Nonimaging Optics for Solar Thermal Power - School of Engineering ...
Nonimaging Optics for Solar Thermal Power - School of Engineering ... Nonimaging Optics for Solar Thermal Power - School of Engineering ...
Nonimaging Optics for Solar Thermal Power MERI Panel Dan David Symposium September 26, 2006 Roland Winston Schools of Engineering &Natural Sciences The University of California, Merced KAON 2005 International Workshop, Northwestern University, June 13-17
- Page 2 and 3: Can a Stationary Solar Concentrator
- Page 4 and 5: Engine 26 Fire House in Chicago
- Page 6 and 7: Applications for Concentrating Sola
- Page 8: 2-Years Research Project • Indust
- Page 11 and 12: XCPC Solar Thermal Collector at UC
- Page 13: Coriolis Force Flow Meter
- Page 16: 60.00% 50.00% 40.00% 30.00% Efficie
<strong>Nonimaging</strong> <strong>Optics</strong> <strong>for</strong> <strong>Solar</strong> <strong>Thermal</strong><br />
<strong>Power</strong><br />
MERI Panel<br />
Dan David Symposium<br />
September 26, 2006<br />
Roland Winston<br />
<strong>School</strong>s <strong>of</strong> <strong>Engineering</strong><br />
&Natural Sciences<br />
The University <strong>of</strong> Cali<strong>for</strong>nia,<br />
Merced<br />
KAON 2005 International Workshop, Northwestern University, June 13-17
Can a Stationary <strong>Solar</strong> Concentrator<br />
Exist?<br />
• C parabolic trough
Flat plate collectors are limited to temperatures below 100°C<br />
80%<br />
70%<br />
Compound Parabolic Concentrator<br />
Efficiency<br />
60%<br />
50%<br />
40%<br />
30%<br />
20%<br />
10%<br />
0%<br />
Flat plate collector<br />
0 50 100 150 200<br />
Temperature above ambient [°C] (<strong>for</strong> 1,000 W/m 2 )
Engine 26 Fire House in Chicago
Potential <strong>for</strong> Concentrating <strong>Solar</strong> <strong>Thermal</strong><br />
• Viable replacement <strong>for</strong> electricity & natural gas<br />
– Electricity & natural gas demand increasing<br />
– Natural gas supply and cost increasingly uncertain<br />
• Technical innovation promises substantial cost reduction<br />
– Overseas technologies demonstrating cost effectiveness<br />
– Improved fabrication technologies<br />
• Flexible & distributed energy source<br />
– Heat (up to 200° C non-tracking)<br />
– Cold<br />
– <strong>Power</strong>
Applications <strong>for</strong> Concentrating <strong>Solar</strong> <strong>Thermal</strong><br />
• Industrial<br />
– Process industries<br />
– Chemical industry<br />
– Electronics industry<br />
• Agricultural<br />
– Food processing & refrigeration<br />
– Water treatment and desalination<br />
• Commercial<br />
– Space heating and cooling<br />
– Reliable/renewable/independent power
Cost Estimate<br />
Concentrating <strong>Solar</strong> <strong>Thermal</strong><br />
• Capital investment: $8/sqft = $86/m 2<br />
• Annual solar insolation in CA: 5.5 kWh/(m 2 *day)<br />
• Conversion efficiency: 50%<br />
• Heat production: 0.094 therm/(m 2 *day)<br />
► In a 10 years lifetime, the solar system produces heat <strong>for</strong> a<br />
predictable price <strong>of</strong> 25 cent per therm.<br />
► Industrial heat application:<br />
payback time: 3.1 years.<br />
Simple<br />
► Commercial heating and cooling application:<br />
Simple payback time: 5.0 years
2-Years Research Project<br />
• Industrial partner: SolFocus<br />
• United Technologies<br />
• Sponsor: Cali<strong>for</strong>nia Energy Commission<br />
• Budget: $1.4 million<br />
• Scope: Develop a high-temperature non-tracking<br />
collector<br />
– System efficiency <strong>of</strong> 50% at 180°C<br />
– Cost goal: $15 per square foot (production cost)<br />
– Mass manufacturability<br />
– Easy installation<br />
– System modularity<br />
– Market introduction within 2 years
Flat plate collectors are limited to temperatures below 100°C<br />
80%<br />
70%<br />
Compound Parabolic Concentrator<br />
Efficiency<br />
60%<br />
50%<br />
40%<br />
30%<br />
20%<br />
10%<br />
0%<br />
Flat plate collector<br />
0 50 100 150 200<br />
Temperature above ambient [°C] (<strong>for</strong> 1,000 W/m 2 )
XCPC <strong>Solar</strong> <strong>Thermal</strong> Collector at UC Merced <strong>Solar</strong> Testing Facility
UC Merced 250C <strong>Thermal</strong> Test Loop
Coriolis Force Flow Meter
70.00%<br />
65.00%<br />
Efficiency vs Temperature<br />
U-Tube<br />
60.00%<br />
55.00%<br />
50.00%<br />
45.00%<br />
40.00%<br />
80g/s<br />
NS<br />
100g/s<br />
NS<br />
120g/s<br />
NS<br />
140g/s<br />
NS<br />
80g/s<br />
EW<br />
100g/s<br />
EW<br />
120g/s<br />
35.00%<br />
30.00%<br />
70 90 110 130 150 170 190 210<br />
Temperature [C]
60.00%<br />
50.00%<br />
40.00%<br />
30.00%<br />
Efficiency (PSolRad)<br />
20.00%<br />
10.00%<br />
0.00%<br />
‐80.000 ‐60.000 ‐40.000 ‐20.000 0.000 20.000 40.000 60.000 80.000<br />
Azimuth Angle
Identified Application Areas <strong>for</strong><br />
XCPC<br />
• Water/space heating<br />
• Industrial process heat<br />
• Double-effect absorption cooling<br />
• Distributed <strong>Power</strong> Generation Using<br />
ORC<br />
• Water desalination