Lecture 13: The Cauchy-Riemann Equations - Furman University
Lecture 13: The Cauchy-Riemann Equations - Furman University
Lecture 13: The Cauchy-Riemann Equations - Furman University
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
<strong>Lecture</strong> <strong>13</strong>:<br />
<strong>The</strong> <strong>Cauchy</strong>-<strong>Riemann</strong> <strong>Equations</strong><br />
Dan Sloughter<br />
<strong>Furman</strong> <strong>University</strong><br />
Mathematics 39<br />
March 29, 2004<br />
<strong>13</strong>.1 Necessity of the <strong>Cauchy</strong>-<strong>Riemann</strong> <strong>Equations</strong><br />
Suppose f is differentiable at a point z 0 ∈ C. If we write z = x + iy,<br />
z 0 = x 0 + iy 0 , ∆z = ∆x + i∆y, and<br />
then<br />
Hence<br />
f(z) = f(x + iy) = u(x, y) + iv(x, y),<br />
f(z 0 + ∆z) − f(z 0 ) = (u(x 0 + ∆x, y 0 + ∆y) + iv(x 0 + ∆x, y 0 + ∆y))<br />
f(z 0 + ∆z) − f(z 0 )<br />
∆z<br />
− (u(x 0 , y 0 ) + iv(x 0 , y 0 ))<br />
= (u(x 0 + ∆x, y 0 + ∆y) − u(x 0 , y ) ))<br />
+ i(v(x 0 + ∆x, y 0 + ∆y) − v(x 0 , y ) ).<br />
= u(x 0 + ∆x, y 0 + ∆y) − u(x 0 , y 0 )<br />
∆z<br />
+ i v(x 0 + ∆x, y 0 + ∆y) − v(x 0 , y 0 )<br />
.<br />
∆z<br />
If we let ∆z → 0 along the real axis, then ∆z = ∆x, and we have<br />
f ′ f(z 0 + ∆z) − f(z 0 )<br />
(z 0 ) = lim<br />
∆z→0 ∆z<br />
1
u(x 0 + ∆x, y 0 ) − u(x 0 , y 0 ) v(x 0 + ∆x, y 0 ) − v(x 0 , y 0 )<br />
= lim<br />
+ i lim<br />
∆x→0<br />
∆x<br />
∆x→0<br />
∆x<br />
= u x (x 0 , y 0 ) + iv x (x 0 , y 0 ).<br />
If we let ∆z → 0 along the imaginary axis, then ∆z = i∆y, and we have<br />
f ′ f(z 0 + ∆z) − f(z 0 )<br />
(z 0 ) = lim<br />
∆z→0 ∆z<br />
u(x 0 , y 0 + ∆y) − u(x 0 , y 0 )<br />
= lim<br />
∆y→0 i∆y<br />
= −iu y (x 0 , y 0 ) + v y (x 0 , y 0 ).<br />
It follows that<br />
v(x 0 , y ) + ∆y) − v(x 0 , y 0 )<br />
+ i lim<br />
∆y→0 i∆y<br />
u x (x 0 , y 0 ) = v y (x 0 , y 0 ) and u y (x 0 , y 0 ) = −v x (x 0 , y 0 ).<br />
We call these equations the <strong>Cauchy</strong>-<strong>Riemann</strong> equations.<br />
<strong>The</strong>orem <strong>13</strong>.1. Suppose f is differentiable at z 0 = x 0 + iy 0 and<br />
f(x + iy) = u(x, y) + iv(x, y).<br />
<strong>The</strong>n<br />
and<br />
u x (x 0 , y 0 ) = v y (x 0 , y 0 ) and u y (x 0 , y 0 ) = −v x (x 0 , y 0 )<br />
f ′ (z 0 ) = u x (x 0 , y 0 ) + iv x (x 0 , y 0 ).<br />
Example <strong>13</strong>.1. If f(z) = |z| 2 , then, writing f(x + iy) = u(x, y) + iv(x, y),<br />
Hence<br />
u(x, y) = x 2 + y 2 and v(x, y) = 0.<br />
u x (x, y) = 2x, u y (x, y) = 2y, and v x (x, y) = 0 = v y (x, y).<br />
Hence f satisfies the <strong>Cauchy</strong>-<strong>Riemann</strong> equations only at the origin, showing<br />
that, as we have seen before, f is not differentiable at any z ≠ 0.<br />
2
<strong>13</strong>.2 Sufficiency of the <strong>Cauchy</strong>-<strong>Riemann</strong> equations<br />
By themselves, the <strong>Cauchy</strong>-<strong>Riemann</strong> equations are not sufficient to guarantee<br />
the differentiability of a given function. However, the additional assumption<br />
of continuity of the partial derivatives does suffice to guarantee differentiability.<br />
<strong>The</strong>orem <strong>13</strong>.2. Suppose f is defined on an ɛ neighborhood U of a point<br />
z 0 = x 0 + y 0 ,<br />
f(x + iy) = u(x, y) + iv(x, y),<br />
and u x , u y , v x , and v y exist on U and are continuous at (x 0 , y 0 ). If<br />
u x (x 0 , y 0 ) = v y (x 0 , y 0 ) and u y (x 0 , y 0 ) = −v x (x 0 , y 0 ),<br />
then f is differentiable at z 0 .<br />
Proof. Let ∆z = ∆x + i∆y,<br />
∆u = u(x 0 + ∆x, y 0 + ∆y) − u(x 0 , y 0 ),<br />
and<br />
∆v = v(x 0 + ∆x, y 0 + ∆y) − v(x 0 , y 0 ).<br />
<strong>The</strong> key fact we need comes from a theorem of multi-variable calculus: under<br />
the conditions of the theorem, u and v are both differentiable functions. This<br />
means that there exist ɛ 1 and ɛ 2 , depending on ∆x and ∆y, such that<br />
∆u = u x (x 0 , y 0 )∆x + u y (x 0 , y 0 )∆y + ɛ 1 |∆z|<br />
and<br />
∆v = v x (x 0 , y 0 )∆x + v y (x 0 , y 0 )∆y + ɛ 2 |∆z|<br />
and both ɛ 1 → 0 and ɛ 2 → 0 as ∆z → 0. It follows that<br />
f(z 0 + ∆z) − f(z 0 ) = ∆u + i∆v<br />
= u x (x 0 , y 0 )∆x + u y (x 0 , y 0 )∆y + ɛ 1 |∆z|<br />
+ i(v x (x 0 , y 0 )∆x + v y (x 0 , y 0 )∆y + ɛ 2 |∆z|)<br />
= u x (x 0 , y 0 )∆x − v x (x 0 , y ) ∆y + iv x (x 0 , y 0 )∆x<br />
+ iu x (x 0 , y 0 )∆y + (ɛ 1 + iɛ 2 )|∆z|<br />
= u x (x 0 , y 0 )∆z + iv x (x 0 , y 0 )∆z + (ɛ 1 + iɛ 2 )|∆z|.<br />
3
Hence<br />
f ′ f(z 0 + ∆z) − f(z 0 )<br />
(z 0 ) = lim<br />
∆z→0<br />
(<br />
∆z<br />
= lim u x (x 0 , y 0 ) + iv x (x 0 , y 0 ) + (ɛ 1 + iɛ 2 ) |∆z| )<br />
∆z→0<br />
z<br />
= u x (x 0 , y 0 ) + iv x (u 0 , y 0 ),<br />
since<br />
and<br />
for all z.<br />
lim (ɛ 1 + ɛ 2 ) = 0<br />
∆z→0<br />
∣ ∣∣∣ |z|<br />
z ∣ = |z|<br />
|z| = 1<br />
Example <strong>13</strong>.2. It follows now from the previous example that f(z) = |z| 2<br />
is differentiable at z = 0 but not for any z ≠ 0.<br />
Example <strong>13</strong>.3. If f(z) = e z , then<br />
f(x + iy) = e x e iy = e x cos(x) + ie x sin(y).<br />
Hence<br />
Thus<br />
u(x, y) = e x cos(y) and v(x, y) = e x sin(y).<br />
u x (x, y) = e x cos(y) = v y and u y (x, y) = −e x sin(y) = −v x (x, y).<br />
Hence f is differentiable at every z ∈ C. Moreover,<br />
f ′ (z) = u x (x, y) + iv x (x, y) = e x cos(y) + ie x sin(y) = e z = f(z).<br />
4