strong>and</strong> ra<strong>in</strong>fall events of one hour varies<br />

approximately from 100 to 400 mg/s, from 600 to<br />

100 mg/s, respectively (Fig. 9(a)). The maximum<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

89<br />

sediment load observed for the two-hour event varies<br />

from 500 to 2000 mg/s for irrigation <strong>and</strong> from 2500 to<br />

7000 mg/s for ra<strong>in</strong> (Fig. 9(b)). Therefore, there is<br />

significant variation <strong>in</strong> sediment load between the<br />

events of ra<strong>in</strong> <strong>and</strong> irrigation, where the first is 5 to 10<br />

times more erosive than the latter.<br />

A comparison of ra<strong>in</strong>fall events <strong>in</strong> both one <strong>and</strong> two<br />

hours is shown <strong>in</strong> Fig. 10, which shows that the ra<strong>in</strong>fall<br />

for these events ranges as follows: from 20 to 30 mm,<br />

<strong>and</strong> from 25 to 40 mm, respectively (Figs 10(a) <strong>and</strong><br />

(b)).<br />

Fig. 9 Measured sediment load dur<strong>in</strong>g ra<strong>in</strong>fall <strong>and</strong> irrigation events.<br />

Cumulative Precipitation, P (mm)<br />

Time (h)<br />

Fig. 10 Precipitation <strong>de</strong>pth.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

90<br />

RESULTS<br />

Mo<strong>de</strong>l<strong>in</strong>g of furrow erosion based on physical<br />

processes<br />

Process of particle <strong>de</strong>tachment<br />

Table 3 shows the parameters of Eq. (5), used to<br />

estimate the capacity of soil particle <strong>de</strong>tachment <strong>in</strong><br />

furrows. In general, the follow<strong>in</strong>g statements can be<br />

ma<strong>de</strong> about the parameters K c <strong>and</strong> τc: (a) K c varies from<br />

1.31E–06 to 1.525E–06 s m –1 ; (b) τc varies from 0.704<br />

to 1.489 Pa; (c) estimate st<strong>and</strong>ard error of the<br />

parameters is low <strong>in</strong> all cases.<br />

Table 4 shows fit statistics of Eq. (5) to the<br />

observations obta<strong>in</strong>ed from field test<strong>in</strong>g <strong>in</strong> the furrows<br />

of different slopes. The results are summarized as<br />

follows: R 2 is equal to 0.682, R 2 adj. is equal to 0.681, its<br />

reduction is not significant <strong>in</strong> relation to R 2 . Mallows C p<br />

<strong>de</strong>creases slightly compared to the number of<br />

<strong>in</strong><strong>de</strong>pen<strong>de</strong>nt variables <strong>in</strong> Eq. (5). Durb<strong>in</strong>-Watson<br />

statistic is equal to 0.66. By compar<strong>in</strong>g the errors dur<strong>in</strong>g<br />

the calibration <strong>and</strong> validation stages, with emphasis on<br />

the Average Absolute Relative Error (AARE), <strong>and</strong> the<br />

Average Relative Error (ARE) the follow<strong>in</strong>g results are<br />

found: AARE varies from 47.87 to 57.9, ARE varies<br />

from –20.52 to –33.74. In general, the errors do not vary<br />

significantly between the stages of calibration <strong>and</strong><br />

validation. The rest of errors can be seen <strong>in</strong> Table 4.<br />

Process of sediment transport<br />

Table 5 shows the parameters of Eqs 7, 13 <strong>and</strong> 15 for<br />

estimat<strong>in</strong>g the sediment transport capacity <strong>in</strong> furrows. In<br />

general, the follow<strong>in</strong>g statements can be ma<strong>de</strong> about the<br />

parameters K t , b <strong>and</strong> c: Coefficient of transport (K t ):<br />

(a) the units differ between Eqs 7, 13 <strong>and</strong> 15, (b) the<br />

ranges found for Eqs 7, 13 <strong>and</strong> 15 vary as follows:<br />

9.929E–08 <strong>and</strong> 1.526E–07; 7.634 <strong>and</strong> 34.583; 0.421 <strong>and</strong><br />

0.892, respectively, (c) estimate st<strong>and</strong>ard error of<br />

parameters is mo<strong>de</strong>rately low <strong>in</strong> all cases. Parameter b:<br />

(a) the ranges found for Eqs 7, 13 <strong>and</strong> 15 vary as<br />

follows: 1.519 <strong>and</strong> 1.705; 0.398 <strong>and</strong> 1.299; 2.087 <strong>and</strong><br />

2.228; respectively, (b) estimate st<strong>and</strong>ard error of<br />

parameters is low <strong>in</strong> all cases. Parameter c: (a) the<br />

range found for Eq. (15) varies from 1.097 to 1.193; (b)<br />

estimate st<strong>and</strong>ard error of parameters is low <strong>in</strong> all cases.<br />

Table 6 shows fit statistics of Eqs 7, 13 <strong>and</strong> 15 to<br />

the observations obta<strong>in</strong>ed from field test<strong>in</strong>g <strong>in</strong> the<br />

furrows. R 2 : varies from 0.72 to 0.88. R 2 adj.: its<br />

reduction is not significant <strong>in</strong> relation to R 2 . Mallows<br />

C p : <strong>de</strong>creases slightly compared to the number of<br />

<strong>in</strong><strong>de</strong>pen<strong>de</strong>nt variables <strong>in</strong> each equation. Durb<strong>in</strong>-Watson<br />

statistic: values found to Eqs 7, 13 <strong>and</strong> 15 are equal to<br />

0.719, 1.09 <strong>and</strong> 0.74, respectively. By compar<strong>in</strong>g the<br />

errors dur<strong>in</strong>g the calibration <strong>and</strong> validation stages with<br />

emphasis on the Average Absolute Relative Error<br />

(AARE) <strong>and</strong> the Average Relative Error (ARE) the<br />

follow<strong>in</strong>g results <strong>in</strong> Eqs 7, 13 <strong>and</strong> 15 are found: AARE<br />

varies from 56.319 to 63.081; from 12.125 to 13.482;<br />

from 29.585 to 29.894. ARE varies from –13.365 to<br />

–1.831; from –1.831 to 1.974; from –16.597 to –18.547.<br />

In general, the errors do not vary significantly between<br />

calibration <strong>and</strong> validation stages. The rest of errors can<br />

be seen <strong>in</strong> Table 6.<br />

Comb<strong>in</strong>ation of furrow erosion processes<br />

The representation of furrow erosion processes for<br />

follow<strong>in</strong>g slopes: 0.8%, 1%, 1.5% <strong>and</strong> 2.5% is shown <strong>in</strong><br />

Fig. 11, us<strong>in</strong>g the Eqs 7, 13 <strong>and</strong> 15 for estimat<strong>in</strong>g the<br />

transport capacity of sediments (Figs 11a, 11c, 11e <strong>and</strong><br />

11h, <strong>and</strong> Eqs 4 <strong>and</strong> 12 to estimate the net <strong>de</strong>tachment<br />

capacity (Figs 11b, 11d, 11f <strong>and</strong> 11g). The cycle un<strong>de</strong>r<br />

irrigation has been divi<strong>de</strong>d <strong>in</strong>to three stages; each stage<br />

represents 1/3 of the total duration for 12 weeks,<br />

obta<strong>in</strong><strong>in</strong>g data average values for each phase.<br />

Table 3. Regression coefficients of particle <strong>de</strong>tachment capacity mo<strong>de</strong>l<br />

Eq. Variable Parameter Unit Average St<strong>and</strong>ard Error M<strong>in</strong>imum Limit Maximum Limit<br />

5 D c K r s/m 0.000 001 418 5.43 497E–8 0.00 000 131 163 0.000 0015 255<br />

(kg/s/m 2 ) τ c Pa 1.09 707 0.199 697 0.704 172 1.48 997<br />

Table 4. Performance criteria of particle <strong>de</strong>tachment capacity mo<strong>de</strong>l<br />

Eq. p n R 2 (R 2 ) adj. C p SEE d MSSE AAE AARE AE ARE n AARE ARE<br />

(a) Dur<strong>in</strong>g Calibration<br />

(b) Dur<strong>in</strong>g Validation<br />

5 1 320 0.682 0.681 0 2.45E–6 0.66 6.04E–12 2.08E–06 47.87 –7.72E–13 –20.52 84 57.9 –33.74<br />

Eq.: equation; p: number of <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt variables <strong>in</strong> the mo<strong>de</strong>l; n: number of observed data; R 2 : <strong>de</strong>term<strong>in</strong>ation coefficient; (R 2 ) adj. : adjusted<br />

<strong>de</strong>term<strong>in</strong>ation coefficient; C p : coefficient of Mallows; SEE: St<strong>and</strong>ard error of estimate; d: statistic of Durb<strong>in</strong>-Watson; MSSE: mean of sum of<br />

squared error; AAE: average absolute error; AARE: average absolute relative error (%); AE: average error; ARE: average relative error (%).<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

91<br />

Fig. 11 Comparisons of simulated furrow erosion processes with observed data.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

92<br />

Table 5. Regression coefficients of sediment transport capacity mo<strong>de</strong>l<br />

Eq. Variable Parameter Unit Average St<strong>and</strong>ard Error M<strong>in</strong>imum Limit Maximum Limit<br />

7 T c K t kg 1–b m –(1–b) s –(1–2b) 1.2598E–7 1.35 793E–8 9.92 906E–8 1.52 669E–7<br />

kg/m/ s b 1.61 238 0.0 473 371 1.51 934 1.70 542<br />

13 T c K t kg m –(b+1) s –(1–b) 21.1093 6.843 7.634 34.583<br />

b 0.8489 0.2287 0.3985 1.2993<br />

kg/m/s ω c m s –1 –0.05 414 0.0221 –0.0978 –0.0104<br />

15 T c K t kg m (–1–b–c) s –(1+b) 0.657 032 0.120 287 0.421 274 0.89 279<br />

b 2.15 807 0.0 359 035 2.0877 2.22 844<br />

kg/m/ s c 1.14 551 0.0 244 874 1.09 751 1.1935<br />

Table 6. Performance criteria of sediment transport capacity mo<strong>de</strong>l<br />

Eq. p n R 2 R 2 adj C p SEE d MSSE AAE AARE AE ARE n AARE ARE<br />

(a) Dur<strong>in</strong>g Calibration<br />

(b) Dur<strong>in</strong>g Validation<br />

7 1 437 0.73 0.732 0 1.102E–06 0.719 1.22E–12 9.16E–07 63.08 4.24E–08 –31.831 100 56.31 –13.36<br />

13 1 320 0.72 0.720 0 0.34 1.09 0.115 0.287 12.12 0.0028 –1.831 96 13.48 1.974<br />

15 2 700 0.88 0.882 1 1.644E–06 0.741 2.70E–12 1.08E–06 29.58 –5.75E–08 –16.597 165 29.89 –18.54<br />

Comparison between the transport capacities of<br />

sediments observed <strong>and</strong> estimated by Eqs 7, 13 <strong>and</strong> 15<br />

shows <strong>in</strong> Figs 11a, 11c, 11e <strong>and</strong> 11h. The solid l<strong>in</strong>e<br />

represents the observed sediment load <strong>in</strong> furrows, while<br />

the bars represent estimates by Eqs 7, 13 <strong>and</strong> 15, where<br />

the follow<strong>in</strong>g observations can be ma<strong>de</strong>: (a) Eq. (13)<br />

overestimated the values of the observed transport<br />

capacity, but the rest of equations un<strong>de</strong>restimated them<br />

<strong>and</strong> (b) the observed sediment load <strong>in</strong> stages from 1 to 3<br />

varies as follows: from 1000 to 2500 mg/s, from 2000 to<br />

500 mg/s; less than 500 mg/s.<br />

Values estimated by Eq. (7) <strong>in</strong> stages from 1 to 3<br />

vary as follows: from 500 to 1000 mg/s, from 0 to 500<br />

mg/s, less than 500 mg/s. Values estimated by Eq. (13)<br />

<strong>in</strong> stages from 1 to 3 vary as follows: from 1000 to 2500<br />

mg/s, from 2000 to 500 mg/s, less than 500 mg/s.<br />

Estimates from Eq. (15) <strong>in</strong> steps 1 through 3 vary as<br />

follows: from 1500 to 3500 mg/s, from 500 to 2000<br />

mg/s, from 500 to 1000 mg/s, (c) the difference between<br />

observed <strong>and</strong> estimated values is significant <strong>in</strong> the first<br />

stage of the cycle <strong>and</strong> <strong>de</strong>creases towards the second <strong>and</strong><br />

third stages.<br />

Accord<strong>in</strong>g to the theory of mo<strong>de</strong>ls based on physical<br />

processes, when the sediment transport capacity is<br />

excee<strong>de</strong>d by the flow sediment load occurs the<br />

<strong>de</strong>position process (Foster <strong>and</strong> Meyer, 1975, Morgan et<br />

al., 1998).<br />

Deposition process estimated by Eqs 4 <strong>and</strong> 12 is<br />

shown <strong>in</strong> Figs 11(b), 11(d), 11(f) <strong>and</strong> 11(g), where the<br />

follow<strong>in</strong>g results <strong>de</strong>term<strong>in</strong>e: (a) most times Eq. (12)<br />

estimates higher values than Eq. (4), (b) the estimated<br />

values by Eq. (4) <strong>in</strong> the stages from 1 to 3 vary as<br />

follows: from 2 to 6 kg/m 2 , from 0 to 4 kg/m 2 , from 0 to<br />

2 kg/m 2 , respectively. Estimates from Eq. (12) <strong>in</strong> stages<br />

from 1 to 3 vary as follows: from 6 to 12 kg/m 2 , from 2<br />

to 6 kg/m 2 , from 2 to 4 kg/m 2 , (c) the difference<br />

between observed <strong>and</strong> estimated values is significant<br />

dur<strong>in</strong>g the first stage of the cycle <strong>and</strong> <strong>de</strong>creases towards<br />

the second <strong>and</strong> third stages.<br />

Mo<strong>de</strong>l<strong>in</strong>g furrow erosion based on regressions<br />

Table 7 shows the parameter values <strong>in</strong> the furrow<br />

erosion mo<strong>de</strong>ls based on l<strong>in</strong>ear regressions, Eqs 17(a)<br />

<strong>and</strong> (b), as well as nonl<strong>in</strong>ear regressions, Eqs 18(a)–(e).<br />

In general, the follow<strong>in</strong>g statements can be ma<strong>de</strong> <strong>in</strong><br />

relation to the parameters β 1 to β 6 : <strong>in</strong> Eq. (17a) the<br />

parameters vary from –4.267 to 4.382, <strong>in</strong> Eq. (17b) they<br />

vary from –7.5 to 9.14, <strong>in</strong> Eq. (18a) they vary from –<br />

0.031 <strong>and</strong> 0.2697, <strong>in</strong> Eq. (18b) they vary from –0.014 to<br />

0.093, <strong>in</strong> Eq. (18c) they vary from –0.629 to 1.938, <strong>in</strong><br />

Eq. (18d) they vary from –0.046 to 1.012.<br />

Table 8 shows the fitted statistics of erosion mo<strong>de</strong>ls<br />

based on regression from the observations obta<strong>in</strong>ed<br />

when the field was exam<strong>in</strong>ed <strong>in</strong> furrows, <strong>in</strong> the<br />

follow<strong>in</strong>g slopes: 0.8%, 1%, 1.5%, <strong>and</strong> 2.5%. R 2 : varies<br />

from 0.90 to 0.53, <strong>and</strong> it <strong>de</strong>creases when the polynomial<br />

power is <strong>in</strong>creased. R 2 adj its reduction is not significant<br />

<strong>in</strong> relation to R 2 . Mallows C p : <strong>de</strong>creases slightly<br />

compared to the number of <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt variables <strong>in</strong><br />

each equation. Durb<strong>in</strong>-Watson Statistics: varies<br />

between 0.7 <strong>and</strong> 1.68. By compar<strong>in</strong>g the errors dur<strong>in</strong>g<br />

the calibration <strong>and</strong> validation stages, with emphasis on<br />

the average absolute relative error (AARE), <strong>and</strong> the<br />

average relative error (ARE) the follow<strong>in</strong>g results are<br />

found: AARE varies from 6.21 to 12.57, ARE varies<br />

from –0.71 to 6.78. In general, (a) errors ten<strong>de</strong>d to be<br />

lower <strong>in</strong> the calibration stage with respect to validation<br />

<strong>and</strong> (b) errors <strong>in</strong>crease when the polynomial power is<br />

<strong>in</strong>creased. The rest of errors can be seen <strong>in</strong> Table 8.<br />

Figure 12 shows a comparison of the estimated<br />

erosion results us<strong>in</strong>g Eqs 17(a), 17(b), 18(a), 18(b),<br />

18(c) <strong>and</strong> 18(d) to the observations un<strong>de</strong>r irrigation <strong>in</strong><br />

the furrows with follow<strong>in</strong>g slopes: 0.8%, 1%, 1.5% <strong>and</strong><br />

2.5%. Additionally, it <strong>in</strong>clu<strong>de</strong>s a comparison with the<br />

physical process mo<strong>de</strong>l represented by Eq. (16), <strong>and</strong> the<br />

artificial <strong>in</strong>telligence technique based on neural<br />

networks, which will be wi<strong>de</strong>ly discussed <strong>in</strong> the next<br />

section.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

93<br />

Table 7. Regression coefficients of erosion mo<strong>de</strong>l based on LMR <strong>and</strong> NLMR<br />

Eq. Depen<strong>de</strong>nt<br />

variable<br />

In<strong>de</strong>pen<strong>de</strong>nt<br />

variable<br />

Parameter Unit Average St<strong>and</strong>ard<br />

Error<br />

M<strong>in</strong>imum<br />

Limit<br />

Maximum<br />

Limit<br />

17(a) D Pt β mg m –2 s –1 mm –1 1.398583862 1.442760413 –4.267676785 1.47050906<br />

-<br />

LMRM<br />

r<br />

mg m –2 s –1 Pt-1<br />

1<br />

β 2 mg m –2 s –1 mm –1 0.833406797 1.784933149 –2.716135469 4.382949064<br />

n=1 Pt-2 β 3 mg m –2 s –1 mm –1 0.731227333 1.392642416 –2.03820026 3.500654927<br />

D=1H Pt-3 β 4 mg m –2 s –1 mm –1 0.183129882 1.814769332 –3.425745022 3.792004785<br />

Pt-4 β 5 mg m –2 s –1 mm –1 0.737812187 1.250395401 –1.748741065 3.224365439<br />

Pt-5 β 6 mg m –2 s –1 mm –1 0.559520883 0.731816989 –0.895780305 2.014822071<br />

17(b) D r Pt β 1 mg m –2 s –1 mm –1 0.794050629 1.4177439 –3.585879266 1.997778008<br />

-<br />

LMRM mg m –2 s –1 Pt-1 β mg m –2 s –1 mm –1 2.195990758 2.69409942 –7.5012253 3.109243783<br />

-<br />

n=1 Pt-2<br />

2<br />

β 3 mg m –2 s –1 mm –1 0.780383734 3.769700299 –6.642929634 8.203697103<br />

D=2H Pt-3 β 4 mg m –2 s –1 mm –1 2.177019018 1.357605748 –0.496385258 4.850423294<br />

Pt-4 β 5 mg m –2 s –1 mm –1 4.541647609 2.338266456 –0.062878815 9.146174033<br />

Pt-5 β 6 mg m –2 s –1 mm –1 0.099997046 0.333760338 –0.557245543 0.757239634<br />

18(a) D r Pt β 1 mg m –2 s –1 mm –1 0.119031048 0.073909116 –0.031707895 0.269769991<br />

NLMR<br />

M mg m –2 s –1 Pt-1 β 2 mg m –2 s –1 mm –1 0.055276888 0.084390798 –0.116839631 0.227393406<br />

n=2 Pt-2 β 3 mg m –2 s –1 mm –1 0.066816629 0.061319061 –0.058244676 0.191877933<br />

D=1H Pt-3 β 4 mg m –2 s –1 mm –1 0.050906233 0.084917164 –0.122283818 0.224096283<br />

Pt-4 β 5 mg m –2 s –1 mm –1 0.075651656 0.055759098 –0.038070006 0.189373318<br />

Pt-5 β 6 mg m –2 s –1 mm –1 0.05458908 0.025644464 0.002286744 0.106891417<br />

18(b) D r Pt β 1 mg m –2 s –1 mm –1 0.065622334 0.013487094 0.038182579 0.093062088<br />

NLMR<br />

M mg m –2 s –1 Pt-1 β 2 mg m –2 s –1 mm –1 0.014849305 0.014240642 –0.014123558 0.043822168<br />

n=3 Pt-2 β 3 mg m –2 s –1 mm –1 0.002274855 0.007430699 –0.012843047 0.017392756<br />

D=1H Pt-3 β 4 mg m –2 s –1 mm –1 0.01600253 0.014611824 –0.013725509 0.045730568<br />

Pt-4 β 5 mg m –2 s –1 mm –1 0.008392722 0.009444179 –0.010821644 0.027607088<br />

Pt-5 β 6 mg m –2 s –1 mm –1 0.006471389 0.003122043 0.000119533 0.012823245<br />

18 (c) D r Pt β 1 mg m –2 s –1 mm –1 0.565467014 0.170384074 0.227999229 0.902934798<br />

NLMR<br />

M mg m –2 s –1 Pt-1 β 2 mg m –2 s –1 mm –1 0.060856563 0.260216264 –0.454535539 0.576248665<br />

n=2 Pt-2 β 3 mg m –2 s –1 mm –1 1.110633143 0.418014423 0.282701296 1.938564991<br />

D=2H Pt-3 β 4 mg m –2 s –1 mm –1 0.334619992 0.145250564 0.046932389 0.622307595<br />

Pt-4 β 5 mg m –2 s –1 mm –1 –1.53E–01 0.240668154 –0.629188284 0.324160779<br />

Pt-5 β 6 mg m –2 s –1 mm –1 0.042533197 0.020393795 0.002140637 0.082925756<br />

18(d) D r Pt β 1 mg m –2 s –1 mm –1 0.305101494 0.068845599 0.168692499 0.44151049<br />

NLMR<br />

M mg m –2 s –1 Pt-1 β 2 mg m –2 s –1 mm –1 0.1154 0.0815 –0.0460 0.2769<br />

n=3 Pt-2 β 3 mg m –2 s –1 mm –1 0.691301164 0.161871969 0,370571984 1.012030344<br />

D=2H Pt-3 β 4 mg m –2 s –1 mm –1 0.08363529 0.049106013 –0.013662171 0.18093275<br />

Pt-4 β 5 mg m –2 s –1 mm –1 –0.3610 0.0819 –0.5233 –0.1988<br />

Pt-5 β 6 mg m –2 s –1 mm –1 0.01057652 0.003464163 0.003712711 0.017440329<br />

Table 8. Performance criteria of erosion mo<strong>de</strong>l based on LMR <strong>and</strong> NLMR<br />

Eq. Or<strong>de</strong>r D p N R 2 (R 2 ) adj Cp SEE d MSSE AAE AARE AE ARE n AARE ARE<br />

(a) Dur<strong>in</strong>g Calibration<br />

(b) Dur<strong>in</strong>g Validation<br />

17(a) 1 1 6 90 0.900 0.894 5 2.85 0.146 8.179 2.121<br />

17(b) 1 2 6 264 0.895 0.893 5 4.22 0.160 17.874 3.179<br />

18(a) 2 1 6 37 0.717 0.672 5 0.78 0.181 0.609 0.593 7.184 0.0008 –0.71 8 9.09 6.78<br />

18(b) 3 1 6 39 0.705 0.660 5 0.84 0.708 0.909 0.708 8.486 0.0024 –0.78 6 6.21 –2.31<br />

18(c) 2 2 6 122 0.725 0.713 5 1.50 0.945 2.252 1.183 10.060 0.0685 –0.45 10 6.83 4.06<br />

18(d) 3 2 6 118 0.538 0.518 5 1.90 1.680 3.626 1.430 11.859 0.2065 0.90 14 12.57 3.31<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

94<br />

Erosion, Dr (kg / m 2 )<br />

Irrigation Stage<br />

Fig. 12 Comparison of furrow simulated erosion by regression mo<strong>de</strong>ls with observed data.<br />

The cycle un<strong>de</strong>r irrigation has been divi<strong>de</strong>d <strong>in</strong>to<br />

three stages; each stage represents 1/3 of the total<br />

duration for 12 weeks, obta<strong>in</strong><strong>in</strong>g an averaged data for<br />

each phase. In Fig. 12, solid l<strong>in</strong>es represent the mo<strong>de</strong>ls<br />

by which a satisfactory approximation to the furrow<br />

erosion observed data is obta<strong>in</strong>ed, <strong>and</strong> the bars represent<br />

the rest of mo<strong>de</strong>ls, where the estimated values differ<br />

significantly from the observed data. In general, Eq.<br />

(17b) achieves the best approximation with respect to<br />

the rest of the l<strong>in</strong>ear <strong>and</strong> nonl<strong>in</strong>ear mo<strong>de</strong>ls.<br />

Mo<strong>de</strong>l<strong>in</strong>g of furrow erosion based on artificial<br />

<strong>in</strong>telligence techniques<br />

Table 9 shows the fitted statistics to sigmoidal function<br />

us<strong>in</strong>g the Artificial Neural Network (ANN) technique to<br />

the observations of ra<strong>in</strong>fall-erosion process for the onehour<br />

<strong>and</strong> two-hour events, both with different amounts<br />

of data. Statistics <strong>in</strong> the stages of tra<strong>in</strong><strong>in</strong>g, validation<br />

<strong>and</strong> test<strong>in</strong>g vary for the networks mentioned before as<br />

follows: R²: For ANN1 <strong>in</strong> each stage is equal to 0.686;<br />

0.897 <strong>and</strong> 0.876; for ANN2 <strong>in</strong> each stage is equal to<br />

0.39; 0.615 <strong>and</strong> 0.49.<br />

For ANN3 <strong>in</strong> each stage is equal to 0.758; 0.831 <strong>and</strong><br />

0.786. By compar<strong>in</strong>g the errors dur<strong>in</strong>g the calibration<br />

<strong>and</strong> validation stages, with emphasis on the average<br />

absolute error (AAE), the follow<strong>in</strong>g results are found:<br />

AAE varies from 0.1 to 0.14. In general, (a) the error<br />

does not vary significantly between stages of<br />

calibration, validation <strong>and</strong> test<strong>in</strong>g, (b) the error tends to<br />

be lower as the variability <strong>in</strong> the data is lower, which<br />

promotes a better network learn<strong>in</strong>g with respect to the<br />

observations ma<strong>de</strong>.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

95<br />

(a)<br />

D=1 h<br />

N=144<br />

(b) D=1 h<br />

N=144<br />

(c) D=1 h<br />

N=144<br />

(d) D=2h<br />

N=438<br />

(e) D= 2h<br />

N=438<br />

(f) D=2h<br />

N=438<br />

Simulated Erosion (Dr) mg /m 2 /s<br />

(g) D=2 h<br />

N=219<br />

(h) D=2h<br />

N=219<br />

(i)D= 2h<br />

N=219<br />

Observed Erosion (DR) mg/m 2 /s<br />

Observed Data<br />

Tra<strong>in</strong><strong>in</strong>g Best L<strong>in</strong>ear Fit<br />

Validation Best L<strong>in</strong>ear Fit<br />

Test Best L<strong>in</strong>ear Fit<br />

Fig. 13 Comparison of simulated erosion by Artificial Neural Network with observed 1 h <strong>and</strong> 2h ra<strong>in</strong>fall events.<br />

Comparison of estimated values by the application of<br />

ANN’s, to the observed data of furrow erosion un<strong>de</strong>r<br />

ra<strong>in</strong>fall <strong>and</strong> irrigation events of one <strong>and</strong> two hours,<br />

dur<strong>in</strong>g the stages of tra<strong>in</strong><strong>in</strong>g or calibration, validation<br />

<strong>and</strong> test<strong>in</strong>g, is shown <strong>in</strong> Fig. 13. Vertical axis represents<br />

the simulated erosion (D R sim), <strong>and</strong> the horizontal axis<br />

represents the erosion observed (D R obs.). Each pair of<br />

coord<strong>in</strong>ates is represented by a dot.<br />

L<strong>in</strong>es <strong>in</strong> Figs 13(a)–(i) represent the ratio of 1:1,<br />

where the approximation of po<strong>in</strong>ts to the l<strong>in</strong>es is a<br />

measure of how well the correlation between the set of<br />

erosion estimated values us<strong>in</strong>g the ANN technique, <strong>and</strong><br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

96<br />

the obta<strong>in</strong>ed values by field tests <strong>in</strong> furrows <strong>in</strong> different<br />

slopes is. Figures 13a–13c <strong>and</strong> Figs 13g–13i show the<br />

approximate po<strong>in</strong>ts r<strong>and</strong>omly around the 1:1 l<strong>in</strong>e,<br />

<strong>in</strong>dicat<strong>in</strong>g that the network has successfully learned the<br />

pattern shown by observations dur<strong>in</strong>g ra<strong>in</strong>fall events.<br />

Figures 13d–13f show that there is a fairly satisfactory<br />

approximation of the po<strong>in</strong>ts to the 1:1 l<strong>in</strong>e, which<br />

expla<strong>in</strong>s that there is some variability <strong>in</strong> the<br />

observations that the network was not able to simulate.<br />

Fuzzy Logic<br />

Mo<strong>de</strong>l<strong>in</strong>g furrow erosion us<strong>in</strong>g a Fuzzy Inference<br />

System<br />

Table 10 shows the two membership functions<br />

coefficients for the two <strong>in</strong>put variables to each Fuzzy<br />

Inference System (FIS). Characterized FIS’s are three:<br />

FIS 1 corresponds to natural ra<strong>in</strong>fall events that last an<br />

hour, FIS 2 corresponds to the natural ra<strong>in</strong>fall events<br />

that last two hours, <strong>and</strong> FIS 3 corresponds to irrigation<br />

events that last two hours. Input 1 is represented by<br />

measurements of natural <strong>and</strong> simulated ra<strong>in</strong>fall<br />

(irrigation) <strong>in</strong> those events that last an hour every 10<br />

m<strong>in</strong>utes, <strong>and</strong> two hours every 20 m<strong>in</strong>utes. Input 2 is<br />

represented by the <strong>in</strong>filtration values range as shown <strong>in</strong><br />

Fig. 7.<br />

As an example, FIS 1 is <strong>de</strong>scribed, represented by<br />

<strong>in</strong>put membership functions of trapezoidal type. The<br />

trapezoidal functions for the ra<strong>in</strong>fall representation have<br />

the follow<strong>in</strong>g parameters: trapmf1: 1.827; 2.974; 4.557<br />

<strong>and</strong> 5.928. Trapmf2: 4.677; 5.705; 7.562 <strong>and</strong> 8.709. The<br />

trapezoidal functions for the <strong>in</strong>filtration representation<br />

have the follow<strong>in</strong>g parameters: trapmf1: –0.508; 0.0293,<br />

0.859; 1.381. Trapmf2: 3.637; 4.676; 7.46 <strong>and</strong> 9.147.<br />

The l<strong>in</strong>ear output surface has the follow<strong>in</strong>g parameters:<br />

2.081 for the ra<strong>in</strong>fall; –2.675 for <strong>in</strong>filtration <strong>and</strong> 0.0487<br />

for the constant term. The rest of FIS’s can be seen <strong>in</strong><br />

Table 10. Table 11 shows the fitted statistics of erosion<br />

mo<strong>de</strong>l<strong>in</strong>g un<strong>de</strong>r ra<strong>in</strong>fall <strong>and</strong> irrigation events through<br />

the various FIS’s from all the observations obta<strong>in</strong>ed <strong>in</strong><br />

field test<strong>in</strong>g <strong>in</strong> furrows of different slopes. By compar<strong>in</strong>g<br />

the Average Absolute Errors dur<strong>in</strong>g the calibration,<br />

validation <strong>and</strong> test<strong>in</strong>g stages, the follow<strong>in</strong>g results are found:<br />

FIS 1: 1.108; 1.5147 <strong>and</strong> 1.489; FIS 2: 2.403; 2.5977 <strong>and</strong><br />

2.676; FIS 3: 1.4; 2.396 <strong>and</strong> 1.565, respectively. In general,<br />

errors do not vary significantly between the stages of the<br />

calibration, validation <strong>and</strong> test<strong>in</strong>g.<br />

Table 9. Performance criteria of erosion mo<strong>de</strong>l based on ANN<br />

Mo<strong>de</strong>l N D AAE R 2<br />

(a) Dur<strong>in</strong>g calibration/tra<strong>in</strong><strong>in</strong>g<br />

ANN 1: 6-20-6 144 1 0.13962 0.686<br />

ANN 2: 6-100-6 438 2 0.1750 0.390<br />

ANN 3: 6-100-6 219 2 0.1283 0.758<br />

(b) Dur<strong>in</strong>g validation<br />

ANN 1: 6-20-6 144 1 0.146 0.897<br />

ANN 2: 6-100-6 438 2 0.166 0.615<br />

ANN 3: 6-100-6 219 2 0.103 0.831<br />

(c) Dur<strong>in</strong>g test<strong>in</strong>g<br />

ANN 1: 6-20-6 144 1 0.146 0.876<br />

ANN 2: 6-100-6 438 2 0.166 0.490<br />

ANN 3: 6-100-6 219 2 0.1039 0.786<br />

N: number of observed data; D: irrigation <strong>and</strong> ra<strong>in</strong>fall events duration; AAE: average absolute error; R 2 : <strong>de</strong>term<strong>in</strong>ation coefficient; ANN:<br />

artificial neural network<br />

Table 10. Coefficients of membership function from various FIS<br />

Mo<strong>de</strong>l Inputs Membership Function Parameter- 1 Parameter- 2 Parameter- 3 Parameter- 4<br />

Input 1 Trapmf-1 1.827 2.974 4.557 5.928<br />

FIS 1<br />

Input 1 Trapmf-2 4.677 5.705 7.562 8.709<br />

Input 2 Trapmf-1 –0.508 0.0293 0.859 1.381<br />

Input 2 Trapmf-2 3.637 4.676 7.460 9.147<br />

Output l<strong>in</strong>ear 2.801 –2.675 0.048<br />

Input 1 Trapmf-1 –0.9727 0.7139 3.089 5.373<br />

FIS 2<br />

Input 1 Trapmf-2 3.637 4.676 7.46 9.147<br />

Input 2 Trapmf-1 –0.5081 0.0293 0.859 1.381<br />

Input 2 Trapmf-2 3.637 4.676 7.46 9.147<br />

Output L<strong>in</strong>ear 5.13 0.1209 –0.179<br />

Input 1 Trapmf-1 –5.071 –1.601 4.226 7.563<br />

FIS 3<br />

Input 1 Trapmf-2 5.466 7.789 12.28 15.75<br />

Input 2 Trapmf-1 –0.501 0.021 0.859 1.381<br />

Input 2 Trapmf-2 0.979 1.398 2.179 2.717<br />

Output L<strong>in</strong>ear 2.298 2.073 4.518<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

97<br />

Table 11. Performance criteria of erosion mo<strong>de</strong>l based on FIS<br />

Mo<strong>de</strong>l N D AAE<br />

(a) Dur<strong>in</strong>g calibration/tra<strong>in</strong><strong>in</strong>g<br />

FIS 1 (trapmf) 88 1 1.108<br />

FIS 2 (trapmf) 262 2 2.007<br />

FIS 3 (trapmf) 180 2 1.400<br />

(b) Dur<strong>in</strong>g validation<br />

FIS 1 (trapmf) 28 1 1.5147<br />

FIS 2 (trapmf) 88 2 2.1407<br />

FIS 3 (trapmf) 60 2 2.396<br />

(c) Dur<strong>in</strong>g test<strong>in</strong>g<br />

FIS 1 (trapmf) 28 1 1.489<br />

FIS 2 (trapmf) 88 2 2.367<br />

FIS 3 (trapmf) 60 2 1.565<br />

N: number of observed data; D: irrigation <strong>and</strong> ra<strong>in</strong>fall events duration; AAE: average absolute error; R 2 : <strong>de</strong>term<strong>in</strong>ation coefficient; ANN:<br />

artificial neural network<br />

(a)<br />

Erosion DR (mg m ‐2 s ‐1 )<br />

(b)<br />

(c)<br />

FIS Data Po<strong>in</strong>ts * Tra<strong>in</strong><strong>in</strong>g Data Po<strong>in</strong>ts o Validation Data Po<strong>in</strong>ts + Test Data Po<strong>in</strong>ts<br />

Fig. 14 Comparison of simulated erosion by Fuzzy Inference System with observed 2h ra<strong>in</strong>fall events.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

98<br />

A comparative example of the estimated values by<br />

apply<strong>in</strong>g the FIS to the observed data of furrow erosion<br />

un<strong>de</strong>r ra<strong>in</strong>fall events that last two hours, dur<strong>in</strong>g the<br />

stages of tra<strong>in</strong><strong>in</strong>g, validation <strong>and</strong> test<strong>in</strong>g; us<strong>in</strong>g a sample<br />

of 35 data, is shown <strong>in</strong> Fig. 14. Total number of data <strong>in</strong><br />

each stage can be seen <strong>in</strong> Table 11. Vertical axis<br />

represents the simulated erosion (D R sim) <strong>and</strong> the<br />

observed (D R obs). The horizontal axis represents a<br />

number assigned to each value; each pair of coord<strong>in</strong>ates<br />

is represented by a dot. Figure 14(a) shows the results<br />

<strong>in</strong> the tra<strong>in</strong><strong>in</strong>g stage of the FIS, which shows that the<br />

data po<strong>in</strong>ts (circles) were satisfactorily approximate to<br />

the FIS (asterisks). Figures 14(b)–(c) show a good<br />

approximation of the po<strong>in</strong>ts found <strong>in</strong> the FIS.<br />

DISCUSSION OF RESULTS<br />

Comparison of furrow erosion processes simulated<br />

with experimental data<br />

Process of particles <strong>de</strong>tachment As shown <strong>in</strong> the<br />

results section, the range of values of concentrated flow<br />

erodibility K c <strong>and</strong> critical shear stress τ c , obta<strong>in</strong>ed from<br />

the fit of the Eq. (5) varied between 1.31E–06 <strong>and</strong><br />

1.525E–06 s/m, 0.704 <strong>and</strong> 1.489 Pa, respectively.<br />

Knapen et al. (2007) conducted a literature review to<br />

compile the values of K c <strong>and</strong> τ c reported for different<br />

soils <strong>and</strong> tillage conditions. Studies <strong>in</strong>clu<strong>de</strong>d: (a)<br />

concentrated flow experiments on field plots, <strong>and</strong> (b)<br />

flume experiments <strong>in</strong> the laboratory. Characteristics of<br />

the experimental methods used are summarized <strong>in</strong><br />

Tables 12 <strong>and</strong> 13. Values ranges have been <strong>de</strong>term<strong>in</strong>ed<br />

empirically for K c <strong>and</strong> τ c parameters from the excess<br />

shear stress l<strong>in</strong>ear equation (Eq. 5), <strong>in</strong>clud<strong>in</strong>g the size of<br />

the sample by us<strong>in</strong>g field <strong>and</strong> laboratory experiments,<br />

they varied as follows: 0.000 001 <strong>and</strong> 0.1 m/s (n = 151),<br />

0.01 <strong>and</strong> 20 Pa (n = 161), 0.00 001 <strong>and</strong> 0.7 s/m<br />

(n = 185), 0.03 <strong>and</strong> 60 Pa (n = 220), respectively. By<br />

compar<strong>in</strong>g these value ranges with those reported on<br />

Table 3 for Eq. (5), it was found: (a) K c values fell<br />

with<strong>in</strong> the range for the field experiments <strong>and</strong> were<br />

lower than those found from laboratory experiments, (b)<br />

τ c values were totally <strong>in</strong>clu<strong>de</strong>d with<strong>in</strong> the reported<br />

ranges for the field <strong>and</strong> laboratory experiments.<br />

From the above, comparisons show that the K c value<br />

range obta<strong>in</strong>ed <strong>in</strong> this study was significantly different<br />

from the one reported by Knapen et al. (2007), while a<br />

lower variation for τ c value range was found. There are<br />

several reasons for these differences, two of the ma<strong>in</strong><br />

are (1) differences <strong>in</strong> experimental conditions <strong>in</strong> which<br />

the data were collected, <strong>and</strong> (2) the variation of soil<br />

types <strong>and</strong> environmental conditions. By compar<strong>in</strong>g the<br />

experimental <strong>and</strong> environmental conditions of the<br />

research <strong>de</strong>scribed <strong>in</strong> the methods section with outl<strong>in</strong>ed<br />

<strong>in</strong> Tables 12 <strong>and</strong> 13, some similarities were found alike<br />

as those <strong>in</strong> field studies conducted by Bjorneberg et al.<br />

(1999). With regard to laboratory experiments, cases<br />

with which to make a comparison were not found.<br />

The value ranges found for K c <strong>and</strong> τ c by Bjorneberg<br />

et al. (1999) varied as follows: from 0.0003 to 0.006<br />

m/s <strong>and</strong> from 1.2 to 1.8 Pa, respectively. Despite the<br />

similarities <strong>in</strong> the experimental conditions shown <strong>in</strong><br />

Table 12, the value range of K c was significantly<br />

different. Causes of the differences appear to be due to<br />

environmental conditions, ma<strong>in</strong>ly <strong>in</strong> both climate <strong>and</strong><br />

agricultural practices, because the experiments of<br />

Bjorneberg et al. (1999) were ma<strong>de</strong> <strong>in</strong> beans <strong>and</strong> corn<br />

fields, where the wett<strong>in</strong>g <strong>and</strong> dry<strong>in</strong>g sequences,<br />

consolidation <strong>and</strong> residues could be contribut<strong>in</strong>g factors<br />

to variability of K c <strong>and</strong> τ c values.<br />

In general, the Eq. (5) statistics show a satisfactory<br />

fit between most of the equation <strong>and</strong> the observed data,<br />

for the follow<strong>in</strong>g reasons: (1) coefficient of<br />

<strong>de</strong>term<strong>in</strong>ation R 2 was estimated at 0.7 (Ramírez et al.,<br />

2004), (2) Durb<strong>in</strong>-Watson coefficient presented<br />

evi<strong>de</strong>nce that there is a slight r<strong>and</strong>omness with<strong>in</strong><br />

consecutive residues, (3) Average Absolute Relative<br />

Error <strong>and</strong> Average Relative Error were mo<strong>de</strong>rately low.<br />

Process of sediment transport The ranges of the<br />

parameters K t <strong>and</strong> b reported <strong>in</strong> the results section for<br />

mo<strong>de</strong>ls of sediment transport capacity represented by<br />

Eqs 7, 13 <strong>and</strong> 15 varied as follows: 9.929E–08 <strong>and</strong><br />

1.52 669E–07; 7.634 <strong>and</strong> 34.583; 0.4212 <strong>and</strong> 0.892,<br />

respectively. The value ranges reported for field tests by<br />

F<strong>in</strong>kner et al. (1989) <strong>and</strong> Trout (1999) for Eq. (7)<br />

(Table 14), differ significantly from those <strong>in</strong>dicated <strong>in</strong><br />

Table 5. As for Eq. (13), the ω c critical unit current<br />

power value was negative <strong>and</strong> slightly different from<br />

zero, which differs from that proposed by Yang, (1973),<br />

which is equal to 0.002 m/s.<br />

Despite the differences, it can be observed that <strong>in</strong><br />

both cases ω c ten<strong>de</strong>d to zero. Accord<strong>in</strong>g to theory, the<br />

ω c value should be positive. The results of negative ω c<br />

<strong>and</strong> its low st<strong>and</strong>ard error, along with the high<br />

correlation make it difficult to expla<strong>in</strong> the physical<br />

mean<strong>in</strong>g of the estimated parameter. However, the<br />

estimated negative value range of ω c was not<br />

significantly different from zero.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

99<br />

Table 12. Characteristics of field plot <strong>in</strong> which concentrated flow erosion was measured<br />

Country<br />

Soil Slope Q <strong>in</strong>flow I ra<strong>in</strong>fall τ Rill plot dim.<br />

(No.) (%) (l m<strong>in</strong> –1 ) (mm/h) (Pa) (m × m)<br />

Surface Condition<br />

Source<br />

Iran 1 n.a. 132–1693 n.a.<br />

2.2–<br />

I, vary<strong>in</strong>g vegetation<br />

15 × 0.3<br />

13.2<br />

cover<br />

A<strong>de</strong>lpour et al. (2004)<br />

USA 1<br />

0.5–<br />

Length.:110– I, residue removed<br />

30–40 n.a. n.a.<br />

1.33<br />

256<br />

<strong>and</strong> tilled<br />

Bjorneberg et al. (1999)<br />

Brazil 1 n.a. n.a. n.a. n.a. 9 × 0.5<br />

I, residue removed<br />

<strong>and</strong> tilled<br />

Braida & Cassol (1996)<br />

Brazil 1 6.7 0–50 74 n.a. n.a. n.a. Cantalice et al. (2005)<br />

USA 2 3–15 96–768 n.d.<br />

4.0–<br />

I, residue removed<br />

10 × 0.75<br />

37.3<br />

<strong>and</strong> tilled<br />

Franti et al. (1985; 1999)<br />

Brazil 1 n.a. 0 60 n.a. 9 × 0.5<br />

I, residue removed<br />

<strong>and</strong> tilled<br />

Giasson & Cassol, (1996)<br />

USA 30 4–13 7–35 62 n.a. 9 × 0.46<br />

I, residue removed<br />

<strong>and</strong> tilled<br />

Gilley et al. (1993)<br />

USA 4 0.5–3 n.a. n.a. 1–36 30.5×0.91 I, no cover Hanson (1989;1990a; 1990b)<br />

USA 1 1–3 4–17.10 n.a.<br />

12–<br />

55<br />

29×1.8 I, no cover Hanson & Cook (1999)<br />

USA 2 5–11 n.d. n.a. n.a. 10.7×3<br />

I, var<strong>in</strong>g canopy<br />

cover<br />

Husse<strong>in</strong> & Laflen (1982)<br />

USA 2 4 11–189 64<br />

0.7–<br />

I, vary<strong>in</strong>g tillage<br />

4×0.2<br />

14<br />

practices<br />

K<strong>in</strong>g et al. (1995)<br />

USA 2 3–15 n.a. n.a. n.a. n.a. n.a. Laflen (1987)<br />

USA 56 2–13 0.1–0.6 63 0–22 9–11×0.5–3<br />

I, residue removed Laflen et al. (1991), Elliot et<br />

<strong>and</strong> tilled<br />

al. (1989)<br />

USA 1 3–6 8–38 n.a. 2–10 5.5×2<br />

I, residue removed<br />

<strong>and</strong> tilled<br />

Mamo & Bubenzer (2001b)<br />

Canada 3 12–14 n.a. 25–30 n.a. 10×0.8<br />

I, vegetation free,<br />

seedbed conditions<br />

Merz & Bryan (1993)<br />

USA 1 4–6 8–38 51<br />

1.3–<br />

I, tilled <strong>and</strong> all<br />

68.6×6.1<br />

6.1<br />

residue buried<br />

Morrison et al. (1994)<br />

USA 2 3–5 8–53 64 0–6 6.1×0.76<br />

I, residue removed<br />

<strong>and</strong> tilled<br />

Norton & Brown, (1992)<br />

USA 1 27 16–23 n.a.<br />

24–<br />

I, vegetation clipped<br />

6×0.3<br />

192<br />

to various heights<br />

Prosser et al. (1995)<br />

Australia 1 1–12.7 1.7–8 n.a. n.a. 20×1<br />

I, vegetation clipped<br />

to various heights<br />

Prosser (1996)<br />

Brazil 1 10 12–120 65<br />

2.5–<br />

19<br />

6×0.2 n.a. Reichert et al. (2001)<br />

USA 1 2–31 8–60 60 2–7 4.6×0.3<br />

I, residue removed<br />

<strong>and</strong> plants clipped<br />

West et al. (1992)<br />

USA 1<br />

0.52–<br />

I, residue removed<br />

15–46 n.a. n.a. 204–256<br />

1.33<br />

<strong>and</strong> tilled<br />

Trout et al. (1999)<br />

n.a.: not available. Soils: number of soil types tested. Slope: slope of soil surface. Q <strong>in</strong>flow : simulated concentrated flow discharge. I ra<strong>in</strong>fall :<br />

simulated ra<strong>in</strong>fall <strong>in</strong>tensities. τ: Range of applied flow shear stresses. Rill plot dimensions: length×width. Surface condition: (S: smoothened,<br />

I:irregular)<br />

With respect to Eq. (15), comparisons can not be<br />

ma<strong>de</strong> with the values proposed by Simons et al. (1981)<br />

because the values reported <strong>in</strong> literature correspond to<br />

flow <strong>in</strong> rivers.<br />

In general, fitted statistics <strong>in</strong> Eqs (7), (13) <strong>and</strong> (15)<br />

<strong>in</strong>dicated a satisfactory approximation between observed<br />

<strong>and</strong> estimated values, for the follow<strong>in</strong>g reasons: (a)<br />

coefficient of <strong>de</strong>term<strong>in</strong>ation varied between 0.72 <strong>and</strong><br />

0.88, accord<strong>in</strong>g to Ramirez et al. (2004), (b) adjusted R 2<br />

coefficient <strong>de</strong>creased slightly <strong>in</strong> relation to R 2 , (c)<br />

Durb<strong>in</strong>-Watson coefficient presented evi<strong>de</strong>nce that there<br />

is a slight r<strong>and</strong>omness between consecutive residues, (3)<br />

Average Absolute Relative Error <strong>and</strong> Average Relative<br />

Error were mo<strong>de</strong>rately low.<br />

Comb<strong>in</strong>ation of furrow erosion processes It can be<br />

observed from Figure 11 that the sediment transport<br />

capacity values obta<strong>in</strong>ed by Eqs (7) <strong>and</strong> (13) were lower<br />

than the observed sediment load values <strong>in</strong> the stream for<br />

different slopes of furrows <strong>in</strong> the three stages with<strong>in</strong> the<br />

cycle un<strong>de</strong>r irrigation, which <strong>in</strong>dicates the occurrence of<br />

concentrated flow <strong>and</strong> <strong>de</strong>position process. As for Eq.<br />

(15), estimated values of the transport capacity were<br />

very close to the sediment load current, therefore,<br />

<strong>de</strong>position processes occur at low rates. Accord<strong>in</strong>g to<br />

theory, the highest proportion of <strong>de</strong>tached sediments is<br />

transported out of the furrow (e.g., Near<strong>in</strong>g et al., 1989,<br />

Morgan, 1998; Bulyg<strong>in</strong> et al., 2002).<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

100<br />

Table 13. Characteristics of laboratory flume experiments <strong>in</strong> which concentrated flow erosion was measured<br />

Country<br />

Soil Slope Q <strong>in</strong>flow I ra<strong>in</strong>fall<br />

Flume dim.<br />

(N°) (%) (l m<strong>in</strong> –1 τ (Pa)<br />

) (mm/h)<br />

(m × m × m)<br />

Source<br />

Remark<br />

Italy 6 10–40 2.4–18 / 1–12 1.5 × 0.2 Ciampall<strong>in</strong>i & Torri (1998) a<br />

Australia 1 2–7 2.5–40 / n.a. 1.8 × 0.6 × 0.2 Crouch & Novruzi (1989) b, e<br />

Mexico 1 0 n.a. / 1.1–38.2 4.9 × 0.3 × 2.5 Ghebreiyessus et al. (1994)<br />

Belgium 2 5–21 3.3–60 / 1–24 4 × 0.4 × 0.45 Giménez & Govers (2002)<br />

Belgium 2 9–21 6.7–60 / 1–16 2 × 0.10 × 0.09 Giménez & Govers (2002)<br />

Belgium 2 1.5–7 0.7–10.4 / 0,1–1,3 6 × 0.12 Govers (1985) b, e<br />

Belgium 1 20–30 18–114 / 4.4–22.4 2 × 0.1 × 0.09 Gyssels et al. (2006)<br />

Canada 5 n.a. n.a. / n.a. 9.1 × 0.15 Kamphuis & Hall (1983) b, e<br />

USA 5 0.2 n.a. / n.a. 18.3 × 0,77 × 0,46 Laflen & Beasley (1960) a, e<br />

USA 7 0.2 n.a. / n.a. 22 × 0.4 × 0.76 Lyle & Smerdon (1965) a, e<br />

USA 1 3–5 7.6–37.9 / n.a. 4 × 0.2 × 0.05 Mamo & Bubenzer (2001a)<br />

Canada 1 14 / 34 n.a. 10 × 0.8 × 0,2 Merz & Bryan (1993) b, c, e<br />

USA 8 n.a. 6.1–30.3 / 0–3.2 1.84 × 0.1 × 0,19 Moody et al. (2005) e<br />

Belgium 1 10–35 5.6–11.5 / 1.6–5.7 2 × 0.1 × 0.09 Nachtergaele & Poesen (2002)<br />

USA 1 n.a. n.a. / 0.1–1.3 18.3 × 0.3 × 0.38 Parthenia<strong>de</strong>s (1965) e<br />

S-Africa 12 2–20 0.08–0.32 / 0,2–4.9 0.5 × 0.05 × 0.13 Rapp (1998)<br />

Israel 3 2–20 0.08–0.32 / 0.2–4.9 0.5 × 0.05 × 0.13 Rapp (1998)<br />

Belgium 1 2.6–14 n.a. / n.a. 2 × 0.4 Rauws (1987)<br />

Belgium 1 3–33 n.a. 20 n.a. 2.5 × 0.6 Rauws & Govers (1988) b, c, e<br />

USA 1 2–20 0.04–0.2 / 0.4–4.8 0.5 × 0.05 × 0.12 Sha<strong>in</strong>berg et al. (1994) b, e<br />

Israel 3 5 0.04–0.32 / 0.8–1.8 0.5 × 0.05 × 0.12 Sha<strong>in</strong>berg et al. (1996)<br />

Australia 16 5–30 0.1–1.8 100 n.a. 3 × 0.8 × 0.15 Sheridan et al. (2000a,b) d<br />

Canada 1 9 n.a. 35 n.a. 15 m long. Slattery & Bryan (1992)<br />

USA 11 0–1 n.a. / n.a. 18.3 × 0.77 × 0.46 Smerdon & Beasley (1959)<br />

USA 5 0.1–0.2 n.a. 0–127 n.a. 22 × 0.8 Smerdon (1964)<br />

Italy 4 1–31 n.a. 15–110 0–3.3 2 × 0.5 × 0.1 Torri et al. (1987)<br />

USA 1 7 2–4 / 1.9–3.9 2.73 × 0.46 × 0.88 Van Klavern & McCool (1998<br />

Ch<strong>in</strong>a 1 10,5–21.2 2.5–6.5 / 1–10 5 × 0.3 Zhang et al. (2005) a<br />

USA 5 1.5–5 3.8–15.1 / 0.5–2.5 6.4 × 0.15 × 0.05 Zhu et al. (1995)<br />

USA 5 0–5.5 n.a. / 0.5–2.5 6.4 × 0.15 × 0.05 Zhu et al. (2001)<br />

n.a.: not available. /:not applicable. Soils: number of soil types tested. Slope: slope of soil surface. Q <strong>in</strong>flow : simulated concentrated flow<br />

discharge. I ra<strong>in</strong>fall : simulated ra<strong>in</strong>fall <strong>in</strong>tensities. τ: Range of applied flow shear stresses. Flume dimensions: length×width×<strong>de</strong>pth. Remarks:<br />

(a) values for K c <strong>and</strong>/or τ c <strong>de</strong>duced from graphs, (b) values calculated from critical shear velocity, (c) values for poorly cohesive or noncohesive<br />

soils, (d) tests on coal m<strong>in</strong>e soils <strong>and</strong> overbur<strong>de</strong>ns, (e) excess shear stress equation was not used to <strong>de</strong>duce K c <strong>and</strong>/or τ c .<br />

Table 14. Mo<strong>de</strong>ls parameters to estimate sediment transport capacity of flow <strong>in</strong> furrow <strong>and</strong> characteristics of field tests<br />

Tc= Kt(τ) b<br />

Source<br />

T c<br />

Slope Q I<br />

K<br />

(kg/m/s)<br />

t τ(Pa) b<br />

ra<strong>in</strong>fall Rill plot Surface<br />

(%) (L / m<strong>in</strong>) (mm/ h) dim. (m×m) condition<br />

F<strong>in</strong>kner 0.0006–0.2366 0,015–0,05 1–6 1.5 2–20 n.a. 80–83 10, 50, 100 n.a.<br />

et al.<br />

m long<br />

(1989)<br />

Trout<br />

(1999)<br />

0.002–0.035 0,017–<br />

0,065<br />

n.a. 2 1.3 6–18 n.a. 204 m long residue<br />

removed<br />

<strong>and</strong> tilled<br />

0.001–0.02 0,015–0,15 n.a. 4 0.5 6–45.6 n.a. 256 m long residue<br />

removed<br />

<strong>and</strong> tilled<br />

Source T c (ppm) C<br />

ω c<br />

(m/s)<br />

b<br />

Tc = c[(ω–ωc)/Vs] b<br />

Slope<br />

(%)<br />

Q <strong>in</strong>flow<br />

(L/m<strong>in</strong>)<br />

Ira<strong>in</strong>fall<br />

(mm/h)<br />

Rill plot<br />

dim.<br />

(m×m)<br />

Surface<br />

condition<br />

Loch 41.000–87.000 n.a. 0.002 n.a. 4 15–107 95 0.4×1.5–22.5 removed<br />

(1984)<br />

<strong>and</strong> tilled<br />

n.a.: not available. Remark: K t : (a) obta<strong>in</strong>ed by empirical fit, (b) obta<strong>in</strong>ed by equation of Yal<strong>in</strong> (1963).<br />

Remark<br />

b<br />

a<br />

a<br />

Remark<br />

b<br />

Trout (1996) found that at the end of the furrows of<br />

bean crops, erosion <strong>in</strong>creases from the beg<strong>in</strong>n<strong>in</strong>g to the<br />

end of the cycle from 1 to 5 Mg/ha, while the process<br />

was reversed <strong>in</strong> the corn crop due to the reduction of<br />

erosion from 2 to 0.1 Mg/ha at the end of the cycle. In<br />

this study, the variability <strong>in</strong> the rate of erosion along the<br />

furrows was not significant, based on the uniformity of<br />

both water supplies through the spr<strong>in</strong>klers as well as<br />

frequency of wett<strong>in</strong>g <strong>in</strong> each furrow. The erosion rate,<br />

from the beg<strong>in</strong>n<strong>in</strong>g to the end of the cycle, varied from<br />

0.6 to 0.1 Mg/ha (Fig. 12). This range is lower than that<br />

found by Trout (1996) for bean <strong>and</strong> corn fields.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

101<br />

Trout (1999) reported sediment transport rates <strong>in</strong><br />

furrows of slope at 1.3% <strong>and</strong> 5.2% for corn <strong>and</strong> bean,<br />

that varied from the beg<strong>in</strong>n<strong>in</strong>g to the end of the cycle as<br />

follows: from 20 000 to 4000 mg·s –1 m –1 , from 25 000 to<br />

5000 mg·s –1 m –1 , respectively. These ranges were higher<br />

than those found <strong>in</strong> this study, which varied from 1428<br />

to 10 000 mg·s –1 m –1 (mg of sediment per meter of<br />

wetted perimeter per second).<br />

Furrow erosion mo<strong>de</strong>ls based on regressions<br />

Estimated erosion values by the multiple l<strong>in</strong>ear mo<strong>de</strong>ls<br />

were closer to the field observations than those which<br />

were obta<strong>in</strong>ed by mo<strong>de</strong>ls based on nonl<strong>in</strong>ear<br />

polynomials. L<strong>in</strong>ear mo<strong>de</strong>l showed that the maximum<br />

loads of sediments dur<strong>in</strong>g events of natural <strong>and</strong> artificial<br />

ra<strong>in</strong> were successfully estimated. However, there was a<br />

lack of adjustment for values at the beg<strong>in</strong>n<strong>in</strong>g <strong>and</strong> at the<br />

end of such events, which co<strong>in</strong>ci<strong>de</strong>s with the results of<br />

Ja<strong>in</strong> et al. (2004), Kumar (2001) <strong>and</strong> Sr<strong>in</strong>ivasulu et al.<br />

(2006) (Fig. 12). F<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> polynomial-based mo<strong>de</strong>ls<br />

<strong>in</strong>dicate that the estimation process of the observed<br />

variable tends to <strong>de</strong>crease as the power <strong>in</strong>creases.<br />

Mo<strong>de</strong>l<strong>in</strong>g of furrow erosion us<strong>in</strong>g artificial<br />

<strong>in</strong>telligence techniques<br />

Artificial Neural Networks Estimated erosion values<br />

by artificial neural networks became successfully closer<br />

to the observations dur<strong>in</strong>g the stages of calibration,<br />

validation, <strong>and</strong> test<strong>in</strong>g, <strong>in</strong> terms of the coefficient of<br />

<strong>de</strong>term<strong>in</strong>ation <strong>and</strong> the Average Absolute Error. The<br />

ANN estimate improved as the variability of data for<br />

tra<strong>in</strong><strong>in</strong>g <strong>and</strong> test<strong>in</strong>g of the network was lower, which<br />

helped the network to learn the pattern of data.<br />

Fuzzy Inference System Estimated erosion values by<br />

FIS’s became successfully closer to the observations<br />

dur<strong>in</strong>g the stages of calibration, validation <strong>and</strong> test<strong>in</strong>g,<br />

<strong>in</strong> terms of the Average Absolute Error. The pattern <strong>in</strong><br />

the <strong>in</strong>put data was better represented by us<strong>in</strong>g the<br />

trapezoidal function both for ra<strong>in</strong>fall, as well as for<br />

<strong>in</strong>filtration. The system output was represented by a<br />

multiple l<strong>in</strong>ear equation. Estimated erosion resulted<br />

closer to observations <strong>in</strong> the stages of tra<strong>in</strong><strong>in</strong>g,<br />

validation <strong>and</strong> test<strong>in</strong>g (Fig. 14). Estimation by ANN<br />

improved as the variability of data for tra<strong>in</strong><strong>in</strong>g <strong>and</strong><br />

test<strong>in</strong>g of the network was lower, which helped the<br />

network to learn the pattern of data. The application of<br />

FIS’s has been used successfully for mo<strong>de</strong>l<strong>in</strong>g of<br />

reservoir operation by Panigrahi (2000), which validates<br />

its use for simulat<strong>in</strong>g hydrological processes.<br />

Comparison of mo<strong>de</strong>ls to estimate rill erosion The<br />

differences between the dynamic versions of the WEPP<br />

<strong>and</strong> EUROSEM mo<strong>de</strong>ls were significant <strong>in</strong> the<br />

magnitu<strong>de</strong>s of the events; however, both of them<br />

estimated the erosion processes, namely, sediment<br />

transport <strong>and</strong> <strong>de</strong>position (Fig. 11). As for CIHAM-UC<br />

mo<strong>de</strong>l was different from WEPP <strong>and</strong> EUROSEM<br />

mo<strong>de</strong>ls because they produced smaller estimates of<br />

<strong>de</strong>position process.<br />

The comparison between the different mo<strong>de</strong>ls<br />

<strong>in</strong>dicates the follow<strong>in</strong>g or<strong>de</strong>r on the quality of the<br />

estimation <strong>in</strong> furrow erosion: Artificial <strong>in</strong>telligence<br />

techniques, mo<strong>de</strong>ls based on physical processes, l<strong>in</strong>ear<br />

regression, <strong>and</strong> f<strong>in</strong>ally, the non-l<strong>in</strong>ear regression (Fig.<br />

12).<br />

CONCLUSIONS<br />

It is possible to make estimates of the physical<br />

processes of erosion <strong>in</strong> furrows with a mo<strong>de</strong>rate to high<br />

accuracy, although it is believed that the estimation can<br />

be <strong>in</strong>creased <strong>and</strong> improved by mak<strong>in</strong>g adjustments of<br />

the mo<strong>de</strong>ls for each slope of furrow.<br />

Mo<strong>de</strong>ls based on l<strong>in</strong>ear regressions achieved better<br />

estimates at the observed values than the nonl<strong>in</strong>ear<br />

mo<strong>de</strong>ls based on polynomials. This should be<br />

emphasized <strong>in</strong> tra<strong>in</strong><strong>in</strong>g with new data to better estimate<br />

the values at the beg<strong>in</strong>n<strong>in</strong>g <strong>and</strong> end of natural <strong>and</strong><br />

artificial ra<strong>in</strong> events.<br />

Mo<strong>de</strong>l<strong>in</strong>g of furrow erosion us<strong>in</strong>g artificial<br />

<strong>in</strong>telligence techniques resulted <strong>in</strong> a satisfactory<br />

approximation of the estimated values to those<br />

observed, improv<strong>in</strong>g accuracy through the application<br />

of ANN’s with respect to the FIS’s. The estimation<br />

quality improves as variability <strong>in</strong> the mo<strong>de</strong>l data is low.<br />

The comparison between the different mo<strong>de</strong>ls<br />

<strong>in</strong>dicate the follow<strong>in</strong>g or<strong>de</strong>r on the quality of the<br />

estimation of furrow erosion: artificial <strong>in</strong>telligence<br />

techniques, mo<strong>de</strong>ls based on physical processes, l<strong>in</strong>ear<br />

regression <strong>and</strong> f<strong>in</strong>ally, the non-l<strong>in</strong>ear regression<br />

Acknowledgment The research was <strong>de</strong>veloped <strong>in</strong><br />

<strong>Centro</strong> <strong>de</strong> Investigaciones Hidrológicas y Ambientales<br />

<strong>de</strong> la Universidad <strong>de</strong> Carabobo (CIHAM-UC) with the<br />

f<strong>in</strong>ancial support of CDCH-UC <strong>and</strong> FONACIT.<br />

REFERENCES<br />

AMERICAN PUBLIC HEALTH ASSOCIATION (1995) St<strong>and</strong>ard<br />

Methods for The Exam<strong>in</strong>ation of Water <strong>and</strong> Wastewater.<br />

American Public Health Association, United States of America,<br />

Wash<strong>in</strong>gton, DC, 19th Edition. 2–53.<br />

AMERICAN SOCIETY FOR TESTING AND MATERIALS<br />

(2007) St<strong>and</strong>ard Test Methods for particle-size analysis of soils.<br />

American Society for Test<strong>in</strong>g <strong>and</strong> Materials International, United<br />

States of America, West Conshohocken. (Reaproved 2007), 1–8.<br />

A<strong>de</strong>lpour, A.A., Soufi, M. & Behnia, A.K. (2004) Channel erosion<br />

thresholds for different l<strong>and</strong> uses assessed by concentrated<br />

overl<strong>and</strong> flow on a silty loam. Proc. International Soil<br />

Conservation Organisation Conference. Brisbane, Australia.<br />

Alonso C.V., Neibl<strong>in</strong>g, W.H. & Foster, G.R. (1981) Estimat<strong>in</strong>g<br />

sediment transport capacity <strong>in</strong> watershed mo<strong>de</strong>l<strong>in</strong>g. Trans. ASAE<br />

24(5), 1211–1220.<br />

Bjorneberg, D.L., Trout, R.E., Sojka, R.E. & Aase, J.K. (1999)<br />

Evaluat<strong>in</strong>g WEPP predicted <strong>in</strong>filtration, runoff <strong>and</strong> soil erosion<br />

for furrow irrigation. Trans. ASAE 42(6), 1733–1741.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

102<br />

Braida, J.A. & Cassol, E.A. (1996) Rill <strong>and</strong> <strong>in</strong>terrill erodibility of a<br />

paleudult soil. Rev. Bras. Ciênc. Solo 20(1), 127–134.<br />

Bulyg<strong>in</strong>a, N.S., Near<strong>in</strong>g, M.A., Stone, J.J. & Nichols, M.H. (2007)<br />

DWEPP: a dynamic soil erosion mo<strong>de</strong>l based on WEPP source<br />

terms. Earth Surf. Processes L<strong>and</strong>f. 32(7), 998–1012. doi:<br />

10.1002/esp.1467.<br />

Bulyg<strong>in</strong>, S.Y., Near<strong>in</strong>g, M.A. & Achasov, A.B. (2002) Parameters of<br />

<strong>in</strong>terrill erodibility <strong>in</strong> the WEPP mo<strong>de</strong>l. Eurasian Soil Sci. 35(11),<br />

1237–1242.<br />

Bishop, C.M. (1994) Neural networks <strong>and</strong> their applications. Rev.<br />

Sci.Instrum. 65(6), 1803–1832.<br />

Cantalice, J.R.B., Cassol, E.A., Reichert, J.M. & Borges, A.L.D.<br />

(2005) Flow hydraulics <strong>and</strong> sediment transport <strong>in</strong> rills of a s<strong>and</strong>y<br />

clay loam soil. Rev. Bras. Ciênc. Solo 29(4), 597–607. (<strong>in</strong><br />

portuguese). doi: 10.1590/S0100-06832005000400012.<br />

Ciampall<strong>in</strong>i, R. & Torri, D. (1998) Detachment of soil particles by<br />

shallow flow: sampl<strong>in</strong>g methodology <strong>and</strong> observations. Catena<br />

32(1), 37–53. doi:10.1016/S0341-8162(97)00050-7.<br />

Crouch, R.J. & Novruzi, T. (1989) Threshold conditions for rill<br />

<strong>in</strong>itiation on a vertisol, Gunnedah, N.S.W., Australia. Catena<br />

16(1), 101–110. doi:10.1016/0341-8162(89)90007-6.<br />

Demuth, H., Beale, M., Hagan, M. (2009) Neural Network Toolbox.<br />

User Gui<strong>de</strong>. MATLAB.<br />

Elliot, W.J., Liebenow, A.M., Laflen, J.M. & Kohl, K.D. (1989) A<br />

compendium of soil erodibility data from WEPP cropl<strong>and</strong> soil<br />

field erodibility experiments 1987–1988. NSERL Rpt. No. 3.<br />

Ohio State University <strong>and</strong> Natural Soil Erosion Research<br />

Laboratory, Agricultural Research Service, U.S. Department of<br />

Agriculture, W. Lafayette, Indiana.<br />

Flanagan, D.C., Ascough, J.C., Near<strong>in</strong>g, M.A. & Laflen, J.M. (2001)<br />

The Water Erosion Prediction Project mo<strong>de</strong>l. In: Harmon, R.S. &<br />

Doe, W.W. (eds) L<strong>and</strong>scape Erosion <strong>and</strong> Evolution Mo<strong>de</strong>ll<strong>in</strong>g,<br />

Kluwer: New York, 145–199.<br />

Flanagan, D.C. & Near<strong>in</strong>g, M.A. eds. (1995) USDA–Water Erosion<br />

Prediction Project (WEPP), Hillslope Profile <strong>and</strong> Watershed<br />

Mo<strong>de</strong>l Documentation Technical Documentation, NSERL Report<br />

10. USDA-ARS National Soil Erosion Research Laboratory:<br />

West Lafayette, IN.<br />

F<strong>in</strong>kner, S.C., Near<strong>in</strong>g M.A., Foster G.R. & Gilley J.E. (1989) A<br />

simplified equation for mo<strong>de</strong>l<strong>in</strong>g sediment transport capacity.<br />

Trans. ASAE 32(5), 1545–1550.<br />

Foster, G.R. & Meyer, L.D. (1972) Transport of particles by shallow<br />

flow. Trans. ASAE 15(1), 99–102.<br />

Foster, G.R. & Meyer, L.D. (1975) Mathematical simulation of<br />

upl<strong>and</strong> erosion us<strong>in</strong>g fundamental erosion mechanics. Proc.<br />

Sediment Yield Workshop. U.S. Sedimentation Laboratory,<br />

Oxford, MI, 190–201.<br />

Foster, G.R. (1982) Mo<strong>de</strong>l<strong>in</strong>g the erosion process. In: Hahn, C.T.<br />

(Ed.). Hydrologic Mo<strong>de</strong>l<strong>in</strong>g of Small Watersheds, 295–380.<br />

Foster, G.R., Hugg<strong>in</strong>s, L.F. & Meyer, L.D. (1984) A laboratory<br />

study of rill hydraulics: shear stress relationships. Trans. ASAE<br />

27(3), 797–804.<br />

Foster, G.R. & Lane, L.J. (1987) User Requirements: USDA-WEPP<br />

(Draft 6.3) National Soil Erosion Research Laboratory, West<br />

Lafayette, Indiana.<br />

Foster, G.R. (1990) Major <strong>de</strong>velopments <strong>in</strong> prediction of soil erosion<br />

by water. In: Lal, R. & Pierce, F.J. (eds.) Soil Management for<br />

Susta<strong>in</strong>ability Soil <strong>and</strong> Water Conservation Society, Ames, Iowa.<br />

Franti, F.G., Laflen, J.M. & Watson, D.A. (1985) Soil erodibility<br />

<strong>and</strong> critical shear un<strong>de</strong>r concentrated flow. ASAE Paper No. 85-<br />

2033<br />

Franti, T.G., Laflen, J.M. & Watson, D.A. (1999) Predict<strong>in</strong>g soil<br />

<strong>de</strong>tachment from high discharge concentrated flow. Trans. ASAE<br />

42(2), 329–335.<br />

Ghebreiyessus, Y.T., Gantzer, C.J., Alberts, E.E. & Lentz, R. (1994)<br />

Soil erosion by concentrated flow: shear stress <strong>and</strong> bulk <strong>de</strong>nsity.<br />

Trans. ASAE 37(6), 1791–1797.<br />

Giménez, R. & Govers, G. (2002) Flow <strong>de</strong>tachment by concentrated<br />

flow on smooth <strong>and</strong> irregular beds. Soil Sci. Soc. Am. J. 66(5),<br />

1475–1483. doi:10.2136/sssaj2002.1475.<br />

Gyssels, G., Poesen, J., Van Dessel, W., Knapen, A. & Debaets, S.<br />

(2006) Effects of cereal roots on <strong>de</strong>tachment rates of s<strong>in</strong>gle <strong>and</strong><br />

doubledrilled topsoils dur<strong>in</strong>g concentrated flow. Eur. J. Soil Sci.<br />

57(3), 381–391. doi: 10.1111/j.1365-2389.2005.00749.x.<br />

Giasson, E. & Cassol, E.A. (1996) Rill erosion related to <strong>in</strong>flow<br />

rates <strong>and</strong> amounts of <strong>in</strong>corporated wheat straw <strong>in</strong> a s<strong>and</strong>y clay<br />

loam Paleudult soil. Rev. Bras. Ciênc. Solo 20(1), 117–125.<br />

Gilley, J.E., Elliot, W.J., Laflen, J.M. & Simanton, S.R. (1993)<br />

Critical shear stress <strong>and</strong> critical flow rates for <strong>in</strong>itiation of rill<strong>in</strong>g.<br />

J. Hydrol. 142(2), 251–271. doi:10.1016/0022-1694(93)90013-Y.<br />

Govers, G. (1985) Selectivity <strong>and</strong> transport capacity of th<strong>in</strong> flow <strong>in</strong><br />

relation to rill erosion. Catena 12(1), 35–49. doi:10.1016/S0341-<br />

8162(85)80003-5.<br />

Guevara, E. & Márquez, A. (2009) Mo<strong>de</strong>lación <strong>de</strong> la erosión y<br />

transporte <strong>de</strong> sedimentos en un campo agrícola bajo riego.<br />

Tecnología y Ciencias <strong>de</strong>l Agua (Submitted).<br />

Hanson, G.J. (1989) An <strong>in</strong>-situ erodibility test<strong>in</strong>g <strong>de</strong>vice. American<br />

Society of Agricultural Eng<strong>in</strong>eers - Canadian Society of<br />

Agricultural Eng<strong>in</strong>eers. Paper No. 89–2151.<br />

Hanson, G.J. (1990a) Surface erodibility of earthen channels at high<br />

stresses. Part II-Develop<strong>in</strong>g an <strong>in</strong> situ test<strong>in</strong>g <strong>de</strong>vice. Trans. ASAE<br />

33(1), 132–137.<br />

Hanson, G.J. (1990b) Surface erodibility of earthen channels at high<br />

stresses part I. Open channel test<strong>in</strong>g. Trans. ASAE 33(1), 127–<br />

131.<br />

Hanson, G.J., Cook, K.R. & Simon, A. (1999) Determ<strong>in</strong>ig erosion<br />

resistance of cohesive materials. American Society of Civil<br />

Eng<strong>in</strong>eers, Proc. International Water Resources Eng<strong>in</strong>eer<strong>in</strong>g<br />

Conference. Seattle, Wash<strong>in</strong>gton, USA.<br />

Husse<strong>in</strong>, M.H. & Laflen, J.M. (1982) Effects of crop canopy <strong>and</strong><br />

residue on rill <strong>and</strong> <strong>in</strong>terrill soil erosion. Trans. ASAE 25(5), 1310–<br />

1315.<br />

Ja<strong>in</strong>, A. & Ormsbee, L.E. (2002) Evaluation of short-term water<br />

<strong>de</strong>m<strong>and</strong> forecast mo<strong>de</strong>l<strong>in</strong>g techniques: conventional methods<br />

versus AI. J. American Water Works Assoc. 94(7), 64–72.<br />

Ja<strong>in</strong>, A., Sudheer, K.P. & Sr<strong>in</strong>ivasulu, S. (2004) I<strong>de</strong>ntification of<br />

physical processes <strong>in</strong>herent <strong>in</strong> artificial neural network ra<strong>in</strong>fall<br />

runoff mo<strong>de</strong>ls. Hydrol. Processes 118(3), 571–581. doi:<br />

10.1002/hyp.5502.<br />

Juarez, E. & Rico, A. (1991) Mecánica <strong>de</strong> Suelos. Ed. Limusa.<br />

Mexico.<br />

Kamphuis, J.W. & Hall, K.R. (1983) Cohesive material erosion by<br />

unidirectional current. J. Hydr. Engrg. 110(3), 370–370. doi:<br />

10.1061/(ASCE)0733-9429(1984)110:3(370).<br />

Knapen, A., Poesen, J., Govers, G., Gyssels, G. & Nachtergaele, J.<br />

(2007) Resistance of soils to concentrated<br />

flow erosion: A review. Earth-Science Rev. 80(2), 75–109.<br />

doi:10.1016/j.earscirev.2006.08.001.<br />

K<strong>in</strong>g, K.W., Flanagan, D.C., Norton, L.D. & Laflen, J.M. (1995)<br />

Rill erodibility parameters <strong>in</strong>fluenced by long-term management<br />

practices. Trans. ASAE 38(1), 159–164.<br />

Koluvek, P.K., Tanji, K.K. & Trout, T.J. (1993) Overview of soil<br />

erosion from irrigation. J. Irrig. Dra<strong>in</strong>age Engr. ASCE 119(6),<br />

929–946. doi: 10.1061/(ASCE)0733-9437(1993)119:6(929).<br />

Klik, A., Savabi, M.R., Norton, L.D. & Baumer, O. (1995)<br />

Application of WEPP hillslope mo<strong>de</strong>l on Austria. Proc. Annual<br />

Conference of the American Water Resources Association<br />

(AWRA). Houston, Texas, 313–322.<br />

Kumar, A. & M<strong>in</strong>ocha, K. (2001) Ra<strong>in</strong>fall runoff mo<strong>de</strong>l<strong>in</strong>g us<strong>in</strong>g<br />

artificial neural networks. J. Hydrol. Eng. 6(2), 176–177. doi:<br />

10.1061/(ASCE)1084-0699(2001)6:2(176).<br />

Laflen, J.M. & Beasley, R.P. (1960) Effects of compaction on<br />

critical tractive forces <strong>in</strong> cohesive soils. University of Missouri.<br />

Experiment Station Research Bullet<strong>in</strong>, 749.<br />

Laflen, J.M. (1987) Effect of tillage systems on concentrated flow<br />

erosion. In: Sentis, I.P. (Ed.), Soil Conservation <strong>and</strong> Productivity.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

103<br />

Proc. 40 International Conference on Soil Conservation, Maracay,<br />

República Bolivariana <strong>de</strong> Venezuela.<br />

Laflen, J.M., Elliot, W.J., Simanton, J.R., Holzhey, C.S. & Kohl,<br />

K.D. (1991) WEPP: Soil erodibility experiments for rangel<strong>and</strong><br />

<strong>and</strong> cropl<strong>and</strong> soils. J. Soil Water Conserv. 46(1), 39–44. doi:<br />

10.2489/jswc.46.1.39.<br />

Laflen, J.M., Flanagan, D.C. & Engel, B.A. (2004) Soil erosion <strong>and</strong><br />

sediment yield prediction accuracy us<strong>in</strong>g WEPP.<br />

J. Am. Water Res. Assoc. 40(2), 289–297. doi: 10.1111/j.1752-<br />

1688.2004.tb01029.x.<br />

Lyle, W.M. & Smerdon, E.T. (1965) Relation of compaction <strong>and</strong><br />

other soil properties to erosion resistance of soils. Trans. ASAE<br />

8(4), 419–422.<br />

Loch, R.J. (1984) Field ra<strong>in</strong>fall simulator studies on two caly spils of<br />

the Darl<strong>in</strong>g Downs, Queensl<strong>and</strong>, III, An evaluation of currents<br />

methods of <strong>de</strong>riv<strong>in</strong>g soil erodibilities (K factors), Aust. J. Soil<br />

Res. 22(4), 401–412.<br />

Mamo, M. & Bubenzer, G.D. (2001a) Detachment rate, soil<br />

erodibility <strong>and</strong> soil strength as <strong>in</strong>fluenced by liv<strong>in</strong>g plant roots<br />

part I: laboratory study. Trans. ASAE 44(5), 1167–1174.<br />

Mamo, M. & Bubenzer, G.D. (2001b) Detachment rate, soil<br />

erodibility <strong>and</strong> soil strength as <strong>in</strong>fluenced by liv<strong>in</strong>g plant roots<br />

part II: field study. Trans. ASAE 44(5), 1175–1181.<br />

MATLAB. (2010) Fuzzy Logic Toolbox. User’s Gui<strong>de</strong>. The<br />

Mathworks Inc.<br />

Merz, W. & Bryan, R.B. (1993) Critical threshold conditions for rill<br />

<strong>in</strong>itiation on s<strong>and</strong>y loam Brunisols: laboratory <strong>and</strong> field<br />

experiments <strong>in</strong> southern Ontario, Canada. Geo<strong>de</strong>rma 57(4), 357–<br />

385. doi: 10.1016/0016-7061(93)90050-U.<br />

Meyer-Peter, E. & Müller R. (1948) Formulas for bed-load transport.<br />

Proc. II Meet<strong>in</strong>g IARH, Stockholm, 39–64.<br />

Moody, J.A., Smith, J.D. & Ragan, B.W. (2005) Critical shear stress<br />

for erosion of cohesive soils subjected to temperatures<br />

typical of wildfire. J. Geophys. Res. 110, F01004. doi:<br />

10.1029/2004JF000141.<br />

Morrison, J.E., Richardson, C.W., Laflen, J.M. & Elliott, W.J.<br />

(1994) Rill erosion of a Vertisol with exten<strong>de</strong>d time s<strong>in</strong>ce tillage.<br />

Trans. ASAE 37(4), 1187–1196.<br />

Morgan, R.P.C., Qu<strong>in</strong>ton, J.N., Smith, R.E., Govers G., Poesen, J.W.<br />

A., Auerswald, K., Chisci, G., Torri, D. & Styczen, M.E. (1998)<br />

The European Soil Erosion Mo<strong>de</strong>l (EUROSEM): A dynamic<br />

approach for predict<strong>in</strong>g sediment transport from fields <strong>and</strong> small<br />

catchments. Earth Surf. Processes L<strong>and</strong>f. 23(6), 527–544. doi:<br />

10.1002/(SICI)1096-9837(199806)23:6.<br />

Nachtergaele, J. & Poesen, J. (2002) Spatial <strong>and</strong> temporal variations<br />

<strong>in</strong> resistance of loess-<strong>de</strong>rived soils to ephemeral gully erosion.<br />

European J. Soil Sci. 53(3), 449–463. doi: 10.1046/j.1365-<br />

2389.2002.00443.x.<br />

Near<strong>in</strong>g M.A., Foster G.R., Lane L.J. & F<strong>in</strong>kner S.C. (1989) A<br />

process-based soil erosion mo<strong>de</strong>l for USDA–Water Erosion<br />

Prediction Project technology. Trans. ASAE 32(5), 1587–1593.<br />

Near<strong>in</strong>g, M.A., Bulyg<strong>in</strong>, S.Y. & Kotova, M.M. (1998) Primary<br />

verification <strong>and</strong> adaptation of the WEPP mo<strong>de</strong>l for Ukra<strong>in</strong>ian<br />

conditions: problems, possible solutions, <strong>and</strong> perspectives.<br />

Pochvove<strong>de</strong>nie 31(2), 96–99.<br />

Norton, L.D. & Brown, L.C., (1992) Time-effect on water erosion<br />

for ridge tillage. Trans. ASAE 35(2), 473–478. 1992.<br />

Lambe, T.W. & Whitman, R.V. (1972) Mecanica <strong>de</strong> Suelos. Ed.<br />

Limusa. Mexico.<br />

Panigrahi, D.P. & Mujumdar, P.P. (2000) Reservoir operation<br />

mo<strong>de</strong>ll<strong>in</strong>g with Fuzzy Logic. Water Res. Manag. 14(2) 89–109.<br />

doi: 10.1023/A:1008170632582.<br />

Parthenia<strong>de</strong>s, E. (1965) Erosion <strong>and</strong> <strong>de</strong>position of cohesive soils.<br />

Journal of the Hydraulics Division. Proc. American Society of<br />

Civil Eng<strong>in</strong>eers, 105–139.<br />

Prosser, I.P., Dietrich, W.E. & Stevenson, J. (1995) Flow resistance<br />

<strong>and</strong> sediment transport by concentrated overl<strong>and</strong> flow <strong>in</strong> a<br />

grassl<strong>and</strong> valley. Geomorphol. 13(1), 73–86. doi:10.1016/0169-<br />

555x(95)00020-6.<br />

Prosser, I.P. (1996) Thresholds of channel <strong>in</strong>itiation <strong>in</strong> historical <strong>and</strong><br />

Holocene times. Adv. Hills. Processes 2(7), 687–708.<br />

Rapp, I. (1988) Effects of soil properties <strong>and</strong> experimental<br />

conditions on the rill erodibilities of selected soils. Ph. D. Thesis,<br />

Faculty of Biological <strong>and</strong> Agricultural Sciences, University of<br />

Pretoria, South Africa.<br />

Ramirez, H. & De La Vara, R. (2004) Análisis y diseño <strong>de</strong><br />

experimentos. Mc Graw Hill. México.<br />

Rauws, G. (1987) The <strong>in</strong>itiation of rills on plane beds of noncohesive<br />

sediments. In: Catena Supplement, 8, 107–118.<br />

Rauws, G. & Govers, G. (1988) Hydraulic <strong>and</strong> soil mechanic aspects<br />

of rill generation on agricultural soils. J. Soil Sci. 39(2), 111–124.<br />

Ranieri, S.B.L, Sparovek, G., Demaria, I.C. & Flanagan, D.C.<br />

(1999) Erosion rate estimation us<strong>in</strong>g USLE <strong>and</strong> WEPP on a<br />

Brazilian watershed. Proc. International Soil Conservation<br />

Organization Conference. West Lafayette, IN.<br />

Renard, K.G., Foster, G.R., Weesies, G.A, McCool D.K. & Yo<strong>de</strong>r,<br />

D.C. (1997a) Predict<strong>in</strong>g Ra<strong>in</strong>fall Erosion Losses: a Gui<strong>de</strong> to<br />

Conservation Plann<strong>in</strong>g with the Revised Universal Soil Loss<br />

Equation (RUSLE). USDA Agricultural H<strong>and</strong>book 703. US<br />

Government Pr<strong>in</strong>t<strong>in</strong>g Office: Wash<strong>in</strong>gton, DC.<br />

Renard, K.G., Foster, G.R., Weesies, G.A. & Porter J.P. (1997b)<br />

RUSLE – Revised Universal Soil Loss Equation. J. Soil Water<br />

Conserv. 49(3), 213–220.<br />

Reichert, J.M., Schäfer, M.J., Cassol, E.A. & Norton, L.D. (2001)<br />

Interrill <strong>and</strong> rill erosion on a tropical s<strong>and</strong>y loam soil affected by<br />

tillage <strong>and</strong> consolidation. In: Stott, D.E., Mohtar, R.H. &<br />

Ste<strong>in</strong>hardt, G.C. (eds.), Susta<strong>in</strong><strong>in</strong>g the Global Farm. Proc. 10th<br />

International Soil Conservation Organization Meet<strong>in</strong>g, May 24–<br />

29, 1999, Purdue University <strong>and</strong> the USDA-ARS Soil Erosion<br />

Research Laboratory, USA.<br />

Santoro, V.C., Amore, E., Modica, C. & Near<strong>in</strong>g, M.A. (2002)<br />

Application of two erosion mo<strong>de</strong>ls to a large Sicilian bas<strong>in</strong>. Proc.<br />

Int. Congress of European Soc. for Soil Conservation, Valencia.<br />

Santos, C.A.G., Sr<strong>in</strong>ivasan, V.S., Suzuki, K. & Watanabe, M. (2003)<br />

Application of an optimization technique to a physically based<br />

erosion mo<strong>de</strong>l. Hydrol. Processes 47, 989–1003, doi:<br />

10.1002/hyp.1176.<br />

Savabi, M.R., Klik, A., Grulich, K., Mitchell, J.K. & Near<strong>in</strong>g, M.A.<br />

(1996) Application of WEPP <strong>and</strong> GIS on small watersheds <strong>in</strong><br />

USA <strong>and</strong> Austria. Proc. HydroGIS 96: Application of Geographic<br />

Information Systems <strong>in</strong> Hydrology <strong>and</strong> Water Resources<br />

Management. IAHS Publication 235.<br />

Simons, D. B., Li, R.M. & Fullerton, L. (1981) Theoretically <strong>de</strong>rived<br />

sediment transport equations for Pima County, Arizona. Prepared<br />

for Pima County DOT <strong>and</strong> Flood Control District, Tucson,<br />

Arizona, Colorado.<br />

Sha<strong>in</strong>berg, I., Laflen, J.M., Bradford, J.M. & Norton, L.D. (1994)<br />

Hydraulic flow <strong>and</strong> water quality characteristics <strong>in</strong> rill<br />

erosion. Soil Sci. Soc. Am. J. 58(4), 1007–1012. doi:<br />

10.2136/sssaj1994.03615995005800040002x.<br />

Sha<strong>in</strong>berg, I., Goldste<strong>in</strong>, D. & Levy, G.J. (1996) Rill erosion<br />

<strong>de</strong>pen<strong>de</strong>nce on soil water content, ag<strong>in</strong>g, <strong>and</strong><br />

temperature. Soil Sci. Soc. Am. J. 60(3), 916–922.<br />

doi:10.2136/sssaj1996.03615995006000030034x.<br />

Sheridan, G.J., So, H.B., Loch, R.J., Pocknee, C. & Walker, C.M.<br />

(2000a) Use of laboratory-scale rill <strong>and</strong> <strong>in</strong>terrill erodibility<br />

measurements for the prediction of hillslope-scale erosion on<br />

rehabilitated coal m<strong>in</strong>e soils <strong>and</strong> overbur<strong>de</strong>ns. Aust. J. Soil Res.<br />

38(2), 285–297. doi:10.1071/SR99039.<br />

Sheridan, G.J., So, H.B., Loch, R.J. & Walker, C.M. (2000b)<br />

Estimation of erosion mo<strong>de</strong>l erodibility parameters from media<br />

properties. Australian J. Soil Res. 38(2), 256–284. doi:<br />

10.1071/SR99041.<br />

Silva, R.M., Santos, C.A.G. & Silva, L.P. (2007) Evaluation soil loss<br />

<strong>in</strong> Guaraira bas<strong>in</strong> by GIS <strong>and</strong> remote sens<strong>in</strong>g based mo<strong>de</strong>l. J.<br />

Urban <strong>and</strong> Environ. Eng. 1(2), 44–52, doi:<br />

10.4090/juee.2007.v1n2.044052.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010


Márquez <strong>and</strong> Guevara-Pérez<br />

104<br />

Slattery, M.C. & Bryan, R.B. (1992) Hydraulic conditions for rill<br />

<strong>in</strong>cision un<strong>de</strong>r simulated ra<strong>in</strong>fall: a laboratory experiment. Earth<br />

Surf. Processes L<strong>and</strong>f. 17(1), 127–146. doi:<br />

10.1002/esp.3290170203.<br />

Smerdon, E.T. (1964) Effect of ra<strong>in</strong>fall on critical tractive forces <strong>in</strong><br />

channels with shallow flow. Trans. ASAE, Paper No. 63-700.<br />

Smerdon, E.T. & Beasley, R.P. (1959) The tractive force theory<br />

applied to stability of open channels <strong>in</strong> cohesive soils.<br />

Agricultural Experiment Station University of Missouri Research<br />

Bullet<strong>in</strong> 715.<br />

Smith, R. E., Goodrich, D. & Qu<strong>in</strong>ton, J. N. (1995) Dynamic<br />

distributed simulation of watershed erosion: the KINEROS2 <strong>and</strong><br />

EUROSEM mo<strong>de</strong>ls. J. Soil Water Conserv. 50(5), 517–520.<br />

Terzaghi, K. & Peck, R.B. (1967) Soil Mechanics <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g<br />

Practice, 2a. ed. John Wiley <strong>and</strong> Sons, New York.<br />

Torri, D. (1987) A theoretical study of soil <strong>de</strong>tachability. In: Catena<br />

Supplement, 10, 15–20.<br />

Trout, T.J. & Neibl<strong>in</strong>g, W.H. (1993) Erosion <strong>and</strong> sedimentation<br />

processes on irrigated fields. J. Irrig. Dra<strong>in</strong>age Engr. ASCE<br />

119(6), 947–963. doi: 10.1061/(ASCE)0733-<br />

9437(1993)119:6(947).<br />

Trout. T.J. (1996) Furrow erosion <strong>and</strong> sedimentation: on field<br />

distribution. Trans. ASAE 39(5), 1717–1723. 1996<br />

Trout, T.J. (1999) Sediment transport <strong>in</strong> irrigation furrows. In:<br />

Susta<strong>in</strong><strong>in</strong>g the Global Farm: Selected Papers from the 10th Intl.<br />

Soil Conservation Organization Meet<strong>in</strong>g, 710–716. In: Stott, D.E.,<br />

Mothar, R.H. & Ste<strong>in</strong>hardt, G.C. (eds.) West Lafayette, Ind.:<br />

Purdue University <strong>and</strong> USDA-ARS National Soil Erosion<br />

Research Laboratory.<br />

Van Klaveren, R.W. & MccooL, D.K. (1998) Erodibility <strong>and</strong> critical<br />

shear of a previously frozen soil. Trans. ASAE 41(5), 1315–1321.<br />

West, L.T., Miller, W.P., Bruce, R.R., Langdale, G.W., Laflen, J.M.<br />

& Thomas, A.W. (1992) Cropp<strong>in</strong>g system <strong>and</strong> consolidation<br />

effects on rill erosion <strong>in</strong> the Georgia Piedmont.<br />

Soil Sci. Soc. Am. J. 56(4), 1238–1243. doi:<br />

10.2136/sssaj1992.03615995005600040038x.<br />

Wischmeier W.H. & Smith D.D. (1958) Ra<strong>in</strong>fall energy <strong>and</strong> its<br />

relationship to soil loss. Trans. Am. Geophys. Union 39(2), 285–<br />

291.<br />

Yal<strong>in</strong> Y.S. (1963) An expression for bed-load transportation.<br />

Journal of Hydraulics Division ASCE 89(HY3), 221–250.<br />

Zeleke, G. (1999) Application <strong>and</strong> adaptation of WEPP to the<br />

traditional farm<strong>in</strong>g system of the Ethiopian highl<strong>and</strong>s. Proc.<br />

International Soil Conservation Organization Conference. West<br />

Lafayette, Indiana.<br />

Zhang, X.C., Near<strong>in</strong>g, M.A., Risse, L.M. & McGregor, K.C. (1996)<br />

Evaluation of runoff <strong>and</strong> soil loss predictions us<strong>in</strong>g natural runoff<br />

plot data. Trans. ASAE 39(3), 855–863.<br />

Zhang, X.C., Li, Z.B. & D<strong>in</strong>g, W.F. (2005) Validation of WEPP<br />

sediment feedback relationships us<strong>in</strong>g spatially distributed rill<br />

erosion data. Soil Sci. Soc. Am. J. 69(5), 1140–1147.<br />

doi:10.2136/sssaj2004.0309.<br />

Zhu, J.C., Gantzer, C.J., Peyton, R.L., Alberts, E.E. & An<strong>de</strong>rson,<br />

S.H. (1995) Simulated small-channel bed scour <strong>and</strong> head cut<br />

erosion rates compared. Soil Sci. Soc. Am. J. 59(1), 211–218.<br />

doi:10.2136/sssaj1995.03615995005900010032x.<br />

Zhu, J.C., Gantzer, C.J., An<strong>de</strong>rson, S.H., Peyton, R.L. & Alberts,<br />

E.E. (2001) Comparison of concentrated flow-<strong>de</strong>tachment<br />

equations for low shear stress. Soil Till. Res. 61(3), 203–212.<br />

doi:10.1016/S0167-1987(01)00207-0.<br />

Journal of Urban <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g (JUEE), v.4, n.2, p.81-104, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!