Effect of alloy types on the anodizing process of aluminum
Effect of alloy types on the anodizing process of aluminum
Effect of alloy types on the anodizing process of aluminum
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
Abstract<br />
<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>alloy</str<strong>on</strong>g> <str<strong>on</strong>g>types</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>anodizing</strong> <strong>process</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aluminum</strong><br />
I. Tsangaraki-Kaplanoglou a, *, S. Theohari a , Th. Dimoger<strong>on</strong>takis a ,<br />
Yar-Ming Wang b , H<strong>on</strong>g-Hsiang (Harry) Kuo b , Sheila Kia c<br />
a Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, University <str<strong>on</strong>g>of</str<strong>on</strong>g> A<strong>the</strong>ns, Panepistimiopolis Zografou A<strong>the</strong>ns 157 71, Greece<br />
b General Motors Research and Development Center, Warren, MI, USA<br />
c General Motors Manufacturing Engineering, Warren, MI, USA<br />
Received 18 June 2004; accepted in revised form 4 July 2005<br />
Available <strong>on</strong>line 15 August 2005<br />
Specimens <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 5083 and AA 6111 (unheat- and heat-treated) were investigated in comparis<strong>on</strong> with <strong>the</strong> pure <strong>aluminum</strong> during<br />
<strong>anodizing</strong> in sulfuric acid bath using electrochemical techniques, SEM/EDS and XRF. The <str<strong>on</strong>g>alloy</str<strong>on</strong>g> type affects <strong>the</strong> kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong> but<br />
certain qualitative characteristics and <strong>the</strong> basic aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>anodizing</strong> mechanism are similar for <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s and pure <strong>aluminum</strong>. We<br />
found that for AA 6111 <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, <strong>the</strong> stage <str<strong>on</strong>g>of</str<strong>on</strong>g> rearrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pores during <strong>anodizing</strong> before <strong>the</strong> current reaches a steady-state value is<br />
missing due to enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements at <strong>the</strong> oxide/metal interface. For <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s under certain <strong>anodizing</strong> c<strong>on</strong>diti<strong>on</strong>s, formati<strong>on</strong><br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> a resistive film at <strong>the</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pores results in decreasing <strong>anodizing</strong> current. This phenomen<strong>on</strong> is more prevalent for AA 5083<br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g> than for AA 6111. For AA 6111 <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, <strong>the</strong> heat treatment affects <strong>anodizing</strong> kinetics and improves <strong>the</strong> <strong>anodizing</strong> efficiency.<br />
Understanding <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>alloy</str<strong>on</strong>g> <str<strong>on</strong>g>types</str<strong>on</strong>g> <strong>on</strong> <strong>anodizing</strong> <strong>process</strong> under various operating c<strong>on</strong>diti<strong>on</strong>s (voltage, temperature and sulfuric acid<br />
c<strong>on</strong>centrati<strong>on</strong>) will enable us to optimize porous oxide structures for improved coating performance in color ability and corrosi<strong>on</strong><br />
resistance.<br />
D 2005 Elsevier B.V. All rights reserved.<br />
Keywords: Anodizing; Aluminum; Aluminum <str<strong>on</strong>g>alloy</str<strong>on</strong>g><br />
1. Introducti<strong>on</strong><br />
Surface & Coatings Technology 200 (2006) 2634 – 2641<br />
Porous anodic films <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aluminum</strong> have received great<br />
attenti<strong>on</strong> for <strong>the</strong>ir practical uses and morphology [1,2]. The<br />
oxide film, which is formed by anodizati<strong>on</strong> in acidic<br />
soluti<strong>on</strong>s, c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a porous layer with hexag<strong>on</strong>ally<br />
shaped cells with a central pore perpendicular to <strong>the</strong> metal<br />
surface and a thin compact barrier oxide layer, which is<br />
present between <strong>the</strong> metal and <strong>the</strong> porous layer.<br />
Earlier work [3–7] describes <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong> c<strong>on</strong>diti<strong>on</strong>s<br />
(voltage, temperature, compositi<strong>on</strong> and acid c<strong>on</strong>centrati<strong>on</strong><br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bath) <strong>on</strong> <strong>the</strong> <strong>anodizing</strong> current density, <strong>the</strong><br />
* Corresp<strong>on</strong>ding author. Tel.: +30 210 7274331; fax: +30 210 7221800.<br />
E-mail address: kaplanoglou@chem.uoa.gr<br />
(I. Tsangaraki-Kaplanoglou).<br />
0257-8972/$ - see fr<strong>on</strong>t matter D 2005 Elsevier B.V. All rights reserved.<br />
doi:10.1016/j.surfcoat.2005.07.065<br />
www.elsevier.com/locate/surfcoat<br />
porosity and <strong>the</strong> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pores <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> anodic oxide as<br />
follows:<br />
˝ Increasing <strong>the</strong> temperature at a given <strong>anodizing</strong> voltage<br />
increases both <strong>the</strong> current density and <strong>the</strong> coating<br />
porosity due to <strong>the</strong>rmal enhanced field assisted dissoluti<strong>on</strong>.<br />
Additi<strong>on</strong>ally, <strong>the</strong> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> outer oxide<br />
surface is enhanced.<br />
˝ Increasing <strong>the</strong> sulfuric acid c<strong>on</strong>centrati<strong>on</strong> at a given<br />
<strong>anodizing</strong> voltage increases <strong>the</strong> current density due to<br />
higher solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxide film. This higher film<br />
dissoluti<strong>on</strong> is also resp<strong>on</strong>sible for <strong>the</strong> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pore<br />
diameter and <strong>the</strong> coating porosity.<br />
˝ Increasing <strong>the</strong> <strong>anodizing</strong> voltage at a given temperature<br />
increases <strong>the</strong> current density, <strong>the</strong> barrier layer thickness<br />
and <strong>the</strong> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pores, while <strong>the</strong> coating porosity<br />
decreases.
I. Tsangaraki-Kaplanoglou et al. / Surface & Coatings Technology 200 (2006) 2634–2641 2635<br />
Valuable works <strong>on</strong> <strong>the</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> several intermetallic<br />
compounds during <strong>anodizing</strong> were carried out about 60<br />
years ago by Keller et al. and by Fischer et al [2]. About 30<br />
years ago Spo<strong>on</strong>er, Brace and o<strong>the</strong>r researchers (Alcan<br />
Laboratories) [2] tried to establish <strong>the</strong> electrochemical<br />
reactivity <str<strong>on</strong>g>of</str<strong>on</strong>g> several <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements and <strong>the</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
several intermetallic compounds in <strong>aluminum</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s during<br />
sulfuric acid <strong>anodizing</strong> under c<strong>on</strong>stant voltage. In <strong>the</strong><br />
meantime <strong>the</strong> anodic oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aluminum</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s was<br />
extensively investigated [3,8]. Attenti<strong>on</strong> was given primarily<br />
to <strong>the</strong> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements at <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>/film<br />
interface during <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> barrier type anodic films.<br />
However, <strong>the</strong> findings are also c<strong>on</strong>sidered to be applicable<br />
to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> porous anodic films.<br />
The various <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements are present in <strong>the</strong><br />
<strong>aluminum</strong> substrate as solid soluti<strong>on</strong>s, or sec<strong>on</strong>d phases,<br />
such as z<strong>on</strong>es, precipitates, or intermetallic compounds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
various shapes, sizes and compositi<strong>on</strong>s. They cause<br />
modificati<strong>on</strong>s in porous film growth, film compositi<strong>on</strong> and<br />
microstructure during anodizati<strong>on</strong> [9–15]. These modificati<strong>on</strong>s<br />
are caused through changes in (a) <strong>the</strong> i<strong>on</strong>ic transport<br />
mechanism in <strong>the</strong> oxide film, (b) <strong>the</strong> ejecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>ic<br />
species to <strong>the</strong> electrolyte and (c) <strong>the</strong> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> film<br />
material both in <strong>the</strong> presence and in <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
electric field. For example, according to Dasquet et al. [16],<br />
<strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements seem to cause morphological differences<br />
between <strong>the</strong> oxide films <str<strong>on</strong>g>of</str<strong>on</strong>g> AA1050 and AA2024 T3.<br />
The latter has a sp<strong>on</strong>gy structure with n<strong>on</strong>-unidirecti<strong>on</strong>al<br />
pores.<br />
It has been found [17,18] that for <strong>the</strong> cases where <strong>the</strong><br />
Gibbs free energy per equivalent for <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing element oxides are greater than that <str<strong>on</strong>g>of</str<strong>on</strong>g> alumina, <strong>the</strong><br />
initial and preferential oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aluminum</strong> takes place at<br />
<strong>the</strong> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong>. This results in <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
thin layers (1–5 nm into <strong>the</strong> substrate) enriched with <strong>the</strong><br />
respective <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing element beneath <strong>the</strong> anodic film.<br />
Preferential oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aluminum</strong> and enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>alloy</str<strong>on</strong>g><br />
element c<strong>on</strong>tinue until a critical c<strong>on</strong>centrati<strong>on</strong> (20–40%) is<br />
reached in <strong>the</strong> enriched <str<strong>on</strong>g>alloy</str<strong>on</strong>g> layer so that oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g> element will occur. The critical level <str<strong>on</strong>g>of</str<strong>on</strong>g> enrichment<br />
increases linearly with <strong>the</strong> Gibbs free energy per equivalent<br />
for <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing element oxide. The time<br />
needed to reach this critical c<strong>on</strong>centrati<strong>on</strong> is within <strong>the</strong> span<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> normal anodizati<strong>on</strong> for forming a relatively thick porous<br />
film. Direct oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements and incorporati<strong>on</strong><br />
oxides into <strong>the</strong> film take place when <strong>the</strong>ir Gibbs free<br />
energy is lower than that <str<strong>on</strong>g>of</str<strong>on</strong>g> alumina as in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> Al–<br />
Mg <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s. The different transport numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 3+ and<br />
Mg 2+ through <strong>the</strong> film result in <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />
intermediate layer. A n<strong>on</strong>-uniform flow <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>ic current<br />
through this layer may be related to channeling <strong>the</strong> current<br />
due to different i<strong>on</strong>ic resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> alumina and magnesia.<br />
For certain ternary and higher <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s co-enrichments <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements through anodic oxidati<strong>on</strong> are possible<br />
leading to anodic films <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively complex compositi<strong>on</strong><br />
associated with different stages <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
individual <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements and different migrati<strong>on</strong> rates<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxidized species within <strong>the</strong> films. For two- and multiphase<br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g>s <strong>the</strong> anodic films compositi<strong>on</strong> and <strong>the</strong> compositi<strong>on</strong><br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> enriched <str<strong>on</strong>g>alloy</str<strong>on</strong>g> layer may vary am<strong>on</strong>g different<br />
locati<strong>on</strong>s at <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g> surface. Highly localized <strong>process</strong>es,<br />
such as film formati<strong>on</strong>, dissoluti<strong>on</strong> or both proceed over <strong>the</strong><br />
sec<strong>on</strong>d phases and <strong>the</strong>re is a complex interplay between <strong>the</strong><br />
local film formati<strong>on</strong> over particular particles and <strong>the</strong> general<br />
film formati<strong>on</strong> over <strong>the</strong> surrounding matrix regi<strong>on</strong>s. A n<strong>on</strong>uniform<br />
flow <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>ic current through <strong>the</strong> barrier film may<br />
be related to channeling <strong>the</strong> current due to different i<strong>on</strong>ic<br />
resistivities <str<strong>on</strong>g>of</str<strong>on</strong>g> different metal i<strong>on</strong>s, intermetallics and metals<br />
such as Si, etc. [19]. During <strong>the</strong> <strong>anodizing</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a dilute Al–Si<br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g> [20], <strong>the</strong> barrier layer is expected to have an increased<br />
c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> species relative to <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>. Besides<br />
silic<strong>on</strong> particles is expected to present in <strong>the</strong> <strong>aluminum</strong><br />
matrix as sec<strong>on</strong>d phase material, which may partly anodically<br />
oxidized and occluded in <strong>the</strong> film. Fur<strong>the</strong>r, when<br />
copper was added to this system in 3% [21] a new<br />
intermetallic phase was formed (Al2Cu) whose low resistance<br />
favors <strong>the</strong> oxidati<strong>on</strong> and dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se particles,<br />
increasing <strong>the</strong> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxide. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong><br />
impurities influences also <strong>the</strong> <strong>anodizing</strong> <strong>process</strong>. Particles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
Al–Fe and Al–Fe–Si type present in <strong>the</strong> <strong>aluminum</strong><br />
substrate, are ei<strong>the</strong>r inert or undergo oxidati<strong>on</strong> in lower rate<br />
compared with <strong>the</strong> adjacent <strong>aluminum</strong>. They were occluded<br />
in <strong>the</strong> oxide layer [21]. Ir<strong>on</strong> species were also detected at <strong>the</strong><br />
film–electrolyte interface in certain cases [22]. Ir<strong>on</strong> rich<br />
phases locally inhibit <strong>the</strong> nucleati<strong>on</strong> and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
anodic oxide film [23]. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sec<strong>on</strong>d phase<br />
particles incorporati<strong>on</strong> in <strong>the</strong> porous film will modify <strong>the</strong><br />
pore morphology, produce void and cracks, affect oxygen<br />
gassing rate [24–27], and <strong>the</strong> chemical solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> film<br />
material, and roughen <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>/film interface [10].<br />
The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this research was to investigate <strong>the</strong> effect<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>alloy</str<strong>on</strong>g> <str<strong>on</strong>g>types</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> sulfuric acid <strong>anodizing</strong> <strong>process</strong> under<br />
various operating c<strong>on</strong>diti<strong>on</strong>s (voltage, temperature, c<strong>on</strong>centrati<strong>on</strong><br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> sulfuric acid). In <strong>the</strong> present study, <strong>the</strong> <strong>anodizing</strong><br />
behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>aluminum</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s AA5083 and 6111 were<br />
compared with pure <strong>aluminum</strong> in sulfuric acid soluti<strong>on</strong>s<br />
under different c<strong>on</strong>diti<strong>on</strong>s. Specimens <str<strong>on</strong>g>of</str<strong>on</strong>g> AA6111 heattreated<br />
were also investigated in order to study <strong>the</strong> influence<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> temper <strong>on</strong> <strong>the</strong> examined electrochemical <strong>process</strong>.<br />
Electrochemical techniques were used for studying <strong>the</strong><br />
<strong>anodizing</strong> <strong>process</strong>. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s was<br />
determined by X-ray Fluorescence (XRF) and <strong>the</strong> in-depth<br />
pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> formed oxide films was investigated by<br />
Scanning Electr<strong>on</strong> Microscopy and Energy Dispersive<br />
Spectroscopy (SEM/EDS).<br />
2. Experimental<br />
Specimens <str<strong>on</strong>g>of</str<strong>on</strong>g> pure <strong>aluminum</strong> (Merck 99.96%) as well as<br />
AA5083 and 6111 (unheat- and heat-treated at 177 -C for 30<br />
min) <strong>aluminum</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s were used. The specimens were in <strong>the</strong>
2636<br />
foil form with dimensi<strong>on</strong>s 30 75 mm 2 . The specimens had<br />
underg<strong>on</strong>e <strong>the</strong> following pretreatments: degreasing in<br />
acet<strong>on</strong>e, etching for 1 min in a soluti<strong>on</strong> c<strong>on</strong>taining 100 g/l<br />
NaOH at 60 -C, rinsing thoroughly in dei<strong>on</strong>ized water and<br />
immersing for 1 min in 1:1 v/v HNO3 at room temperature.<br />
After rinsing in dei<strong>on</strong>ized water and drying in a stream <str<strong>on</strong>g>of</str<strong>on</strong>g> air<br />
at room temperature, <strong>the</strong> specimens were stored in a<br />
desiccator.<br />
The <strong>anodizing</strong> was carried out in two litters <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfuric<br />
acid soluti<strong>on</strong> c<strong>on</strong>taining 175 g/l or 250 g/l H2SO4 and 1 g/l<br />
Al 2(SO 4) 3I18H 2O at 20T0.5 -C or o<strong>the</strong>rwise menti<strong>on</strong>ed,<br />
under agitati<strong>on</strong> with a magnetic stirrer. For <strong>anodizing</strong>, an<br />
<strong>aluminum</strong> sheet was used as <strong>the</strong> counter electrode and a<br />
c<strong>on</strong>stant voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 or 18 V DC was applied by a<br />
computer-c<strong>on</strong>trolled DC power supply (Delta Elektr<strong>on</strong>ika<br />
SM3004-D), while <strong>the</strong> current–time transients were<br />
recorded by a computer via a multimeter (KEITHLEY<br />
2000, T0.025%). After <strong>anodizing</strong>, <strong>the</strong> specimens were<br />
rinsed thoroughly with dei<strong>on</strong>ized water for 1 min and dried<br />
in a stream <str<strong>on</strong>g>of</str<strong>on</strong>g> air at room temperature. A Permascope EC8<br />
(Fischer Technology, Inc. Norwalk, CT, accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> T2<br />
Am) was used for <strong>the</strong> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxide film<br />
thickness.<br />
The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s was determined by X-ray<br />
Fluorescence (XRF) measurements. In this technique a<br />
silver X-ray tube (50 kV, 20 mA) with two Si (Li) detectors<br />
(resoluti<strong>on</strong> 155 eV at 5.9 keV) were used. The signals were<br />
amplified by a TC-244 Tennelec Spectroscopy Amplifier<br />
(including pile up rejecti<strong>on</strong>) and collected by a PCA-II<br />
multichannel analyzer card (including ADC c<strong>on</strong>verter)<br />
[28,29]. The relative standard deviati<strong>on</strong> (%) for this method<br />
using five experimental measurements was 5%.<br />
The specimens’ surfaces and cross secti<strong>on</strong>s were<br />
examined by Scanning Electr<strong>on</strong> Microscope SEM/EDS<br />
(Philips 515). The film was made c<strong>on</strong>ductive by depositi<strong>on</strong><br />
with sputtering <str<strong>on</strong>g>of</str<strong>on</strong>g> an extremely thin layer <str<strong>on</strong>g>of</str<strong>on</strong>g> gold (200 A˚ )<br />
<strong>on</strong> its surface.<br />
3. Results<br />
3.1. Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>aluminum</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s<br />
I. Tsangaraki-Kaplanoglou et al. / Surface & Coatings Technology 200 (2006) 2634–2641<br />
Table 1<br />
Alloy compositi<strong>on</strong> (wt.%)<br />
Alloy Mg Mn Si Cu Fe Zn Cr Ti Al<br />
5083 4.9 0.1–1.0 0.40 0.10 0.40 0.25 0.25 0.15 bal.<br />
6111 0.5–1.0 0.15–0.45 0.7–1.1 0.5–0.9 0.40 0.10 0.10 0.10 bal.<br />
The compositi<strong>on</strong> limits for <strong>the</strong> examined <strong>aluminum</strong><br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g>s AA5083 and 6111 in wt.% are listed in Table 1<br />
[30,31].<br />
It must be noticed <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe and Mn in both<br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g>s, <strong>the</strong> high c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium in <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g> AA5083<br />
and <strong>the</strong> increased amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Si, Mg and Cu in <str<strong>on</strong>g>alloy</str<strong>on</strong>g><br />
AA6111.<br />
3.2. Growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> porous oxide<br />
The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> anodic oxide film was plotted as a<br />
functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong> time (Fig. 1) and it was obvious that<br />
<strong>the</strong> oxide thickness increased linearly with time during<br />
<strong>anodizing</strong> under standard c<strong>on</strong>diti<strong>on</strong>s (15 V, 20 -C, 175 g/l<br />
H2SO4, 1 g/l Al2(SO4)3I18H2O). The slopes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se curves<br />
were 0.29 Am/min for <strong>the</strong> pure <strong>aluminum</strong>, 0.35 Am/min for<br />
<strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g> 5083 and 0.28 Am/min for <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g> 6111 unheatand<br />
heat-treated. The AA 5083 <str<strong>on</strong>g>alloy</str<strong>on</strong>g> has <strong>the</strong> highest slope,<br />
followed by pure <strong>aluminum</strong>, and <strong>the</strong> AA 6111 unheat- and<br />
<strong>the</strong> heat-treated <strong>on</strong>e have about <strong>the</strong> same slope, and its value<br />
is <strong>the</strong> lowest.<br />
3.3. Kinetic <str<strong>on</strong>g>of</str<strong>on</strong>g> porous oxide growth—influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong><br />
c<strong>on</strong>diti<strong>on</strong>s<br />
The four stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> porous structure development<br />
under <strong>anodizing</strong> voltages 15 and 18 V and sulfuric acid<br />
c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 175 and 250 g/l are shown from <strong>the</strong><br />
current density–time curves in Figs. 2–4. A high electric<br />
field at <strong>the</strong> commencement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong> at c<strong>on</strong>stant voltage<br />
leads to a relatively large current surge. This increasing<br />
current falls to a low value (imin) when <strong>the</strong> barrier layer is<br />
formed. Pores have been c<strong>on</strong>sidered [32] to initiate in this<br />
decreasing current stage and <strong>the</strong>ir growth is believed to take<br />
place in <strong>the</strong> next stage, i.e. by <strong>the</strong> time <strong>the</strong> current has risen<br />
and steadied out.<br />
The following are evident from Figs. 2–4: imin reaches<br />
earlier and has a higher value for AA 5083 <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, which<br />
seems to permit a greater current to flow through <strong>the</strong> barrier<br />
layer at this decreasing current stage. Also <strong>the</strong> imin <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
AA 6111 <str<strong>on</strong>g>alloy</str<strong>on</strong>g> unheat-treated is similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 5083<br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g> but seems to be influenced by <strong>the</strong> temper <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>alloy</str<strong>on</strong>g>,<br />
because <strong>the</strong> heat-treated <strong>on</strong>e shows lower values which<br />
approach those <str<strong>on</strong>g>of</str<strong>on</strong>g> pure <strong>aluminum</strong> especially in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
<strong>anodizing</strong> at 18 V.<br />
Oxide Thickness / µm<br />
32<br />
28<br />
24<br />
20<br />
16<br />
12<br />
8<br />
4<br />
pure<br />
6111 H.T.<br />
6111 U.T.<br />
5083<br />
0<br />
0 10 20 30 40 50 60 70 80 90 100 110<br />
Anodizing Time / min<br />
Fig. 1. Thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> anodic oxide film <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> examined materials as a<br />
functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>anodizing</strong> time at standard c<strong>on</strong>diti<strong>on</strong>s (15 V, 20 -C, 175 g/l<br />
H2SO4, 1 g/l Al2(SO4)3I18 H2O).
Current Density / A dm -2<br />
The subsequent initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current rise seems to be<br />
facilitated in <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g> AA 5083 and <strong>the</strong> steady-state current<br />
density reaches higher values than <strong>the</strong> pure <strong>aluminum</strong>. On<br />
<strong>the</strong> c<strong>on</strong>trary <strong>the</strong> steady-state value (iss) for AA 6111 is<br />
almost identical with that <str<strong>on</strong>g>of</str<strong>on</strong>g> pure <strong>aluminum</strong> at 15 V and in<br />
175 g/l H2SO4, while this is not <strong>the</strong> case in 250 g/l H2SO4<br />
(Fig. 4). Tempering <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 6111 reduces <strong>the</strong> steady-state<br />
current density during <strong>anodizing</strong> at standard c<strong>on</strong>diti<strong>on</strong>s (Fig.<br />
2). C<strong>on</strong>sidering that oxide growth rates were practically <strong>the</strong><br />
same for both unheat-treated and tempered samples (Fig. 1),<br />
and <strong>the</strong> <strong>anodizing</strong> current is lower for tempered sample, <strong>the</strong>n<br />
a higher <strong>anodizing</strong> current efficiency must exist for <strong>the</strong> heattreated<br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g> to obtain <strong>the</strong> same coating thickness. This<br />
c<strong>on</strong>firms <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> intermetallics <strong>on</strong> <strong>the</strong><br />
<strong>anodizing</strong> <strong>process</strong>. Besides, Fig. 3 shows that during all<br />
stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong> at 18 V, <strong>the</strong> heat-treated AA6111<br />
samples show lower current densities than <strong>the</strong> unheattreated<br />
samples. These differences are probably related to<br />
<strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> intermetallics <strong>on</strong> <strong>the</strong> <strong>anodizing</strong> <strong>process</strong> and more<br />
specifically, <strong>on</strong> <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> composite oxide products.<br />
AA 6111 (both unheat- and heat-treated) exhibits no<br />
current peak in current transient as compared with AA 5083<br />
Current Density / A dm -2<br />
2<br />
1<br />
0<br />
3<br />
2<br />
1<br />
0<br />
I. Tsangaraki-Kaplanoglou et al. / Surface & Coatings Technology 200 (2006) 2634–2641 2637<br />
Pure<br />
5083<br />
6111 U.T.<br />
6111 H.T.<br />
0 100 200 300 400<br />
Anodizing Time / s<br />
Pure<br />
5083<br />
6111 U.T.<br />
6111 H.T.<br />
0 100 200<br />
Anodizing Time / s<br />
300 400<br />
Fig. 2. Anodizing current density–time transients at 15 V in 175 g/l H2SO4<br />
at 20 -C.<br />
Fig. 3. Anodizing current density–time transients at 18 V in 175 g/l H 2SO 4<br />
at 20 -C.<br />
Current Density / A dm -2<br />
3<br />
2<br />
1<br />
0<br />
Pure<br />
5083<br />
6111 U.T.<br />
250 g/l H 2 SO 4<br />
250 g/l H 2 SO 4<br />
250 g/l H 2 SO 4<br />
175 g/l H 2 SO 4<br />
175 g/l H 2 SO 4<br />
175 g/l H 2 SO 4<br />
0 10 20 30 40 50 60 70<br />
Anodizing Time / s<br />
Fig. 4. Anodizing current density–time transients at 15 V in 175 and 250 g/<br />
lH2SO4 at 20 -C.<br />
and pure <strong>aluminum</strong>. This implies that <strong>the</strong> stage <str<strong>on</strong>g>of</str<strong>on</strong>g> pore<br />
initiati<strong>on</strong> where field-assisted dissoluti<strong>on</strong> takes place and <strong>the</strong><br />
subsequent rearrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pores before <strong>the</strong> current<br />
reaches its steady-state value is different for AA 6111 <str<strong>on</strong>g>alloy</str<strong>on</strong>g>.<br />
The electrical properties or microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> barrier film<br />
for AA 6111 could be quite different as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements. It is well known that <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing<br />
elements may affect <strong>the</strong> initial populati<strong>on</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> pores<br />
by promoting or hindering pore nucleati<strong>on</strong> and <strong>the</strong> current<br />
density at <strong>the</strong> pore initiati<strong>on</strong> and growth stage [18].<br />
As it is expected, at 15 V <strong>anodizing</strong> voltage, <strong>the</strong> steadystate<br />
current density decreases with decreasing acid c<strong>on</strong>centrati<strong>on</strong><br />
(Fig. 4). However a gradual decline <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current<br />
with time is observed for AA 5083 <str<strong>on</strong>g>alloy</str<strong>on</strong>g>.<br />
Fig. 5 derives from <strong>the</strong> respective current density<br />
transient curves at different temperatures and it shows <strong>the</strong><br />
steady-state current density as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong><br />
Current Density / A dm -2<br />
3,0<br />
2,5<br />
2,0<br />
1,5<br />
1,0<br />
0,5<br />
Pure, 15 V<br />
Pure, 18 V<br />
5083, 15 V<br />
5083, 18 V<br />
6111 U.T., 15 V<br />
6111 U.T., 18 V<br />
6111 H.T., 15 V<br />
6111 H.T., 18 V<br />
12 14 16 18 20 22 24<br />
Anodizing Temperature / oC Fig. 5. The <strong>anodizing</strong> at 15 and 18 V in 175 g/l sulfuric acid steady-state<br />
current density as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>anodizing</strong> temperature.<br />
80
2638<br />
temperatures. Usually, <strong>the</strong> current density remains almost<br />
stable when <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pores has been established.<br />
However, in certain cases, a gradual decline <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current<br />
density from its steady-state value was observed with <strong>the</strong><br />
progress <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong>. In our study, ‘‘steady-state current<br />
density’’ is noticed <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current density at 1000 s<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong>. The increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se ‘‘steady-state <strong>anodizing</strong><br />
current densities’’ with increasing temperature and voltages<br />
seems to depend <strong>on</strong> <strong>the</strong> kind <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>.<br />
After prol<strong>on</strong>ged <strong>anodizing</strong> (coating thickness 17–25<br />
Am), an increased amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe and Si and in a smaller<br />
extent <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu, is observed by SEM/EDS in certain sites at <strong>the</strong><br />
metal/oxide interface <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 6111 specimens anodized at<br />
standard c<strong>on</strong>diti<strong>on</strong>s (i.e. Cu 1.2, Fe 4.3, Si 4.6 Mn 0.9<br />
wt.%). For AA 5083 <str<strong>on</strong>g>alloy</str<strong>on</strong>g> <strong>the</strong> enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn and Fe is<br />
also observed.<br />
4. Discussi<strong>on</strong><br />
I. Tsangaraki-Kaplanoglou et al. / Surface & Coatings Technology 200 (2006) 2634–2641<br />
At a given <strong>anodizing</strong> c<strong>on</strong>diti<strong>on</strong>, <strong>the</strong> current transient<br />
curves during <strong>anodizing</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> four examined materials are<br />
clearly distinguishable, although <strong>the</strong>ir general characteristics<br />
are similar.<br />
Figs. 2–4 show that samples all exhibit basic stages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
<strong>anodizing</strong> namely, barrier layer formati<strong>on</strong>, pore initiati<strong>on</strong>,<br />
pore rearrangement (except <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 6111), and steady-state<br />
film growth. The initial drop in current corresp<strong>on</strong>ding to <strong>the</strong><br />
barrier layer formati<strong>on</strong> stage is nearly identical for all<br />
samples (Figs. 2–4). However, <strong>the</strong> imin and <strong>the</strong> final steadycurrent<br />
density are affected by <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements, <strong>the</strong> temper<br />
treatment and operating parameters (<strong>anodizing</strong> voltage, and<br />
sulfuric acid c<strong>on</strong>centrati<strong>on</strong>). Higher oxide growth rate,<br />
higher i min (easier H + entering <strong>the</strong> oxide) and i ss (steadystate<br />
current density) values were observed for AA 5083<br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g> in comparing with <strong>the</strong> pure <strong>aluminum</strong>. These results<br />
are c<strong>on</strong>sistent with <strong>the</strong> well-known c<strong>on</strong>clusi<strong>on</strong> that increasing<br />
magnesium c<strong>on</strong>tent substantially increases <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
oxidati<strong>on</strong> at a given <strong>anodizing</strong> voltage, at least initially,<br />
though <strong>the</strong> coating may decrease in thickness after a certain<br />
time [2,15,33]. For AA 5083 <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, direct oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
magnesium and oxide incorporati<strong>on</strong> into <strong>the</strong> film takes place<br />
at <strong>the</strong> commencement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong> because its Gibbs free<br />
energy per equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> is lower than that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
alumina. This gives rise to high imin. The fact that <strong>the</strong><br />
steady-state <strong>anodizing</strong> current for AA 5083 is <strong>the</strong> highest<br />
indicates a higher c<strong>on</strong>ductance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxide film for this<br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g>, which is related to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium oxides<br />
that have higher b<strong>on</strong>d energies. In o<strong>the</strong>r words, <strong>the</strong> above<br />
results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experimental measurements are expected<br />
because <strong>the</strong> anodic film c<strong>on</strong>tains incorporated magnesium<br />
oxides, which increase <strong>the</strong> defect density in <strong>the</strong> barrier layer,<br />
<strong>the</strong> channeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current, <strong>the</strong> H + entering <strong>the</strong> oxide [34],<br />
<strong>the</strong> roughness [35] and <strong>the</strong> rms electric charge during<br />
electrolytic coloring in comparis<strong>on</strong> with <strong>the</strong> pure <strong>aluminum</strong><br />
and AA 6111 [36].<br />
Anodizing characteristics for AA 6111 <str<strong>on</strong>g>alloy</str<strong>on</strong>g> are similar<br />
to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pure <strong>aluminum</strong> under standard <strong>anodizing</strong><br />
c<strong>on</strong>diti<strong>on</strong>s, except for <strong>the</strong> disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> current peak in<br />
current transients. The pore rearrangement stage is missing<br />
in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 6111 unheat- and heat-treated samples.<br />
This could be caused by c<strong>on</strong>siderable modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
film microstructure and by reduced availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aluminum</strong><br />
for oxidati<strong>on</strong> and pores to be rearranged. Besides, AA 6111<br />
resp<strong>on</strong>ds to <strong>the</strong> changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong> c<strong>on</strong>diti<strong>on</strong>s in a little<br />
different manner than <strong>the</strong> pure <strong>aluminum</strong>. For example it<br />
shows a smaller increase <str<strong>on</strong>g>of</str<strong>on</strong>g> current density with <strong>the</strong> increase<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong> voltage from 15 to 18 V than <strong>the</strong> pure<br />
<strong>aluminum</strong> and especially <strong>the</strong> heat-treated <strong>on</strong>e.<br />
According to <strong>the</strong> literature [11] <strong>the</strong> faster migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
manganese species in comparis<strong>on</strong> with <strong>aluminum</strong> species<br />
results in <strong>the</strong> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se species into <strong>the</strong> film.<br />
The nm/V ratio increases slightly indicating a reduced<br />
i<strong>on</strong>ic resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> film. According also to <strong>the</strong> literature<br />
[18,20,21,27,37–39] c<strong>on</strong>cerning <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s which have Si, Cu<br />
and Fe as <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements, <strong>the</strong> main porous film material<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s c<strong>on</strong>tains both <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing element oxides<br />
and alumina and its morphology is modified. The <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing<br />
elements (Si, Mg, Cu) influence <strong>the</strong> cooperative i<strong>on</strong><br />
migrati<strong>on</strong> through <strong>the</strong> anodic film [34] and <strong>the</strong> presence<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> foreign species (Fe, Mn) in <strong>the</strong> film also affects <strong>the</strong><br />
field assisted dissoluti<strong>on</strong> and i<strong>on</strong>ic resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> anodic<br />
film. Besides, different rates <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>d phase<br />
and matrix regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>alloy</str<strong>on</strong>g> result in differences in<br />
morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> film. More specific according to <strong>the</strong><br />
above literature when Al2Cu particles, Si and Al–Fe–Si<br />
adjacent particles are present at <strong>the</strong> substrate/oxide interface<br />
<strong>the</strong> oxide film advances fastest towards to <strong>the</strong> copper<br />
intermetallics than to <strong>the</strong> surrounding <strong>aluminum</strong> whereas<br />
Si and Al–Fe–Si particles block <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxide.<br />
As a result changes in current distributi<strong>on</strong> between<br />
<strong>aluminum</strong> matrix, silic<strong>on</strong>, ir<strong>on</strong> and copper in <strong>the</strong> substrate<br />
and <strong>the</strong> overlaying oxide layers result in ir<strong>on</strong> and silic<strong>on</strong><br />
bearing phases and in certain cases ir<strong>on</strong>, silic<strong>on</strong> and<br />
copper bearing phases in <strong>the</strong> oxide. The entrapment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
silic<strong>on</strong> particles in <strong>the</strong> growing layers [21,37] is associated<br />
with a n<strong>on</strong>-uniform oxide thickness, increased roughness<br />
at <strong>the</strong> interface substrate/oxide, surface cracks formati<strong>on</strong><br />
and appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> flaws and branching and deflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
pores which are developed around occluded silic<strong>on</strong><br />
particles.<br />
Fur<strong>the</strong>r, oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> silic<strong>on</strong> appears to be associated<br />
with oxygen filled voids develop above <strong>the</strong> oxidizing<br />
particles as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> electr<strong>on</strong> c<strong>on</strong>ducting nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
<strong>the</strong> Si–O b<strong>on</strong>d. The anodic SiO 2 film and <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
oxygen gas filled voids represent pathways <str<strong>on</strong>g>of</str<strong>on</strong>g> high effective<br />
resistance for c<strong>on</strong>tinued film growth [20,21].<br />
Ano<strong>the</strong>r evidence from <strong>the</strong> literature [27] is <strong>the</strong> behavior<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> Al–0.9 Cu <str<strong>on</strong>g>alloy</str<strong>on</strong>g> which has been related to clustering <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
copper atoms, resulting in <strong>the</strong> limited availability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
<strong>aluminum</strong> for oxidati<strong>on</strong> during <strong>the</strong> <strong>anodizing</strong> <strong>process</strong>. The<br />
copper atoms, associated with vacancies created during <strong>the</strong>
I. Tsangaraki-Kaplanoglou et al. / Surface & Coatings Technology 200 (2006) 2634–2641 2639<br />
c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aluminum</strong> at <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>/film interface, tend to<br />
form clusters. At this stage, <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aluminum</strong><br />
diffusi<strong>on</strong> through such clusters is unclear, with time, <strong>the</strong>ir<br />
size and copper c<strong>on</strong>tent increases such that <strong>the</strong>y can be<br />
c<strong>on</strong>sidered as obstacles to alumina film formati<strong>on</strong>. It is also<br />
referred [24–26] that oxygen producti<strong>on</strong> takes place above<br />
oxidized clusters. The producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen is suggested to<br />
be related to <strong>the</strong> electr<strong>on</strong> energy levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> film material,<br />
which in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> alumina films are modified by <strong>the</strong><br />
incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper species. Oxygen evoluti<strong>on</strong> also<br />
takes place at <strong>the</strong> copper intermetallics during <strong>the</strong> <strong>anodizing</strong><br />
<strong>process</strong>. The producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen within <strong>the</strong> alumina at<br />
sites remote from <str<strong>on</strong>g>alloy</str<strong>on</strong>g>/oxide interface, where <strong>the</strong> electr<strong>on</strong>ic<br />
properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alumina are altered by incorporated<br />
transiti<strong>on</strong> metal species (i.e. Cu, Fe, Cr), is also referred<br />
by o<strong>the</strong>r researchers [20,21,23,40,41]. Oxygen evoluti<strong>on</strong><br />
c<strong>on</strong>tributes to increasing resistance, film cracking, partial<br />
dissoluti<strong>on</strong> and re<strong>anodizing</strong> as well as local repair <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
film [20].<br />
Certain observati<strong>on</strong>s for <strong>the</strong> AA 6111 based <strong>on</strong> <strong>the</strong><br />
results <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper and <str<strong>on</strong>g>of</str<strong>on</strong>g> our previous <strong>on</strong>e [36] are<br />
summarized as follows:<br />
& <strong>the</strong> higher resistivity (lower iss) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxide film <str<strong>on</strong>g>of</str<strong>on</strong>g> AA<br />
6111 relative to that <str<strong>on</strong>g>of</str<strong>on</strong>g> pure <strong>aluminum</strong>,<br />
& <strong>the</strong> eventual increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> resistivity with <strong>the</strong> increase<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> voltage, temperature and sulfuric acid c<strong>on</strong>centrati<strong>on</strong>,<br />
& <strong>the</strong> appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> cracks at <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> electrolytic<br />
coloring <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 6111 specimens [36],<br />
& <strong>the</strong> observed, by SEM/EDS measurements, enrichment<br />
locally at <strong>the</strong> surface/oxide interface in Fe, Si and Cu or<br />
Fe, Cu [36] and most important<br />
& <strong>the</strong> disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stages <str<strong>on</strong>g>of</str<strong>on</strong>g> rearrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
pores at <strong>the</strong> early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 6111<br />
specimens.<br />
In accordance with <strong>the</strong> literature referred in this paper<br />
about <strong>the</strong> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> oxide film <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s<br />
c<strong>on</strong>taining <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements <str<strong>on</strong>g>of</str<strong>on</strong>g> interest in <strong>the</strong> present<br />
study, <strong>the</strong> above observati<strong>on</strong>s would be explained by <strong>the</strong><br />
increased c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> species in <strong>the</strong> barrier layer<br />
during <strong>anodizing</strong> relative to <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, as well as by <strong>the</strong><br />
increasing volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> partly oxidized silic<strong>on</strong><br />
particles occluded in <strong>the</strong> film material, or <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>–silic<strong>on</strong>,<br />
copper, ir<strong>on</strong> bearing phases particles and <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen filled<br />
cavities or o<strong>the</strong>r defects.<br />
However, a more detailed investigati<strong>on</strong> by surface<br />
analysis methods such as electr<strong>on</strong> microscopy (SEM,<br />
TEM) or depth pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling (AES, GDOES, RBS) would be<br />
beneficial, in order to correlate in a better way <strong>the</strong><br />
observati<strong>on</strong>s from electrochemical measurements with<br />
changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s during <strong>the</strong><br />
<strong>anodizing</strong> and o<strong>the</strong>r electrolytic <strong>process</strong>es.<br />
The <strong>anodizing</strong> current density increases with increasing<br />
voltage at a given temperature, and at a given voltage <strong>the</strong><br />
current also increases with increasing temperature, both<br />
due mainly to <strong>the</strong>rmal enhanced field-assisted dissoluti<strong>on</strong>.<br />
The observed differences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> steady-state current<br />
densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>s at high voltages, acid c<strong>on</strong>centrati<strong>on</strong>s<br />
and elevated temperatures (Figs. 3–5) could be explained<br />
as follows: <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing elements and <strong>the</strong> temper influence<br />
<strong>the</strong> i<strong>on</strong>ic transport properties and compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxide<br />
film. It could be suggested that for AA 5083 <strong>the</strong> decline <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
<strong>the</strong> steady-state current density probably derives from<br />
building up <str<strong>on</strong>g>of</str<strong>on</strong>g> dissoluti<strong>on</strong> products at <strong>the</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
pores under high <strong>anodizing</strong> temperature and current<br />
densities (Fig. 5). For example, it is referred [33] that<br />
under str<strong>on</strong>g alkaline c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong> faster migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
Mg species relative to that <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 3+ i<strong>on</strong>s and <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
an outer regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg rich film material at high pH (MgO/<br />
Mg(OH)2) is a barrier to chemical attack <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> film and to<br />
field-assisted dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 3+ i<strong>on</strong>s from <strong>the</strong> film to <strong>the</strong><br />
electrolyte. For AA 6111 <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, <strong>the</strong> decline <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> steadystate<br />
current density (Fig. 5) probably derives by <strong>the</strong> fact<br />
that <strong>the</strong> limited availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>aluminum</strong> for oxidati<strong>on</strong> and<br />
formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissoluti<strong>on</strong> products [19,26] would be more<br />
obvious at elevated temperature and/or voltages [42]. As<br />
<strong>the</strong> <strong>anodizing</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 6111 is carried out at more active<br />
c<strong>on</strong>diti<strong>on</strong>s, an increased resistance to current flow and thus<br />
a decline <str<strong>on</strong>g>of</str<strong>on</strong>g> almost steady-state current density would<br />
probably be associated with local changes in compositi<strong>on</strong><br />
and morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxide film due as it was previously<br />
menti<strong>on</strong>ed to <strong>the</strong> increased c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> species in <strong>the</strong><br />
barrier layer during <strong>anodizing</strong> relative to <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, to <strong>the</strong><br />
formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxygen filled voids in <strong>the</strong> oxide, to <strong>the</strong><br />
occluded silic<strong>on</strong> particles in <strong>the</strong> oxide, which partially<br />
have been oxidized, to ir<strong>on</strong> and copper bearing sec<strong>on</strong>d<br />
phase particles or o<strong>the</strong>r defects in <strong>the</strong> oxide [20,21]. It<br />
must be noticed that <strong>the</strong> i min value <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 6111 specimens<br />
remains always almost closed to that <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 5083 under<br />
<strong>the</strong> <strong>anodizing</strong> c<strong>on</strong>diti<strong>on</strong>s used in <strong>the</strong> present study. This<br />
could be explained by <strong>the</strong> hypo<strong>the</strong>sis that this value<br />
depends <strong>on</strong> <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesium as <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing<br />
element, which is oxidized first at <strong>the</strong> commencement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
<strong>anodizing</strong>. However, imin decreases and approaches that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
pure <strong>aluminum</strong> after heat treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> AA 6111<br />
specimens. Lower electric c<strong>on</strong>ductivity characterizes <strong>the</strong>se<br />
specimens after heat treatment. Thus, <strong>the</strong> AA 6111 heattreated<br />
shows slightly lower current densities than <strong>the</strong><br />
unheat-treated <strong>on</strong>e during all stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong> at<br />
standard c<strong>on</strong>diti<strong>on</strong>s. The differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> topography <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
this <str<strong>on</strong>g>alloy</str<strong>on</strong>g> substrate, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> heat treatment, seems<br />
to improve slightly <strong>the</strong> <strong>anodizing</strong> efficiency.<br />
It has been referred [43] that after heat treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> AA<br />
6111 <str<strong>on</strong>g>alloy</str<strong>on</strong>g> two precipitated phases hµ (m<strong>on</strong>oclinic) and Q<br />
(hexag<strong>on</strong>al) coexist. hµ phase is <strong>the</strong> precursor <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> h phase<br />
whose compositi<strong>on</strong> has been well established to be Mg2Si<br />
[43]. Q phase has an Mg/Si ratio in AA 6111 <str<strong>on</strong>g>alloy</str<strong>on</strong>g> HT (180<br />
-C for 0.5 h) about 1.0 to 1.1 and its compositi<strong>on</strong> seems to<br />
depend <strong>on</strong> <strong>the</strong> relative c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>ing<br />
elements Mg, Si, Cu and <strong>the</strong> c<strong>on</strong>taminating elements Fe<br />
and Mn [43,44].
2640<br />
The precipitated phases after heat treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 6111<br />
are possibly modified during sample preparati<strong>on</strong> and <strong>the</strong><br />
<strong>anodizing</strong> <strong>process</strong>. Selective dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg in <strong>the</strong> Mg2Si<br />
intermetallics in water has been referred [45,46] and<br />
formati<strong>on</strong>, after oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> remaining silic<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />
insulating coating c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> oxide, which encapsulates<br />
<strong>the</strong> Q-phase. This results to increased passivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
<strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g> and probably could explain <strong>the</strong> lower electric<br />
c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> heat-treated <str<strong>on</strong>g>alloy</str<strong>on</strong>g> than <strong>the</strong> unheat-treated <strong>on</strong>e.<br />
Ano<strong>the</strong>r possible hypo<strong>the</strong>sis for <strong>the</strong> lowering <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>anodizing</strong><br />
current density (imin, iss) and <str<strong>on</strong>g>of</str<strong>on</strong>g> side reacti<strong>on</strong>s, by <strong>the</strong><br />
heat treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, is <strong>the</strong> Mg depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
adjacent z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 6111 specimens by <strong>the</strong> precipitati<strong>on</strong><br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> hµ and Q streng<strong>the</strong>ning phases.<br />
5. C<strong>on</strong>clusi<strong>on</strong>s<br />
Specimens <str<strong>on</strong>g>of</str<strong>on</strong>g> AA 5083 <str<strong>on</strong>g>alloy</str<strong>on</strong>g> and AA 6111 UT and HT<br />
<str<strong>on</strong>g>alloy</str<strong>on</strong>g>s were anodized in sulfuric acid baths in different<br />
c<strong>on</strong>diti<strong>on</strong>s and were compared with those <str<strong>on</strong>g>of</str<strong>on</strong>g> pure <strong>aluminum</strong><br />
by <strong>the</strong> use mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> electrochemical measurements. The<br />
following were c<strong>on</strong>cluded:<br />
& For AA 5083 <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, <strong>the</strong> stages <str<strong>on</strong>g>of</str<strong>on</strong>g> porous structure<br />
development are substantially identical with that <str<strong>on</strong>g>of</str<strong>on</strong>g> pure<br />
<strong>aluminum</strong>, although an increase in oxide growth rate and<br />
high c<strong>on</strong>ductance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxide film were observed.<br />
& For AA 5083 <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, increasing <strong>anodizing</strong> temperature or<br />
increasing <strong>anodizing</strong> voltage results in a decrease in<br />
<strong>anodizing</strong> current with <strong>the</strong> time and relative to that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
pure <strong>aluminum</strong>.<br />
& For AA 6111 <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, <strong>the</strong> stage <str<strong>on</strong>g>of</str<strong>on</strong>g> rearrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />
pores during <strong>anodizing</strong> before <strong>the</strong> current reaches a<br />
steady-state value is missing. This is an evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />
c<strong>on</strong>siderable modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compositi<strong>on</strong> and morphology<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> film, and it is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> temper<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>alloy</str<strong>on</strong>g>.<br />
& Under standard <strong>anodizing</strong> c<strong>on</strong>diti<strong>on</strong>s, AA 6111 <str<strong>on</strong>g>alloy</str<strong>on</strong>g> has<br />
an oxide growth rate similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> pure <strong>aluminum</strong>.<br />
Increasing <strong>anodizing</strong> temperature and/or voltage increase<br />
<strong>the</strong> oxide dissoluti<strong>on</strong> rate in a smaller manner to that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
pure <strong>aluminum</strong>. Enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu, Fe and Si at <strong>the</strong><br />
oxide/metal interface has been observed.<br />
& For AA 6111 <str<strong>on</strong>g>alloy</str<strong>on</strong>g>, <strong>the</strong> heat treatment affects <strong>anodizing</strong><br />
kinetics and improves slightly <strong>the</strong> <strong>anodizing</strong> current<br />
efficiency.<br />
Acknowledgments<br />
I. Tsangaraki-Kaplanoglou et al. / Surface & Coatings Technology 200 (2006) 2634–2641<br />
The authors wish to acknowledge General Motors and<br />
<strong>the</strong> Research Committee Secretariat <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
A<strong>the</strong>ns for <strong>the</strong>ir financial support and Associate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. N.<br />
Kallithrakas-K<strong>on</strong>tos (Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Crete) for Xray<br />
fluorescence studies.<br />
References<br />
[1] F. Keller, M. Hunter, D. Robins<strong>on</strong>, J. Electrochem. Soc. 100 (1953)<br />
411.<br />
[2] S. Wernick, R. Pinner, P.G. Sheasby, The Surface Treatment and<br />
Finishing <str<strong>on</strong>g>of</str<strong>on</strong>g> Aluminum and its Alloys, vols. I, II, ASM Internati<strong>on</strong>al<br />
Finishing Publicati<strong>on</strong>s Ltd, England, 1987.<br />
[3] H. Habazaki, et al., Corros. Sci. 39 (1997) 731.<br />
[4] J.W. Diggle, Oxide and Oxide Films, vol. II, Marcel Dekker Inc.,<br />
N. York, 1973.<br />
[5] J. De Laet, H. Terryn, J. Vereecken, Thin Solid Films 320 (1998) 241.<br />
[6] Y.-C. Kim, B. Quint, R.W. Kesler, D. Oelkurg, J. Electroanal. Chem.<br />
468 (1999) 121.<br />
[7] P.O Sullivan, G.C. Wood, Proc. R. Soc. L<strong>on</strong>d., A 317 (1970) 511.<br />
[8] H. Habazaki, K. Shimitzu, P. Skeld<strong>on</strong>, G.E. Thomps<strong>on</strong>, G.C. Wood,<br />
Trans. IMF 75 (1) (1997) 18.<br />
[9] K. Shimizu, G.M. Brown, K. Kobayashi, P. Skeld<strong>on</strong>, G.E. Thomps<strong>on</strong>,<br />
G.C. Wood, Corros. Sci. 40 (1998) 1049.<br />
[10] K. Shimizu, G.M. Brown, H. Habazaki, K. Kobayashi, P. Skeld<strong>on</strong>, G.<br />
Thomps<strong>on</strong>, G.C. Wood, Corros. Sci. 42 (2000) 831.<br />
[11] A.C. Crossland, G.E. Thomps<strong>on</strong>, C.J.E. Smith, H. Habazaki, K.<br />
Shimizu, P. Skeld<strong>on</strong>, Corros. Sci. 41 (1999) 2053.<br />
[12] H. Habazaki, et al., Electrochim. Acta 42 (1997) 2627.<br />
[13] J. Cote, E.E. Howlett, M.J. Wkeeler, H.J. Lamb, Plating Surf. Finish.<br />
(1969 (April)) 386.<br />
[14] H. Habazaki, K. Shimizu, P. Skeld<strong>on</strong>, G. Thomps<strong>on</strong>, G.C. Wood,<br />
Corros. Sci. 39 (2) (1997) 339.<br />
[15] X. Zhou, G.E. Thomps<strong>on</strong>, G.C. P. Skeld<strong>on</strong>, K. Wood, H. Shimizu,<br />
Corros. Sci. 41 (1999) 1599.<br />
[16] J.P. Dasquet, D. Caillard, E. C<strong>on</strong>forto, J.P. B<strong>on</strong>ino, R. Bes, Thin Solid<br />
Films 371 (2000) 183.<br />
[17] H. Habazaki, K. Shimizu, P. Skeld<strong>on</strong>, G.E. Thomps<strong>on</strong>, G.C. Wood,<br />
Trans. IMF 75 (1) (1997) 18.<br />
[18] G.E. Thomps<strong>on</strong>, H. Habazaki, K. Shimizu, M. Sakaizi, P. Skeld<strong>on</strong>, X.<br />
Zhou, G.C. Wood, Aircr. Eng. Aerosp. Technol. 71 (3) (1999) 228.<br />
[19] H.S. Kim, G.E. Thomps<strong>on</strong>, G.C. Wood, I.G. Wright, R.E. Marringer,<br />
Trans. IMF 62 (1984) 49.<br />
[20] L.E. Fratila-Apachitei, F.D. Tichelaar, G.E. Thomps<strong>on</strong>, H. Terryn, P.<br />
Skeld<strong>on</strong>, J. Duszczyk, L. Katgerman, Electrochim. Acta 49 (2004)<br />
3169.<br />
[21] L.E. Fratila-Apachitei, H. Terryn, P. Skeld<strong>on</strong>, G.E. Thomps<strong>on</strong>, J.<br />
Duszczyk, L. Katgerman, Electrochim. Acta 49 (2004) 1127.<br />
[22] H. Habazaki, K. Shimizu, P. Skeld<strong>on</strong>, G.E. Thomps<strong>on</strong>, G.C. Wood,<br />
Corros. Sci. 43 (7) (2001) 1393.<br />
[23] K. Mukhopadhyay, A.K. Sharma, Surf. Coat. Technol. 92 (1997) 212.<br />
[24] K. Shimizu, K. Kobayashi, G.E. Thomps<strong>on</strong>, P. Skeld<strong>on</strong>, G.C. Wood,<br />
Corros. Sci. 39, (2) (1997) 281.<br />
[25] E. Zhuravlyova, L. Iglesias-Rubianes, A. Pakes, P. Skeld<strong>on</strong>, G.E.<br />
Thomps<strong>on</strong>, X. Zhou, T. Quance, M.J. Graham, H. Habazaki, K.<br />
Shimizu, Corros. Sci. 44 (9) (2002) 2153.<br />
[26] M.A. Paez, T.M. Fo<strong>on</strong>g, C.T. Ni, G.E. Thomps<strong>on</strong>, K. Shimizu, H.<br />
Habazaki, P. Skeld<strong>on</strong>, G.C. Wood, Corros. Sci. 38 (1) (1996) 59.<br />
[27] X. Zhou, G.E. Thomps<strong>on</strong>, H. Habazaki, K. Shimizu, P. Skeld<strong>on</strong>, G.C.<br />
Wood, Thin Solid Films 293 (1997) 327.<br />
[28] P. Skeld<strong>on</strong>, et al., in: R. Van Grieken, A. Markowicz (Eds.), Handbook<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray Spectrometry, Marcel Dekker Inc, New York, 1993.<br />
[29] P. Van Espen, H. Nullens, F. Adams, Nucl. Instrum. Methods 145<br />
(1977) 579.<br />
[30] G.J. Baczynski, D.J. Lloyd, R. Rogge, J. Root, Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> Aluminum<br />
Surf. Science and Technology Symposium 2000, 2000, p. 23.<br />
[31] J.H. Nordlien, A.J. Davenport, G.M. Scamans, Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> Aluminum<br />
Surf. Science and Technology Symposium 2000, 2000, p. 108.<br />
[32] T.P. Hoar, J. Yahalom, J. Electrochem. Soc. 110 (6) (1963) 614.<br />
[33] Y. Liu, P. Skeld<strong>on</strong>, G.E. Thomps<strong>on</strong>, H. Habazaki, K. Shimitzu,<br />
Corros. Sci. 44 (5) (2002) 1133.<br />
[34] H. Habazaki, K. Shimitzu, P. Skeld<strong>on</strong>, G.E. Thomps<strong>on</strong>, G.C. Wood,<br />
Thin Solid Films 300 (1997) 131.
I. Tsangaraki-Kaplanoglou et al. / Surface & Coatings Technology 200 (2006) 2634–2641 2641<br />
[35] Y.-M. Wang, H.-H. (Harry) Kuo, S. Kia, Plating Surf. Finish. 91 (2)<br />
(2004) 34.<br />
[36] I. Tsangaraki, S. Theohari, Th. Dimoger<strong>on</strong>takis, N. Kallithrakas-<br />
K<strong>on</strong>tos, Yar-Ming Wang, H<strong>on</strong>g-Hsiang (Harry) Kuo, Sheila Kia, Surf.<br />
Coat. Technol. (in press).<br />
[37] L.E. Fratila-Apachitei, J. Duszczyk, L. Katgerman, Surf. Coat.<br />
Technol. 157 (2002) 80.<br />
[38] M.V. Kral, H.R. McIntyre, M.J. Smillie, Scr. Mater. 51 (3) (2004) 215.<br />
[39] J.P. Dasquet, D. Caillard, E. C<strong>on</strong>forto, J.P. B<strong>on</strong>ino, R. Bes, Thin Solid<br />
Films 371 (2000) 183.<br />
[40] H. Habazaki, H. K<strong>on</strong>no, K. Shimizu, S. Nagata, P. Skeld<strong>on</strong>, G.E.<br />
Thomps<strong>on</strong>, Corros. Sci. 46 (8) (2004) 2041.<br />
[41] A.C. Grossland, H. Habazaki, K. Shimizu, P. Skeld<strong>on</strong>, G.E.<br />
Thomps<strong>on</strong>, G.C. Wood, X. Zhou, C.J.E. Smith, Corros. Sci. 41 (10)<br />
(1999) 1945.<br />
[42] R.B. Mas<strong>on</strong>, P.E. Fowle, J. Electrochem. Soc. 101 (2) (1954) 53.<br />
[43] A. Perovic, D.D. Perovic, G.C. Wea<strong>the</strong>rly, D.J. Lloyd, Scr. Mater. 41<br />
(7) (1999) 703.<br />
[44] G. Mrowka_Nowotnik, J. Sieniawski, J. Mater. Process. Technol.<br />
162–163 (2005) 367.<br />
[45] G. Svenningsen, J.E. Lein, A. Bjorgum, J.H. Nordlien, Y. Yu, K.<br />
Nisancioglu, Corros. Sci. (in press).<br />
[46] G. Svenningsen, M.H. Larsen, J.H. Nordlien, K. Nisancioglu, Corros.<br />
Sci. (in press).