Nonimaging Optics for Solar Thermal Power - School of Engineering ...

Nonimaging Optics for Solar Thermal Power - School of Engineering ... Nonimaging Optics for Solar Thermal Power - School of Engineering ...

eng.ucmerced.edu
from eng.ucmerced.edu More from this publisher
24.05.2015 Views

Nonimaging Optics for Solar Thermal Power MERI Panel Dan David Symposium September 26, 2006 Roland Winston Schools of Engineering &Natural Sciences The University of California, Merced KAON 2005 International Workshop, Northwestern University, June 13-17

<strong>Nonimaging</strong> <strong>Optics</strong> <strong>for</strong> <strong>Solar</strong> <strong>Thermal</strong><br />

<strong>Power</strong><br />

MERI Panel<br />

Dan David Symposium<br />

September 26, 2006<br />

Roland Winston<br />

<strong>School</strong>s <strong>of</strong> <strong>Engineering</strong><br />

&Natural Sciences<br />

The University <strong>of</strong> Cali<strong>for</strong>nia,<br />

Merced<br />

KAON 2005 International Workshop, Northwestern University, June 13-17


Can a Stationary <strong>Solar</strong> Concentrator<br />

Exist?<br />

• C parabolic trough


Flat plate collectors are limited to temperatures below 100°C<br />

80%<br />

70%<br />

Compound Parabolic Concentrator<br />

Efficiency<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Flat plate collector<br />

0 50 100 150 200<br />

Temperature above ambient [°C] (<strong>for</strong> 1,000 W/m 2 )


Engine 26 Fire House in Chicago


Potential <strong>for</strong> Concentrating <strong>Solar</strong> <strong>Thermal</strong><br />

• Viable replacement <strong>for</strong> electricity & natural gas<br />

– Electricity & natural gas demand increasing<br />

– Natural gas supply and cost increasingly uncertain<br />

• Technical innovation promises substantial cost reduction<br />

– Overseas technologies demonstrating cost effectiveness<br />

– Improved fabrication technologies<br />

• Flexible & distributed energy source<br />

– Heat (up to 200° C non-tracking)<br />

– Cold<br />

– <strong>Power</strong>


Applications <strong>for</strong> Concentrating <strong>Solar</strong> <strong>Thermal</strong><br />

• Industrial<br />

– Process industries<br />

– Chemical industry<br />

– Electronics industry<br />

• Agricultural<br />

– Food processing & refrigeration<br />

– Water treatment and desalination<br />

• Commercial<br />

– Space heating and cooling<br />

– Reliable/renewable/independent power


Cost Estimate<br />

Concentrating <strong>Solar</strong> <strong>Thermal</strong><br />

• Capital investment: $8/sqft = $86/m 2<br />

• Annual solar insolation in CA: 5.5 kWh/(m 2 *day)<br />

• Conversion efficiency: 50%<br />

• Heat production: 0.094 therm/(m 2 *day)<br />

► In a 10 years lifetime, the solar system produces heat <strong>for</strong> a<br />

predictable price <strong>of</strong> 25 cent per therm.<br />

► Industrial heat application:<br />

payback time: 3.1 years.<br />

Simple<br />

► Commercial heating and cooling application:<br />

Simple payback time: 5.0 years


2-Years Research Project<br />

• Industrial partner: SolFocus<br />

• United Technologies<br />

• Sponsor: Cali<strong>for</strong>nia Energy Commission<br />

• Budget: $1.4 million<br />

• Scope: Develop a high-temperature non-tracking<br />

collector<br />

– System efficiency <strong>of</strong> 50% at 180°C<br />

– Cost goal: $15 per square foot (production cost)<br />

– Mass manufacturability<br />

– Easy installation<br />

– System modularity<br />

– Market introduction within 2 years


Flat plate collectors are limited to temperatures below 100°C<br />

80%<br />

70%<br />

Compound Parabolic Concentrator<br />

Efficiency<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Flat plate collector<br />

0 50 100 150 200<br />

Temperature above ambient [°C] (<strong>for</strong> 1,000 W/m 2 )


XCPC <strong>Solar</strong> <strong>Thermal</strong> Collector at UC Merced <strong>Solar</strong> Testing Facility


UC Merced 250C <strong>Thermal</strong> Test Loop


Coriolis Force Flow Meter


70.00%<br />

65.00%<br />

Efficiency vs Temperature<br />

U-Tube<br />

60.00%<br />

55.00%<br />

50.00%<br />

45.00%<br />

40.00%<br />

80g/s<br />

NS<br />

100g/s<br />

NS<br />

120g/s<br />

NS<br />

140g/s<br />

NS<br />

80g/s<br />

EW<br />

100g/s<br />

EW<br />

120g/s<br />

35.00%<br />

30.00%<br />

70 90 110 130 150 170 190 210<br />

Temperature [C]


60.00%<br />

50.00%<br />

40.00%<br />

30.00%<br />

Efficiency (PSolRad)<br />

20.00%<br />

10.00%<br />

0.00%<br />

‐80.000 ‐60.000 ‐40.000 ‐20.000 0.000 20.000 40.000 60.000 80.000<br />

Azimuth Angle


Identified Application Areas <strong>for</strong><br />

XCPC<br />

• Water/space heating<br />

• Industrial process heat<br />

• Double-effect absorption cooling<br />

• Distributed <strong>Power</strong> Generation Using<br />

ORC<br />

• Water desalination

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!