03.06.2015 Views

putrajaya lake

putrajaya lake

putrajaya lake

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

NATIONAL SEMINAR ON<br />

ECOSYSTEM MANAGEMENT FOR LAKES AND WETLANDS PUTRAJAYA 2013<br />

HYDRODYNAMIC AND ECOSYSTEM MODELLING<br />

OF PUTRAJAYA LAKE<br />

Dr. Zati Sharip<br />

Head Lake Research Unit<br />

Research Centre for Water Quality and Environment<br />

National Hydraulic Research Institute of Malaysia (NAHRIM)


Zati Sharip 1 , Normaliza Noordin 2 , Jarina M.Saman 2 ,<br />

Saim Suratman 1 , Ahmad Jamalluddin Shaaban 1 & Akashah Hj Majizat 2<br />

1<br />

National Hydraulic Research Institute of Malaysia (NAHRIM)<br />

2<br />

Lake and Wetland Unit, Putrajaya Corporation


Outlines<br />

• Introduction<br />

• Description of the Putrajaya Lake<br />

• Objectives<br />

• Materials and method<br />

• Data Collection<br />

• Model set up and simulation<br />

• Results<br />

• Summary


Malaysia’s administrative Centre<br />

Photo: Perbadanan Putrajaya<br />

PUTRAJAYA LAKE<br />

A scenic and self-sustaining ecosystem for<br />

recreation, sports and tourism


PUTRAJAYA LAKE AND WETLANDS<br />

• Part of Langat River<br />

Basin<br />

Langat River<br />

• Catchment area 51.0<br />

km 2<br />

• 56% discharges<br />

into wetlands<br />

• 44% flows directly<br />

into <strong>lake</strong>


THE PUTRAJAYA LAKE<br />

• Surface area of<br />

400 hectares<br />

• An average depth<br />

of 6.6 m<br />

• Mean hydraulic<br />

retention time of<br />

132 days<br />

Natural filtration system<br />

Source: Perbadanan Putrajaya


Challenges<br />

• Increasing development & land use<br />

changes<br />

• Vulnerable to pollution<br />

• The need to retain <strong>lake</strong> water quality at<br />

high standard<br />

‣ Integrated catchment management<br />

‣ Continuous environmental monitoring<br />

‣ Development of Ecosystem model


Objectives<br />

• To understand the ecohydrological<br />

dynamic for<br />

sustainable management of<br />

these urban water-bodies<br />

• To monitor the aquatic<br />

environment response to the<br />

increasing development and<br />

land-use changes, coupled<br />

with climate variations


Methodology<br />

Field Data:<br />

Meteorological, flow, Bathymetry<br />

Hydrodynamic model<br />

Ecosystem model<br />

Field data:<br />

Water quality, biological<br />

Calibration and verification<br />

Analysis


Data Collection<br />

Weather monitoring station<br />

Rainfall station<br />

Flow Measurement<br />

Water level Measurement<br />

Presint 13<br />

Presint 11<br />

Presint 1<br />

Presint 7<br />

Presint 2<br />

• Weather and rainfall<br />

monitoring<br />

Dam<br />

• Water level and flow<br />

measurement


Data Collection<br />

Biological Measurement<br />

WQ Measurement<br />

Diurnal WQ Measurement<br />

• Water quality measurement<br />

(monthly, bi-weekly, diurnal)<br />

Seri Wawasan<br />

Brudge<br />

Seri<br />

Bistari<br />

Bridge<br />

Photo: Perbadanan Putrajaya<br />

• Biological surveys<br />

Dam<br />

Photo: Perbadanan Putrajaya


Model set-up and assumptions<br />

• Lake shoreline and depth<br />

data - bathymetry survey<br />

• Complex morphology<br />

• Depth varies from ~ 3m<br />

(upstream) to ~14 m<br />

(downstream)<br />

0 305 610 m


Model set-up and assumptions<br />

• Grid size 100m x 100m<br />

• Inflow estimation based on<br />

designed flow ratio<br />

• Exclusion of groundwater<br />

exchange<br />

• Simulation period – dry<br />

season


Model Coupling<br />

Hydrodynamic Model<br />

Scalar transport<br />

Thermodynamics<br />

Boundary Conditions<br />

Initial Conditions<br />

Ecosystem Model<br />

Water Quality<br />

Biochemical<br />

parameters


Results<br />

Wind speed<br />

(m/s)<br />

Rainfall (mm)<br />

Air T (oC)<br />

6<br />

4<br />

2<br />

0<br />

07/05 17/05 27/05 06/06 16/06 26/06 06/07 16/07 26/07 05/08<br />

40<br />

20<br />

0<br />

07/05 17/05 27/05 06/06 16/06 26/06 06/07 16/07 26/07 05/08<br />

40<br />

30<br />

20<br />

07/05 17/05 27/05 06/06 16/06 26/06 06/07 16/07 26/07 05/08<br />

• Low wind<br />

speed<br />

• Low <strong>lake</strong><br />

inflow<br />

• High solar<br />

radiation<br />

Humidity (%)<br />

100<br />

50<br />

0<br />

07/05 17/05 27/05 06/06 16/06 26/06 06/07 16/07 26/07 05/08<br />

30<br />

Solar radiation<br />

(MJ/m2)<br />

20<br />

10<br />

0<br />

07/05 17/05 27/05 06/06 16/06 26/06 06/07 16/07 26/07 05/08


Diurnal variation<br />

a) Seri Bistari Bridge<br />

(a)<br />

T (oC)<br />

32<br />

31<br />

30<br />

0.3 m<br />

2.1 m<br />

4.4 m<br />

DO (mg/L)<br />

8<br />

6<br />

4<br />

0.3 m 2.1 m 4.4.m<br />

12:00 00:00 12:00<br />

2<br />

12:00 00:00 12:00<br />

b) Seri Wawasan Bridge<br />

(b)<br />

T (oC)<br />

32<br />

31<br />

30<br />

0.3 m<br />

2.2 m<br />

4.6 m<br />

12:00 00:00 12:00<br />

DO (mg/L)<br />

8<br />

6<br />

4<br />

2<br />

0.3 m 2.2 m 4.6 m<br />

12:00 00:00 12:00<br />

32<br />

0.3 m<br />

5.5 m<br />

8<br />

0.3 m 5.5 m 11.0 m<br />

c) Dam<br />

(c)<br />

T (oC)<br />

31<br />

30<br />

11.0 m<br />

DO (mg/L)<br />

6<br />

4<br />

12:00 00:00 12:00<br />

2<br />

12:00 00:00 12:00


Results<br />

• Water quality levels comply with the Class IIB<br />

requirement<br />

• Some parameters exceed the Putrajaya Lake and<br />

Wetlands Water Quality Standards<br />

• chlorophyll, total coliform and ammoniacal-N<br />

• TSI – Mesotrophic; TP


Results<br />

T (deg C)<br />

T (deg C)<br />

32<br />

31<br />

30<br />

04:48 09:36 14:24 19:12 00:00 04:48 09:36<br />

32<br />

31<br />

30<br />

04:48 09:36 14:24 19:12 00:00 04:48 09:36<br />

Reasonably matched<br />

between simulated and<br />

observed variables<br />

•Temperature<br />

•DO<br />

T (deg C)<br />

32<br />

31<br />

30<br />

04:48 09:36 14:24 19:12 00:00 04:48 09:36


Results<br />

Dissolved oxygen<br />

Phytoplankton<br />

Distribution of water quality during initial condition


Results<br />

High-wind event<br />

• South-west<br />

Simulated velocity under different wind condition


Results<br />

• Convective motion<br />

• Differential<br />

cooling<br />

Low-wind event<br />

Simulated velocity under different wind condition


Results<br />

High-wind event<br />

Low-wind event<br />

Simulated DO and phytoplankton under different wind condition


Summary<br />

• Coupled hydrodynamic and ecosystem modeling<br />

• Guide intensive and coordinated data collection<br />

program<br />

• Provide understanding on the eco-hydrological<br />

dynamic in <strong>lake</strong>s<br />

• Useful to monitor the aquatic environment<br />

response to the increasing development and landuse<br />

changes, coupled with climate variations


Way forward<br />

‣ Long-term simulation & validation<br />

‣ Continuous & intensive data<br />

‣ Model simulation to predict pollution scenarios<br />

and recommend mitigation program


Thank you<br />

For further details:<br />

Dr. Zati Sharip<br />

Lake Research Unit<br />

Research Centre for Water Quality and Env.<br />

National Hydraulic Research Institute of Malaysia<br />

Lot 5377, Jalan Putra Permai<br />

43300 Seri Kembangan, Selangor<br />

Email: zati@nahrim.gov.my<br />

Hj. Akashah Majizat<br />

Lake and Wetland Unit<br />

Putrajaya Corporation,<br />

24 Lebuh Perdana, Presint 3,<br />

62675 Putrajaya, Malaysia<br />

Email: akashah@ppj.gov.my

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!