01.06.2015 Views

Quadratic Forms and Closed Geodesics

Quadratic Forms and Closed Geodesics

Quadratic Forms and Closed Geodesics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

Outline<br />

<strong>Quadratic</strong> <strong>Forms</strong> <strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Yiannis Petridis 1<br />

1 University College London<br />

January 8, 2010


Outline<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic surfaces<br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

<strong>Closed</strong> <strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

◮ Algorithm for solving<br />

x 2 − 2y 2 = ±1<br />

(Pythagoreans)<br />

◮ Start with<br />

◮ We get<br />

x 1 = 1, y 1 = 1<br />

(x 2 , y 2 ) = (3, 2)<br />

(x 3 , y 3 ) = (7, 5)<br />

(x 4 , y 4 ) = (17, 12)<br />

◮ Recurrences<br />

x n+1 = x n + 2y n<br />

y n+1 = x n + y n<br />

◮ Fundamental solution:<br />

1 + √ 2<br />

x n + √ 2y n = (1 + √ 2) n<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

◮ Algorithm for solving<br />

x 2 − 2y 2 = ±1<br />

(Pythagoreans)<br />

◮ Start with<br />

◮ We get<br />

x 1 = 1, y 1 = 1<br />

(x 2 , y 2 ) = (3, 2)<br />

(x 3 , y 3 ) = (7, 5)<br />

(x 4 , y 4 ) = (17, 12)<br />

◮ Recurrences<br />

x n+1 = x n + 2y n<br />

y n+1 = x n + y n<br />

◮ Fundamental solution:<br />

1 + √ 2<br />

x n + √ 2y n = (1 + √ 2) n<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

◮ Algorithm for solving<br />

x 2 − 2y 2 = ±1<br />

(Pythagoreans)<br />

◮ Start with<br />

◮ We get<br />

x 1 = 1, y 1 = 1<br />

(x 2 , y 2 ) = (3, 2)<br />

(x 3 , y 3 ) = (7, 5)<br />

(x 4 , y 4 ) = (17, 12)<br />

◮ Recurrences<br />

x n+1 = x n + 2y n<br />

y n+1 = x n + y n<br />

◮ Fundamental solution:<br />

1 + √ 2<br />

x n + √ 2y n = (1 + √ 2) n<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

◮ Algorithm for solving<br />

x 2 − 2y 2 = ±1<br />

(Pythagoreans)<br />

◮ Start with<br />

◮ We get<br />

x 1 = 1, y 1 = 1<br />

(x 2 , y 2 ) = (3, 2)<br />

(x 3 , y 3 ) = (7, 5)<br />

(x 4 , y 4 ) = (17, 12)<br />

◮ Recurrences<br />

x n+1 = x n + 2y n<br />

y n+1 = x n + y n<br />

◮ Fundamental solution:<br />

1 + √ 2<br />

x n + √ 2y n = (1 + √ 2) n<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

◮ Algorithm for solving<br />

x 2 − 2y 2 = ±1<br />

(Pythagoreans)<br />

◮ Start with<br />

◮ We get<br />

x 1 = 1, y 1 = 1<br />

(x 2 , y 2 ) = (3, 2)<br />

(x 3 , y 3 ) = (7, 5)<br />

(x 4 , y 4 ) = (17, 12)<br />

◮ Recurrences<br />

x n+1 = x n + 2y n<br />

y n+1 = x n + y n<br />

◮ Fundamental solution:<br />

1 + √ 2<br />

x n + √ 2y n = (1 + √ 2) n<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Class Numbers<br />

h(d) = number of inequivalent forms of discriminant d.<br />

h(d) d=<br />

1 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53<br />

2 40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165<br />

3 229, 257, 316, 321, 469, 473, 568, 733, 761, 892<br />

4 145, 328, 445, 505, 520, 680, 689, 777, 780, 793<br />

5 401, 817, 1093, 1393, 1429, 1641, 1756, 1897, ...<br />

◮ D = {d|d > 0, d ≡ 0, 1 (mod 4), d ≠ □}<br />

◮ x 2 − dy 2 = 4, fundamental solution (t, u)<br />

ɛ d = t + u√ d<br />

2<br />

◮ Gauss, Siegel (1944)<br />

∑<br />

h(d) log ɛ d = π2 x 3/2<br />

+ O(x log x).<br />

18ζ(3)<br />

d∈D,d≤x<br />

ζ(s) =<br />

∞∑<br />

n=1<br />

1<br />

, R(s) > 1.<br />

ns <strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Class Numbers<br />

h(d) = number of inequivalent forms of discriminant d.<br />

h(d) d=<br />

1 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53<br />

2 40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165<br />

3 229, 257, 316, 321, 469, 473, 568, 733, 761, 892<br />

4 145, 328, 445, 505, 520, 680, 689, 777, 780, 793<br />

5 401, 817, 1093, 1393, 1429, 1641, 1756, 1897, ...<br />

◮ D = {d|d > 0, d ≡ 0, 1 (mod 4), d ≠ □}<br />

◮ x 2 − dy 2 = 4, fundamental solution (t, u)<br />

ɛ d = t + u√ d<br />

2<br />

◮ Gauss, Siegel (1944)<br />

∑<br />

h(d) log ɛ d = π2 x 3/2<br />

+ O(x log x).<br />

18ζ(3)<br />

d∈D,d≤x<br />

ζ(s) =<br />

∞∑<br />

n=1<br />

1<br />

, R(s) > 1.<br />

ns <strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Class Numbers<br />

h(d) = number of inequivalent forms of discriminant d.<br />

h(d) d=<br />

1 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53<br />

2 40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165<br />

3 229, 257, 316, 321, 469, 473, 568, 733, 761, 892<br />

4 145, 328, 445, 505, 520, 680, 689, 777, 780, 793<br />

5 401, 817, 1093, 1393, 1429, 1641, 1756, 1897, ...<br />

◮ D = {d|d > 0, d ≡ 0, 1 (mod 4), d ≠ □}<br />

◮ x 2 − dy 2 = 4, fundamental solution (t, u)<br />

ɛ d = t + u√ d<br />

2<br />

◮ Gauss, Siegel (1944)<br />

∑<br />

h(d) log ɛ d = π2 x 3/2<br />

+ O(x log x).<br />

18ζ(3)<br />

d∈D,d≤x<br />

ζ(s) =<br />

∞∑<br />

n=1<br />

1<br />

, R(s) > 1.<br />

ns <strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


From <strong>Quadratic</strong> <strong>Forms</strong> to Hyperbolic<br />

Geometry<br />

Q(x, y) = ax 2 + bxy + cy 2<br />

az 2 + bz + c = 0 ⇔ z 1 = −b+√ d<br />

2a<br />

, z 2 = −b−√ d<br />

2a<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

*<br />

(!b!d^(1/2))/2a<br />

x<br />

(!b+d^(1/2))/2a


From <strong>Quadratic</strong> <strong>Forms</strong> to Hyperbolic<br />

Geometry<br />

Q(x, y) = ax 2 + bxy + cy 2<br />

az 2 + bz + c = 0 ⇔ z 1 = −b+√ d<br />

2a<br />

, z 2 = −b−√ d<br />

2a<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

(!b!d^(1/2))/2a<br />

x<br />

(!b+d^(1/2))/2a


Linear Fractional Transformations <strong>and</strong><br />

SL 2 (R)<br />

T (z) = az + b , ad − bc ≠ 0<br />

cz + d<br />

maps ( circles)<br />

to circles<br />

a b<br />

γ =<br />

→ T (z)<br />

c d<br />

{ ( a b<br />

SL 2 (R) = γ =<br />

c d<br />

acts on<br />

Upper-half space<br />

)<br />

}<br />

, ad − bc = 1<br />

H = {z = x + iy, y > 0} ds 2 = dx 2 + dy 2<br />

z(t) = x(t) + iy(t), t ∈ [a, b], L = ∫ b<br />

a<br />

◮ z → z + 1<br />

y<br />

√ 2<br />

x ′ (t) 2 +y ′ (t) 2<br />

y(t)<br />

dt<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

◮ z → − 1 z<br />

Γ = SL 2 (Z) = {γ ∈ SL 2 (R), a, b, c, d ∈ Z}


The Hyperbolic Disc<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Model of hyperbolic<br />

geometry<br />

H = {z = x + iy, |z| < 1}<br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

◮ Hyperbolic metric<br />

ds 2 =<br />

dx 2 + dy 2<br />

(1 − (x 2 + y 2 )) 2<br />

d(0, z) = ln 1 + |z|<br />

1 − |z| ,


<strong>Geodesics</strong> in Hyperbolic Disc<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

◮ Semicircles perpendicular to<br />

boundary<br />

◮ Diameters


<strong>Geodesics</strong> in the Upper Half Plane<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

(!b!d^(1/2))/2a<br />

x<br />

(!b+d^(1/2))/2a


Fundamental Domains<br />

z ∼ w ⇔ w = T (z), T ∈ Γ<br />

H/Γ the modular surface<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Arithmetic subgroups of SL 2 (Z)<br />

Example<br />

Fundamental Domain for Γ 0 (6)<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Hecke subgroups Γ 0 (N)<br />

az + b<br />

cz + d ∈ SL 2(Z), N|c


¡<br />

Tesselations<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

T 1 F<br />

F<br />

TF<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

T 1 JF<br />

JF<br />

T JF<br />

T 2 UTF<br />

T 1 U 2 F<br />

T 1 UTF<br />

U 2 F<br />

UTF<br />

TU 2 F<br />

1<br />

0 1<br />

1<br />

Figure: Translates of the<br />

fundamental domain of<br />

SL 2 (Z)<br />

Figure: Triangles in the<br />

disc


Equivalence of <strong>Quadratic</strong> forms <strong>and</strong><br />

SL 2 (R)<br />

Q ′ ∼ Q ⇔ M ′ = γ t Mγ, γ ∈ Γ.<br />

Q → g =<br />

( t−bu<br />

)<br />

2<br />

−cu<br />

∈ Γ<br />

au<br />

t+bu<br />

2<br />

where t 2 − du 2 = 4 <strong>and</strong> (t, u) is the fundamental<br />

(smallest solution).<br />

Remarks: 1. g has eigenvalue ɛ d = t + u√ d<br />

2<br />

2. Most g ∈ SL 2 (R) can be diagonalised<br />

g ∼<br />

( N(g)<br />

1/2<br />

0<br />

0 N(g) −1/2 )<br />

.<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation <strong>and</strong> Lengths of <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

N(g)<br />

1<br />

∫ N(g)<br />

1<br />

1<br />

y dy = ln N(g) = ln(ɛ2 d )<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

x<br />

1<br />

N(g)<br />

Theorem<br />

The lengths of the closed geodesics for the hyperbolic<br />

surface H/SL 2 (Z) are 2 log ɛ d with multiplicity h(d),<br />

d ∈ D.


Distribution <strong>Closed</strong> geodesics of H/Γ<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Closed</strong> geodesics γ.<br />

Prime Geodesic Theorem Prime Number Theorem<br />

◮ π(x) = {γ, length (γ) ≤ ln x}<br />

π(x) ∼<br />

x<br />

◮ π(x) = {p prime, p ≤ x}<br />

ln x , x → ∞ π(x) ∼<br />

x<br />

ln x , x → ∞<br />

◮ Class number distribution (Sarnak, 1982)<br />

∑<br />

d∈D,ɛ d ≤x<br />

h(d) ∼ x 2<br />

2 ln x<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Distribution <strong>Closed</strong> geodesics of H/Γ<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Closed</strong> geodesics γ.<br />

Prime Geodesic Theorem Prime Number Theorem<br />

◮ π(x) = {γ, length (γ) ≤ ln x}<br />

π(x) ∼<br />

x<br />

◮ π(x) = {p prime, p ≤ x}<br />

ln x , x → ∞ π(x) ∼<br />

x<br />

ln x , x → ∞<br />

◮ Class number distribution (Sarnak, 1982)<br />

∑<br />

d∈D,ɛ d ≤x<br />

h(d) ∼ x 2<br />

2 ln x<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Distribution <strong>Closed</strong> geodesics of H/Γ<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Closed</strong> geodesics γ.<br />

Prime Geodesic Theorem Prime Number Theorem<br />

◮ π(x) = {γ, length (γ) ≤ ln x}<br />

π(x) ∼<br />

x<br />

◮ π(x) = {p prime, p ≤ x}<br />

ln x , x → ∞ π(x) ∼<br />

x<br />

ln x , x → ∞<br />

◮ Class number distribution (Sarnak, 1982)<br />

∑<br />

d∈D,ɛ d ≤x<br />

h(d) ∼ x 2<br />

2 ln x<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


The Laplace Operator<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

( )<br />

∂<br />

∆ = −y 2 2<br />

∂x 2 + ∂2<br />

∂y 2<br />

∆f = 0 ⇔ f is harmonic<br />

Eigenvalue problem: Solve<br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

∆f = λf<br />

Infinite Matrix, no determinant to compute eigenvalues.<br />

I require f (γz) = f (z), γ ∈ Γ (automorphic form)


Contour plots of eigenfunctions of H/Γ 0 (7)<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Figure: λ = 37.08033 λ = 692.7292


Contour plots of eigenfunctions of H/Γ 0 (3)<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Figure: λ = 26.3467 λ = 60.4397


The Riemann Hypothesis<br />

◮ Think of<br />

∞∑<br />

n=0<br />

z n = 1<br />

1 − z .<br />

Series: |z| < 1, 1/(1 − z), z ≠ 1.<br />

∞∑ 1<br />

◮ ζ(s) = ,<br />

ns R(s) > 1.<br />

n=1<br />

Extend to 1/2 ≤ R(s), then to C using functional<br />

equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

−1+s Γ((1 − s)/2)<br />

ζ(s) = π ζ(1 − s).<br />

Γ(s/2)<br />

Zeros: ρ, 1 − ρ symmetric around R(s) = 1/2.<br />

Riemann Hypothesis<br />

R(ρ) = 1/2 ALWAYS


The Riemann Hypothesis<br />

◮ Think of<br />

∞∑<br />

n=0<br />

z n = 1<br />

1 − z .<br />

Series: |z| < 1, 1/(1 − z), z ≠ 1.<br />

∞∑ 1<br />

◮ ζ(s) = ,<br />

ns R(s) > 1.<br />

n=1<br />

Extend to 1/2 ≤ R(s), then to C using functional<br />

equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

−1+s Γ((1 − s)/2)<br />

ζ(s) = π ζ(1 − s).<br />

Γ(s/2)<br />

Zeros: ρ, 1 − ρ symmetric around R(s) = 1/2.<br />

Riemann Hypothesis<br />

R(ρ) = 1/2 ALWAYS


The Riemann Hypothesis<br />

◮ Think of<br />

∞∑<br />

n=0<br />

z n = 1<br />

1 − z .<br />

Series: |z| < 1, 1/(1 − z), z ≠ 1.<br />

∞∑ 1<br />

◮ ζ(s) = ,<br />

ns R(s) > 1.<br />

n=1<br />

Extend to 1/2 ≤ R(s), then to C using functional<br />

equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

−1+s Γ((1 − s)/2)<br />

ζ(s) = π ζ(1 − s).<br />

Γ(s/2)<br />

Zeros: ρ, 1 − ρ symmetric around R(s) = 1/2.<br />

Riemann Hypothesis<br />

R(ρ) = 1/2 ALWAYS


Relations of RH with spectral theory<br />

Scattering of waves on H/Γ<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

φ(s) = √ π<br />

Γ(s − 1/2)ζ(2s − 1)<br />

Γ(s)ζ(2s)<br />

Poles of φ(s) at ρ/2.<br />

RH⇔Poles of φ(s), have real part 1/4.


Duality between periods <strong>and</strong> eigenvalues<br />

Physical background Hyperbolic manifolds Eigenfunctions Periodic orbits Free groups<br />

Duality between periods <strong>and</strong> eigenvalues<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Periods<br />

Eigenvalues


Duality between periods <strong>and</strong> eigenvalues<br />

Physical background Hyperbolic manifolds Eigenfunctions Periodic orbits Free groups<br />

Duality between periods <strong>and</strong> eigenvalues<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Periods<br />

Trace Formulae<br />

Eigenvalues


Duality between periods <strong>and</strong> eigenvalues<br />

Physical background Hyperbolic manifolds Eigenfunctions Periodic orbits Free groups<br />

Duality between periods <strong>and</strong> eigenvalues<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Periods<br />

Trace Formulae<br />

Eigenvalues<br />

Lengths of closed<br />

geodesics<br />

Selberg Trace formula<br />

Laplace eigenvalues


Simple trace formula<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

n∑<br />

Tr(A) = a ii =<br />

n∑<br />

i=1 j=1<br />

What is <strong>and</strong> how do I compute the trace of an operator?<br />

λ j<br />

Spectral Theory


Credits for the pictures<br />

1. V. Golovshanski, N. Motrov: preprint, Inst. Appl.<br />

Math. Khabarovsk (1982)<br />

2. D. Hejhal, B. Rackner: On the topography of Maass<br />

waveforms for PSL(2, Z ). Experiment. Math. 1<br />

(1992), no. 4, 275–305.<br />

3. A. Krieg: http://www.matha.rwthaachen.de/forschung/fundamentalbereich.html<br />

4. http://mathworld.wolfram.com/<br />

5. F. Stromberg:<br />

http://www.math.uu.se/ fredrik/research/gallery/<br />

6. H. Verrill: http://www.math.lsu.edu/ verrill/<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!