17.11.2012 Views

Aluminium Recycling in Europe: the Road to High

Aluminium Recycling in Europe: the Road to High

Aluminium Recycling in Europe: the Road to High

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> <strong>in</strong> <strong>Europe</strong><br />

The <strong>Road</strong> <strong>to</strong> <strong>High</strong> Quality Products<br />

Organisation of<br />

<strong>Europe</strong>an <strong>Alum<strong>in</strong>ium</strong> Ref<strong>in</strong>ers<br />

and Remelters


<strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> <strong>in</strong> <strong>Europe</strong><br />

The <strong>Road</strong> <strong>to</strong> <strong>High</strong> Quality Products<br />

Organisation of<br />

<strong>Europe</strong>an <strong>Alum<strong>in</strong>ium</strong> Ref<strong>in</strong>ers<br />

and Remelters


2<br />

Preface<br />

Contents<br />

1. <strong>Recycl<strong>in</strong>g</strong>: a Corners<strong>to</strong>ne of <strong>Alum<strong>in</strong>ium</strong> Susta<strong>in</strong>ability 4<br />

Key Players <strong>in</strong> <strong>Recycl<strong>in</strong>g</strong><br />

Recycled <strong>Alum<strong>in</strong>ium</strong>: an Important Raw Material for <strong>the</strong> EU-25<br />

2. Economy: <strong>the</strong> Ma<strong>in</strong> Impetus for <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> 8<br />

<strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong>: a Profitable Bus<strong>in</strong>ess Activity<br />

<strong>Alum<strong>in</strong>ium</strong> Scrap Standards <strong>to</strong> Ensure Effective <strong>Recycl<strong>in</strong>g</strong><br />

<strong>Alum<strong>in</strong>ium</strong> Scrap Availability<br />

Cus<strong>to</strong>mers of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Industry<br />

3. Environment: <strong>the</strong> Commitment of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> Industry 12<br />

<strong>Recycl<strong>in</strong>g</strong> M<strong>in</strong>imises…<br />

…Energy Needs<br />

…Use of Natural Resources<br />

…Land Use<br />

…Waste and Pollution<br />

Environmental Impact of <strong>Recycl<strong>in</strong>g</strong><br />

Measur<strong>in</strong>g <strong>the</strong> <strong>Recycl<strong>in</strong>g</strong> Performance of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> Industry<br />

4. Social Aspects: <strong>the</strong> Small <strong>to</strong> Medium-Size Bus<strong>in</strong>ess Structure<br />

of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Industry 17<br />

5. Clos<strong>in</strong>g <strong>the</strong> Cycle: <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Process 19<br />

Raw Materials<br />

Collection<br />

Treatment<br />

Alloy-Specific Compil<strong>in</strong>g of Scrap<br />

Melt<strong>in</strong>g<br />

Ref<strong>in</strong><strong>in</strong>g<br />

Quality Control<br />

Cast<strong>in</strong>g<br />

Product Range<br />

6. End-of-Life Product <strong>Recycl<strong>in</strong>g</strong>: <strong>the</strong> Route <strong>to</strong> <strong>High</strong> Quality<br />

at Low Cost 28<br />

Transport<br />

Build<strong>in</strong>g<br />

Packag<strong>in</strong>g<br />

7. The <strong>Alum<strong>in</strong>ium</strong> Life Cycle: <strong>the</strong> Never-End<strong>in</strong>g S<strong>to</strong>ry 34<br />

8. Frequently Asked Questions 39<br />

9. Glossary 46<br />

10. Fur<strong>the</strong>r Read<strong>in</strong>g 49<br />

Reverse Cover: Global <strong>Recycl<strong>in</strong>g</strong> Messages


Preface<br />

This brochure is <strong>the</strong> product of years of close collaboration<br />

between <strong>the</strong> <strong>Europe</strong>an <strong>Alum<strong>in</strong>ium</strong> Association (EAA) and <strong>the</strong><br />

Organisation of <strong>Europe</strong>an <strong>Alum<strong>in</strong>ium</strong> Ref<strong>in</strong>ers and Remelters (OEA).<br />

The scope of activities of this unique co-operation is very broad,<br />

cover<strong>in</strong>g all manner of production- and product-related aspects.<br />

This <strong>in</strong>cludes consolidat<strong>in</strong>g <strong>the</strong> position of <strong>the</strong> <strong>Europe</strong>an<br />

alum<strong>in</strong>ium <strong>in</strong>dustry with respect <strong>to</strong> exist<strong>in</strong>g recycl<strong>in</strong>g performance,<br />

and improv<strong>in</strong>g awareness of recycl<strong>in</strong>g rates, scrap flow, and scrap<br />

statistics. It also extends <strong>to</strong> <strong>the</strong> management of research and<br />

development projects l<strong>in</strong>ked <strong>to</strong> recycl<strong>in</strong>g, as well as consultation<br />

and support of recycl<strong>in</strong>g-related activities with<strong>in</strong> end-use<br />

markets.<br />

3


4<br />

1. <strong>Recycl<strong>in</strong>g</strong>: a Corners<strong>to</strong>ne<br />

of <strong>Alum<strong>in</strong>ium</strong> Susta<strong>in</strong>ability<br />

<strong>Recycl<strong>in</strong>g</strong> is a major consideration <strong>in</strong><br />

cont<strong>in</strong>ued alum<strong>in</strong>ium use, represent<strong>in</strong>g<br />

one of <strong>the</strong> key attributes of this ubiqui<strong>to</strong>us<br />

metal, with far-reach<strong>in</strong>g economic,<br />

ecological and social implications. More<br />

than half of all <strong>the</strong> alum<strong>in</strong>ium currently<br />

produced <strong>in</strong> <strong>the</strong> <strong>Europe</strong>an Union (EU-25)<br />

orig<strong>in</strong>ates from recycled raw materials and<br />

that trend is on <strong>the</strong> <strong>in</strong>crease. In view of<br />

grow<strong>in</strong>g end-use demand and a lack of<br />

sufficient domestic primary alum<strong>in</strong>ium<br />

production <strong>in</strong> this part of <strong>the</strong> world,<br />

<strong>Europe</strong> has a huge stake <strong>in</strong> maximis<strong>in</strong>g <strong>the</strong><br />

collection of all available alum<strong>in</strong>ium, and<br />

develop<strong>in</strong>g <strong>the</strong> most resource-efficient<br />

scrap treatments and melt<strong>in</strong>g processes.<br />

The importance of efficient alum<strong>in</strong>ium<br />

recycl<strong>in</strong>g will even fur<strong>the</strong>r <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

future because of ris<strong>in</strong>g energy constra<strong>in</strong>ts<br />

<strong>in</strong> this region.


The high <strong>in</strong>tr<strong>in</strong>sic value of alum<strong>in</strong>ium<br />

scrap has always been <strong>the</strong> ma<strong>in</strong> impetus<br />

for recycl<strong>in</strong>g, <strong>in</strong>dependent of any<br />

legislative or political <strong>in</strong>itiative. But <strong>in</strong><br />

addition <strong>to</strong> this obvious economic<br />

dimension, grow<strong>in</strong>g environmental<br />

concerns and heightened social<br />

responsibility, especially dur<strong>in</strong>g this last<br />

decade, have served <strong>to</strong> boost <strong>the</strong> recycl<strong>in</strong>g<br />

activity, s<strong>in</strong>ce recycl<strong>in</strong>g requires as little<br />

as 5% of <strong>the</strong> energy needed for primary<br />

alum<strong>in</strong>ium production.<br />

The alum<strong>in</strong>ium economy is a cycle<br />

economy. Indeed, for most alum<strong>in</strong>ium<br />

products, alum<strong>in</strong>ium is not actually<br />

consumed dur<strong>in</strong>g a lifetime, but simply<br />

used. Therefore, <strong>the</strong> life cycle of an<br />

alum<strong>in</strong>ium product is not <strong>the</strong> traditional<br />

"cradle-<strong>to</strong>-grave" sequence, but ra<strong>the</strong>r<br />

a renewable "cradle-<strong>to</strong>-cradle". If scrap<br />

is processed appropriately, <strong>the</strong> recycled<br />

alum<strong>in</strong>ium can be utilised for almost<br />

all alum<strong>in</strong>ium applications, <strong>the</strong>reby<br />

preserv<strong>in</strong>g raw materials and mak<strong>in</strong>g<br />

considerable energy sav<strong>in</strong>gs.<br />

Key Players <strong>in</strong> <strong>Recycl<strong>in</strong>g</strong><br />

The alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>in</strong>dustry,<br />

<strong>in</strong>clud<strong>in</strong>g both ref<strong>in</strong>ers and remelters,<br />

treats and transforms alum<strong>in</strong>ium scrap <strong>in</strong><strong>to</strong><br />

standardised alum<strong>in</strong>ium. Ref<strong>in</strong>ers and<br />

remelters play <strong>in</strong>tegral roles <strong>in</strong> alum<strong>in</strong>ium<br />

recycl<strong>in</strong>g but <strong>the</strong>y, <strong>in</strong> turn, depend on<br />

o<strong>the</strong>r crucial l<strong>in</strong>ks <strong>in</strong> <strong>the</strong> cha<strong>in</strong>. Indeed,<br />

without <strong>the</strong> collec<strong>to</strong>rs, dismantlers,<br />

metal merchants and scrap processors who<br />

deal with <strong>the</strong> collection and treatment of<br />

scrap, <strong>the</strong>y would not be able <strong>to</strong> fulfil<br />

<strong>the</strong>ir roles. The metal merchants are also<br />

responsible for handl<strong>in</strong>g most of <strong>the</strong><br />

foreign trade <strong>in</strong> alum<strong>in</strong>ium scrap.<br />

Input: Sources of <strong>Alum<strong>in</strong>ium</strong> Scrap<br />

Collec<strong>to</strong>rs<br />

Dismantlers<br />

Metal Merchants<br />

Shredders<br />

Processors of Scrap<br />

Processors of Salt Slag<br />

Processors of Skimm<strong>in</strong>gs<br />

Ref<strong>in</strong>ers<br />

Remelters<br />

Output: Recycled <strong>Alum<strong>in</strong>ium</strong><br />

Figure 1: Structure of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Industry<br />

5


6<br />

1. <strong>Recycl<strong>in</strong>g</strong>: a Corners<strong>to</strong>ne of <strong>Alum<strong>in</strong>ium</strong> Susta<strong>in</strong>ability<br />

Recycled <strong>Alum<strong>in</strong>ium</strong>:<br />

an Important Raw Material<br />

for <strong>the</strong> EU-25<br />

In 2004, approximately 11.4 million <strong>to</strong>nnes<br />

of alum<strong>in</strong>ium were used for <strong>the</strong> production<br />

of fabricated goods <strong>in</strong> <strong>the</strong> EU. Primary<br />

alum<strong>in</strong>ium production <strong>in</strong> <strong>the</strong> EU currently<br />

amounts <strong>to</strong> just 3 million <strong>to</strong>nnes. This<br />

<strong>in</strong> fact means that, without alum<strong>in</strong>ium<br />

recycl<strong>in</strong>g, <strong>the</strong> EU would have <strong>to</strong> import<br />

about 8.4 million <strong>to</strong>nnes of primary and<br />

recycled alum<strong>in</strong>ium <strong>to</strong> meet requirements.<br />

Primary alum<strong>in</strong>ium production <strong>in</strong> <strong>the</strong> rest<br />

of <strong>Europe</strong> yields a fur<strong>the</strong>r 2.2 million<br />

<strong>to</strong>nnes so, even if this figure were added<br />

<strong>to</strong> <strong>the</strong> equation, <strong>the</strong> EU would still depend<br />

considerably on alum<strong>in</strong>ium imports. This<br />

dependence is substantially alleviated,<br />

however, by <strong>the</strong> recycl<strong>in</strong>g of alum<strong>in</strong>ium.<br />

In 2004, <strong>the</strong> EU produced 4.5 million<br />

<strong>to</strong>nnes of <strong>in</strong>gots for alum<strong>in</strong>ium cast<strong>in</strong>gs,<br />

wrought alum<strong>in</strong>ium (roll<strong>in</strong>g <strong>in</strong>gots and<br />

extrusion billets) and deoxidation<br />

alum<strong>in</strong>ium from alum<strong>in</strong>ium scrap.<br />

<strong>Alum<strong>in</strong>ium</strong> <strong>in</strong> 1 000 <strong>to</strong>nnes/year<br />

12 000 80<br />

10 500<br />

9 000<br />

7 500<br />

6 000<br />

4 500<br />

3 000<br />

1 500<br />

0<br />

1980<br />

Ratio<br />

Domestic Primary Production<br />

1985<br />

Figure 2: Ratio: Primary Production / Total Use <strong>in</strong> <strong>the</strong> EU 2<br />

1990<br />

1995<br />

Total Metal Use 1<br />

1 Includes domestic metal production (primary and recycled) and net-metal imports.<br />

2 1980 <strong>to</strong> 1999: EU-15; s<strong>in</strong>ce 2000: EU-25<br />

2000<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0 Percentage


M<strong>in</strong><strong>in</strong>g<br />

Bauxite<br />

<strong>in</strong> million <strong>to</strong>nnes<br />

Ref<strong>in</strong><strong>in</strong>g<br />

Alum<strong>in</strong>a<br />

<strong>in</strong> million <strong>to</strong>nnes<br />

Metal Production<br />

Primary Metal<br />

Recycled Metal 2<br />

<strong>in</strong> million <strong>to</strong>nnes<br />

Fabrication<br />

Metal<br />

<strong>in</strong> million <strong>to</strong>nnes<br />

Production Import (net) Total<br />

6 Plants<br />

12 Plants<br />

38 Plants 286 Plants<br />

Figure 3: <strong>Alum<strong>in</strong>ium</strong> Sec<strong>to</strong>r <strong>in</strong> <strong>Europe</strong> 1 (2004)<br />

4.6 + 14.5 = 19.1<br />

7.9 + 3.0 = 10.9<br />

5.2 + 4.7 + 2.8 = 12.7<br />

4.4 3.1 3.1 1.1<br />

Rolled<br />

Semis<br />

Extrusions Cast<strong>in</strong>gs Wire Rods, Powder,<br />

Slugs, etc.<br />

57 Plants 300 Plants approx. 2400 Plants<br />

Note: S<strong>in</strong>ce data on each production step are based on <strong>in</strong>dependent statistics<br />

and s<strong>to</strong>ckists are not taken <strong>in</strong><strong>to</strong> account, quantities may not add up.<br />

1 Western and Central <strong>Europe</strong> (former CIS excluded, except Baltic States)<br />

2 Produced from <strong>to</strong>lled and purchased scrap<br />

Bauxite<br />

<strong>in</strong> million <strong>to</strong>nnes<br />

Production<br />

Number of Plants<br />

Net Import<br />

Total<br />

Alum<strong>in</strong>a<br />

<strong>in</strong> million <strong>to</strong>nnes<br />

Production<br />

Number of Plants<br />

Net Import<br />

Total<br />

Metal Production<br />

<strong>in</strong> million <strong>to</strong>nnes<br />

Primary Metal<br />

Number of Plants<br />

Recycled Metal1 Number of Plants<br />

Net Import<br />

Total<br />

Fabrication<br />

<strong>in</strong> million <strong>to</strong>nnes<br />

Rolled Semis<br />

Number of Plants<br />

Extrusions<br />

Number of Plants<br />

Cast<strong>in</strong>gs<br />

Number of Plants<br />

Wire Rods, Powder,<br />

Slugs, etc<br />

<strong>Europe</strong> EU-25<br />

4.6<br />

6<br />

14.5<br />

19.1<br />

7.9<br />

12<br />

3.0<br />

10.9<br />

5.2<br />

38<br />

4.7<br />

286<br />

2.8<br />

12.7<br />

4.4<br />

57<br />

3.1<br />

300<br />

3.1<br />

2400<br />

Figure 4: Comparison – EU-25 and <strong>Europe</strong> (2004)<br />

1.1<br />

Note: refer <strong>to</strong> figure 3<br />

1 Produced from <strong>to</strong>lled and purchased scrap<br />

3.3<br />

4<br />

12.8<br />

16.1<br />

6.6<br />

7<br />

-0.3<br />

6.3<br />

3.0<br />

24<br />

4.5<br />

263<br />

3.9<br />

11.4<br />

4.0<br />

50<br />

2.8<br />

223<br />

2.9<br />

2200<br />

0.8<br />

7


8<br />

2. Economy: <strong>the</strong> Ma<strong>in</strong> Impetus<br />

for <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong><br />

<strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong>:<br />

a Profitable Bus<strong>in</strong>ess Activity<br />

<strong>Alum<strong>in</strong>ium</strong> scrap has considerable market<br />

value because <strong>the</strong> energy needed for<br />

primary production is s<strong>to</strong>red, <strong>to</strong> a large<br />

extent, <strong>in</strong> <strong>the</strong> metal itself and, consequently,<br />

<strong>in</strong> <strong>the</strong> scrap <strong>to</strong>o. Therefore, <strong>the</strong> energy<br />

needed <strong>to</strong> melt alum<strong>in</strong>ium scrap is only<br />

a fraction of that required for primary<br />

alum<strong>in</strong>ium production. Fur<strong>the</strong>rmore, it can<br />

be recycled aga<strong>in</strong> and aga<strong>in</strong> without loss<br />

of its <strong>in</strong>herent properties s<strong>in</strong>ce its a<strong>to</strong>mic<br />

structure is not altered dur<strong>in</strong>g melt<strong>in</strong>g.<br />

The economic importance of alum<strong>in</strong>ium<br />

recycl<strong>in</strong>g <strong>in</strong> <strong>Europe</strong> cannot be overstated<br />

<strong>in</strong> an alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>in</strong>dustry that<br />

effectively tripled its output from about<br />

1.4 million <strong>to</strong>nnes <strong>in</strong> 1980 <strong>to</strong> approximately<br />

4.7 million <strong>to</strong>nnes <strong>in</strong> 2004. The ref<strong>in</strong><strong>in</strong>g<br />

sec<strong>to</strong>r has grown by 53% and <strong>the</strong> recycl<strong>in</strong>g<br />

activity of remelters by a massive 95%.<br />

Dur<strong>in</strong>g <strong>the</strong> same time primary metal<br />

production has grown by 17%.


<strong>Alum<strong>in</strong>ium</strong> can be recycled over and over aga<strong>in</strong> without loss of properties.<br />

The high value of alum<strong>in</strong>ium scrap is a key <strong>in</strong>centive and major economic<br />

impetus for recycl<strong>in</strong>g.<br />

From an environmental po<strong>in</strong>t of view,<br />

alum<strong>in</strong>ium recycl<strong>in</strong>g is ecologically<br />

advantageous if <strong>the</strong> environmental impact<br />

of <strong>the</strong> collection, separation and melt<strong>in</strong>g<br />

of scrap is lower than that of primary<br />

alum<strong>in</strong>ium production. The aim of <strong>the</strong><br />

alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>in</strong>dustry is <strong>to</strong> recycle<br />

Recycled alum<strong>in</strong>ium 1 <strong>in</strong> 1 000 <strong>to</strong>nnes/year<br />

5 000<br />

4 500<br />

4 000<br />

3 500<br />

3 000<br />

2 500<br />

2 000<br />

1 500<br />

1 000<br />

500<br />

0<br />

1980<br />

1982<br />

1984<br />

1986<br />

Figure 5: Evolution of Recycled <strong>Alum<strong>in</strong>ium</strong> <strong>in</strong> <strong>Europe</strong><br />

1988<br />

1990<br />

1992<br />

1 <strong>Alum<strong>in</strong>ium</strong> produced from <strong>to</strong>lled and purchased scrap<br />

all sources of alum<strong>in</strong>ium scrap, whenever<br />

it is technically feasible, economically<br />

viable and ecological desireable. Material<br />

recycl<strong>in</strong>g is deemed economically viable<br />

if <strong>the</strong> added value exceeds <strong>the</strong> recycl<strong>in</strong>g<br />

costs. In specific cases, for <strong>in</strong>stance for<br />

very th<strong>in</strong> alum<strong>in</strong>ium foil lam<strong>in</strong>ated <strong>to</strong><br />

Trend<br />

1994<br />

1996<br />

1998<br />

2000<br />

2002<br />

<strong>Alum<strong>in</strong>ium</strong> production <strong>in</strong> 1 000 <strong>to</strong>nnes<br />

paper, plastics foils, etc., <strong>the</strong>rmal<br />

<strong>in</strong>c<strong>in</strong>eration and energy recovery is often<br />

preferable <strong>to</strong> <strong>the</strong> recovery of <strong>the</strong> m<strong>in</strong>ute<br />

amount of alum<strong>in</strong>ium metal.<br />

In recent years, a trend <strong>to</strong>wards greater<br />

plant capacity has been observed with<strong>in</strong><br />

5 500<br />

5 000<br />

4 500<br />

4 000<br />

3 500<br />

3 000<br />

2 500<br />

2 000<br />

1 500<br />

1 000<br />

500<br />

0<br />

Ref<strong>in</strong><strong>in</strong>g<br />

Remelt<strong>in</strong>g<br />

1980 2004<br />

Figure 6: Production – 1980 and 2004 – <strong>Europe</strong><br />

Primary Production<br />

9


10<br />

2. Economy: <strong>the</strong> Ma<strong>in</strong> Impetus for <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong><br />

<strong>the</strong> ref<strong>in</strong><strong>in</strong>g <strong>in</strong>dustry. This evolution has<br />

contributed, above all, <strong>to</strong> improvements<br />

<strong>in</strong> melt<strong>in</strong>g and emission reduction<br />

technologies, research and development<br />

activities, and economic efficiency.<br />

<strong>Alum<strong>in</strong>ium</strong> Scrap Standards<br />

<strong>to</strong> Ensure Efficient <strong>Recycl<strong>in</strong>g</strong><br />

Various types of scrap and o<strong>the</strong>r<br />

alum<strong>in</strong>ium-conta<strong>in</strong><strong>in</strong>g reclaimed materials<br />

are used <strong>in</strong> alum<strong>in</strong>ium recycl<strong>in</strong>g. S<strong>in</strong>ce<br />

2003, <strong>the</strong> <strong>Europe</strong>an Standard EN 13920<br />

(parts 1–16) on alum<strong>in</strong>ium and alum<strong>in</strong>ium<br />

scrap, which covers all scrap types, has<br />

been considered <strong>the</strong> norm for scrap<br />

classification. In addition, fur<strong>the</strong>r<br />

classifications at national and <strong>in</strong>ternational<br />

level have been developed on <strong>the</strong> basis<br />

of bilateral agreements, for example,<br />

between associations of metal merchants<br />

and alum<strong>in</strong>ium recycl<strong>in</strong>g smelters. These<br />

standards and classifications are <strong>the</strong> result<br />

of quality control developments, which<br />

have been ongo<strong>in</strong>g for decades.<br />

Number of companies<br />

189<br />

37<br />

1994<br />

2<br />

4<br />

2004<br />

Production of Recycled <strong>Alum<strong>in</strong>ium</strong><br />

< 10 000 <strong>to</strong>nnes/year < 50 000 <strong>to</strong>nnes/year<br />

< 40 000 <strong>to</strong>nnes/year ≥ 50 000 <strong>to</strong>nnes/year<br />

Figure 7: Grow<strong>in</strong>g Capacity with<strong>in</strong> <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong><br />

Ref<strong>in</strong><strong>in</strong>g Industry<br />

76<br />

34<br />

11<br />

12<br />

<strong>Alum<strong>in</strong>ium</strong> Scrap Availability<br />

For decades, alum<strong>in</strong>ium recycl<strong>in</strong>g was<br />

a regional concern. <strong>Recycl<strong>in</strong>g</strong> was<br />

traditionally concentrated <strong>in</strong> <strong>the</strong> regions<br />

with high alum<strong>in</strong>ium demand and a well<br />

organised alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>in</strong>dustry.<br />

Today alum<strong>in</strong>ium scrap is a global raw<br />

material commodity. Because its supply is<br />

f<strong>in</strong>ite, <strong>the</strong> balance between supply and<br />

demand is fundamentally unstable. Trade<br />

<strong>in</strong> scrap, predom<strong>in</strong>antly with<strong>in</strong> <strong>Europe</strong>,<br />

has always been of vital importance <strong>to</strong> <strong>the</strong><br />

<strong>in</strong>dustry. Because of <strong>the</strong> variability <strong>in</strong> <strong>the</strong><br />

chemical composition and price of scrap,<br />

both ref<strong>in</strong>ers and remelters have become<br />

<strong>in</strong>creas<strong>in</strong>gly specialised over <strong>the</strong> years.<br />

These specialists now apply scrap-specific<br />

treatment processes and melt<strong>in</strong>g, and<br />

operate <strong>in</strong> facilities implement<strong>in</strong>g strict<br />

pollution control practices. If a particular<br />

type of scrap is not available <strong>in</strong> <strong>the</strong> area<br />

where a plant is located, as is often <strong>the</strong><br />

case, import<strong>in</strong>g <strong>the</strong> scrap may be <strong>the</strong> best<br />

solution.


Cus<strong>to</strong>mers of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong><br />

<strong>Recycl<strong>in</strong>g</strong> Industry<br />

There is a well-established market for<br />

recycled alum<strong>in</strong>ium with firmly def<strong>in</strong>ed<br />

distribution cha<strong>in</strong>s. Hence, <strong>the</strong> ref<strong>in</strong>ers<br />

supply <strong>the</strong> foundries with cast<strong>in</strong>g alloys<br />

and <strong>the</strong> remelters supply <strong>the</strong> roll<strong>in</strong>g mills<br />

and extruders with wrought alloys, where<br />

<strong>the</strong> process<strong>in</strong>g of alloy-specific pieces can<br />

ensue. <strong>Alum<strong>in</strong>ium</strong> alloys are supplied<br />

accord<strong>in</strong>g <strong>to</strong> <strong>Europe</strong>an standards and/or<br />

cus<strong>to</strong>mer specifications. Typical products<br />

made from recycled alum<strong>in</strong>ium <strong>in</strong>clude<br />

cast<strong>in</strong>gs like cyl<strong>in</strong>der heads, eng<strong>in</strong>e blocks,<br />

gearboxes and many o<strong>the</strong>r au<strong>to</strong>motive and<br />

eng<strong>in</strong>eer<strong>in</strong>g components on <strong>the</strong> one hand,<br />

and extrusion billets or roll<strong>in</strong>g <strong>in</strong>gots for<br />

<strong>the</strong> production of profiles, sheets, strips<br />

and foil on <strong>the</strong> o<strong>the</strong>r. Ano<strong>the</strong>r prom<strong>in</strong>ent<br />

user of recycled alum<strong>in</strong>ium is <strong>the</strong> steel<br />

<strong>in</strong>dustry which utilises alum<strong>in</strong>ium for<br />

deoxidation purposes.<br />

Ref<strong>in</strong>ers<br />

Deoxidation <strong>Alum<strong>in</strong>ium</strong> Cast<strong>in</strong>g Alloys<br />

Remelters<br />

Steel Industry Foundries Roll<strong>in</strong>g Mills Extruders<br />

Cast<strong>in</strong>gs<br />

Figure 8: Cus<strong>to</strong>mers of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Industry<br />

Wrought Alloys<br />

Roll<strong>in</strong>g Ingots<br />

Wrought Alloys<br />

Extrusion Billets<br />

Sheets, Strips Extrusions<br />

Fur<strong>the</strong>r Process<strong>in</strong>g Fur<strong>the</strong>r Process<strong>in</strong>g<br />

Rolled Products Extruded Products<br />

11


12<br />

3. Environment:<br />

<strong>the</strong> Commitment of <strong>the</strong><br />

<strong>Alum<strong>in</strong>ium</strong> Industry<br />

The alum<strong>in</strong>ium <strong>in</strong>dustry fully supports<br />

optimal use of energy and materials with<br />

m<strong>in</strong>imal waste and emissions dur<strong>in</strong>g <strong>the</strong><br />

entire life cycle of <strong>the</strong> metal: an <strong>in</strong>tegrated<br />

model of environmentally susta<strong>in</strong>able<br />

<strong>in</strong>dustrial activity. The alum<strong>in</strong>ium <strong>in</strong>dustry<br />

considers recycl<strong>in</strong>g an <strong>in</strong>tegral and<br />

essential part of <strong>the</strong> raw material supply,<br />

underl<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>in</strong>dustry’s commitment<br />

<strong>to</strong> <strong>the</strong> susta<strong>in</strong>able use of resources.


<strong>Alum<strong>in</strong>ium</strong> recycl<strong>in</strong>g benefits present and future generations by conserv<strong>in</strong>g<br />

energy and o<strong>the</strong>r natural resources. It saves approximately 95% of <strong>the</strong> energy<br />

required for primary alum<strong>in</strong>ium production, <strong>the</strong>reby avoid<strong>in</strong>g correspond<strong>in</strong>g<br />

emissions, <strong>in</strong>clud<strong>in</strong>g greenhouse gases.<br />

<strong>Recycl<strong>in</strong>g</strong> M<strong>in</strong>imises… …Energy Needs<br />

Primary <strong>Alum<strong>in</strong>ium</strong> Production Cha<strong>in</strong><br />

Recycled <strong>Alum<strong>in</strong>ium</strong> Production Cha<strong>in</strong><br />

Figure 9: Energy Needs for Primary and Recycled <strong>Alum<strong>in</strong>ium</strong><br />

Energy sav<strong>in</strong>gs of up <strong>to</strong> 95% are achieved<br />

per <strong>to</strong>nne of alum<strong>in</strong>ium produced from<br />

scrap compared <strong>to</strong> primary alum<strong>in</strong>ium.<br />

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%<br />

…Use of Natural Resources<br />

In 2004, approximately 19 million <strong>to</strong>nnes<br />

of bauxite, 11 million <strong>to</strong>nnes of coal,<br />

1 million <strong>to</strong>nne of natural gas and 6 million<br />

<strong>to</strong>nnes of crude oil were conserved globally<br />

as a result of alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>in</strong><br />

<strong>Europe</strong> alone1). Almost all alum<strong>in</strong>ium used commercially<br />

conta<strong>in</strong>s one or more alloy<strong>in</strong>g elements <strong>to</strong><br />

enhance its strength or o<strong>the</strong>r properties.<br />

<strong>Alum<strong>in</strong>ium</strong> recycl<strong>in</strong>g <strong>the</strong>refore contributes<br />

<strong>to</strong> <strong>the</strong> susta<strong>in</strong>able use of copper, iron,<br />

magnesium, manganese, silicon, z<strong>in</strong>c and<br />

o<strong>the</strong>r elements. This effectively means<br />

that, at <strong>to</strong>day’s recycled metal production<br />

of 4.7 million <strong>to</strong>nnes, 230 000 <strong>to</strong>nnes<br />

of alloy<strong>in</strong>g elements are simultaneously<br />

conserved by <strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry <strong>in</strong><br />

<strong>Europe</strong> every year.<br />

13


14 3. Environment: <strong>the</strong> Commitment of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> Industry<br />

…Land Use<br />

<strong>Alum<strong>in</strong>ium</strong> scrap is a recyclable, nonhazardous<br />

and valuable raw material,<br />

which is not landfilled. In highly urbanised<br />

regions, landfill space is dw<strong>in</strong>dl<strong>in</strong>g and<br />

<strong>the</strong> construction of new landfill areas is<br />

very costly or not even an option because<br />

of <strong>the</strong> lack of potential sites. If alum<strong>in</strong>ium<br />

would be non-recyclable material and<br />

if <strong>the</strong> <strong>in</strong>dustry would not care about<br />

recycl<strong>in</strong>g, <strong>Europe</strong> would have landfilled<br />

4.7 million <strong>to</strong>nnes more <strong>in</strong> 2004, which<br />

is equal <strong>to</strong> about 2 million m3 of landfill<br />

volume. Hence, as less ground is used for<br />

land-fill<strong>in</strong>g, fewer communities need <strong>to</strong><br />

live beside landfill sites, fewer ecosystems<br />

are destroyed and less money is required<br />

for site ma<strong>in</strong>tenance.<br />

Bauxite deposits are generally extracted by<br />

open cast m<strong>in</strong><strong>in</strong>g. In most cases <strong>the</strong> <strong>to</strong>psoil<br />

is removed and s<strong>to</strong>red. S<strong>in</strong>ce between<br />

4 and 5 <strong>to</strong>nnes of bauxite are required <strong>to</strong><br />

produce 1 <strong>to</strong>nne of primary alum<strong>in</strong>ium and<br />

for each <strong>to</strong>nne of bauxite up <strong>to</strong> 1 m2 of<br />

land is disturbed, <strong>the</strong> land use for m<strong>in</strong><strong>in</strong>g<br />

is reduced by recycl<strong>in</strong>g. Never<strong>the</strong>less,<br />

<strong>the</strong> impact of bauxite m<strong>in</strong><strong>in</strong>g is greatly<br />

lessened by <strong>the</strong> <strong>in</strong>dustry's susta<strong>in</strong>able<br />

post-m<strong>in</strong><strong>in</strong>g rehabilitation measures. In<br />

2002, about 83% of <strong>the</strong> <strong>to</strong>tal m<strong>in</strong>ed area<br />

was rehabilitated, of which 80% was<br />

returned <strong>to</strong> native forests, 10% <strong>to</strong> tropical<br />

forests, 4% <strong>to</strong> commercial forests, 2%<br />

<strong>to</strong> native pasture and <strong>the</strong> rema<strong>in</strong><strong>in</strong>g 4%<br />

was predom<strong>in</strong>antly used for urban and<br />

<strong>in</strong>dustrial development, hous<strong>in</strong>g and<br />

recreational purposes2). …Waste and Pollution<br />

The alum<strong>in</strong>ium <strong>in</strong>dustry has always been<br />

proactive <strong>in</strong> its efforts <strong>to</strong> m<strong>in</strong>imise waste,<br />

landscape disruption and emissions dur<strong>in</strong>g<br />

primary alum<strong>in</strong>ium production, while at<br />

<strong>the</strong> same time striv<strong>in</strong>g <strong>to</strong> <strong>in</strong>crease <strong>the</strong> use<br />

of recycled alum<strong>in</strong>ium. Industry moni<strong>to</strong>r<strong>in</strong>g1) of environmental aspects <strong>in</strong> <strong>Europe</strong><br />

demonstrates <strong>the</strong> follow<strong>in</strong>g approximate<br />

sav<strong>in</strong>gs made when produc<strong>in</strong>g one <strong>to</strong>nne<br />

of recycled alum<strong>in</strong>ium by ref<strong>in</strong>ers versus<br />

primary alum<strong>in</strong>ium (<strong>in</strong>clud<strong>in</strong>g both direct<br />

and <strong>in</strong>direct emissions):<br />

– 1 370 kg bauxite residues<br />

– 9 800 kg CO2 equivalent<br />

– 64 kg SO2 emissions<br />

Environmental Impact<br />

of <strong>Recycl<strong>in</strong>g</strong><br />

<strong>Europe</strong>an ref<strong>in</strong>ers and remelters are<br />

equipped with state-of-<strong>the</strong>-art technology<br />

(see reference document on Best Available<br />

Techniques <strong>in</strong> <strong>the</strong> Non-Ferrous Metal<br />

Industries by <strong>the</strong> <strong>Europe</strong>an Commission)<br />

<strong>to</strong> clean exhaust gases of dust, acidic<br />

compounds (HCl, HF, SO2 ), volatile organic<br />

carbon, diox<strong>in</strong>s and furans. Residues are<br />

recycled wherever possible or treated<br />

and disposed of accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> latest<br />

available technologies and procedures.<br />

<strong>Alum<strong>in</strong>ium</strong> salt slag (~260 kg/<strong>to</strong>nne<br />

alum<strong>in</strong>ium3)) that is generated dur<strong>in</strong>g<br />

melt<strong>in</strong>g of scrap under a salt layer is<br />

processed <strong>to</strong> reusable salt, alum<strong>in</strong>ium


metal for future use, and alum<strong>in</strong>ium<br />

oxide. The alum<strong>in</strong>ium oxide is <strong>the</strong>n used<br />

<strong>in</strong> a variety of applications, such as<br />

<strong>the</strong> production of cement. Filter dust<br />

(~8 kg/<strong>to</strong>nne alum<strong>in</strong>ium3)) is recycled or<br />

discarded <strong>in</strong><strong>to</strong> specially designed facilities.<br />

Skimm<strong>in</strong>gs (~120kg/<strong>to</strong>nne alum<strong>in</strong>ium3)) and, <strong>in</strong> some cases, furnace l<strong>in</strong><strong>in</strong>g<br />

(~2 kg/<strong>to</strong>nne alum<strong>in</strong>ium3)) are recycled<br />

with<strong>in</strong> <strong>the</strong> alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>in</strong>dustry.<br />

Measur<strong>in</strong>g <strong>the</strong> <strong>Recycl<strong>in</strong>g</strong><br />

Performance of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong><br />

Industry<br />

The recycl<strong>in</strong>g performance of <strong>the</strong><br />

alum<strong>in</strong>ium <strong>in</strong>dustry can be described by<br />

different <strong>in</strong>dica<strong>to</strong>rs, namely <strong>the</strong> overall<br />

and <strong>the</strong> end-of-life recycl<strong>in</strong>g efficiency<br />

rate (see frequently ask questions).<br />

The recycl<strong>in</strong>g performance of <strong>the</strong><br />

alum<strong>in</strong>ium <strong>in</strong>dustry is determ<strong>in</strong>ed first of<br />

all by how much alum<strong>in</strong>ium metal is lost<br />

with<strong>in</strong> <strong>the</strong> <strong>in</strong>dustry. Usually, ref<strong>in</strong>ers and<br />

<strong>Alum<strong>in</strong>ium</strong><br />

Salt<br />

Remelter<br />

Ref<strong>in</strong>er<br />

Salt Slag Processor<br />

Construction Industry<br />

Figure 10: Internal <strong>Recycl<strong>in</strong>g</strong> Flow<br />

remelters report <strong>the</strong>ir (gross) metal yield<br />

by compar<strong>in</strong>g <strong>the</strong>ir outputs of metal <strong>in</strong>gots<br />

with <strong>the</strong>ir scrap <strong>in</strong>puts, as values between<br />

70 and 95%. In 2005, an alum<strong>in</strong>ium mass<br />

Skimm<strong>in</strong>gs<br />

Salt Slag<br />

<strong>Alum<strong>in</strong>ium</strong> Oxide<br />

Ref<strong>in</strong>er Specialised <strong>in</strong><br />

Skimm<strong>in</strong>gs<br />

balance for <strong>the</strong> alum<strong>in</strong>ium recycl<strong>in</strong>g<br />

<strong>in</strong>dustry <strong>in</strong> <strong>the</strong> EU-15 was carried out by<br />

Delft University of Technology, tak<strong>in</strong>g <strong>in</strong><strong>to</strong><br />

account foreign material (pa<strong>in</strong>t, paper,<br />

15


16 3. Environment: <strong>the</strong> Commitment of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> Industry<br />

The grow<strong>in</strong>g markets for alum<strong>in</strong>ium are supplied by both primary and recycled<br />

metal sources. Increas<strong>in</strong>g demand for alum<strong>in</strong>ium and <strong>the</strong> long lifetime<br />

of many products mean that, for <strong>the</strong> foreseeable future, <strong>the</strong> overall volume of<br />

primary metal produced from bauxite will cont<strong>in</strong>ue <strong>to</strong> be substantially<br />

greater than <strong>the</strong> volume of available recycled metal.<br />

plastic, lubricants, etc), at <strong>the</strong> <strong>in</strong>put side<br />

of <strong>the</strong> scrap and alum<strong>in</strong>ium recycl<strong>in</strong>g from<br />

skimm<strong>in</strong>gs and salt slag. The study3) has<br />

shown that <strong>the</strong> real metal loss for all scrap<br />

melted <strong>in</strong> <strong>the</strong> EU-15 is usually less than<br />

2%, i.e. <strong>the</strong> net metal yield is above 98%.<br />

For old scrap, <strong>the</strong> metal loss is between<br />

1 and 5% depend<strong>in</strong>g on <strong>the</strong> scrap type<br />

and <strong>the</strong> furnace technology used.<br />

Secondly, when look<strong>in</strong>g at a broader<br />

picture of alum<strong>in</strong>ium use and resource<br />

conservation, one needs <strong>to</strong> compare <strong>the</strong><br />

amount of recycled metal used <strong>in</strong> relation<br />

<strong>to</strong> <strong>the</strong> availability of scrap sources keep<strong>in</strong>g<br />

<strong>in</strong> m<strong>in</strong>d <strong>the</strong> technological and ecological<br />

borders of recycl<strong>in</strong>g. For alum<strong>in</strong>ium<br />

products heavier than around 100 grams,<br />

separation of alum<strong>in</strong>ium scrap from endof-life<br />

products is ma<strong>in</strong>ly driven by market<br />

mechanisms and <strong>the</strong> high value of <strong>the</strong><br />

scrap, which expla<strong>in</strong>s <strong>the</strong> high rates of<br />

alum<strong>in</strong>ium from build<strong>in</strong>g products or<br />

overhead cables. However, we are liv<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> world of "dematerialisation" and<br />

multi-material solutions, where functions<br />

can be fulfilled with less and less material:<br />

cans get lighter, alum<strong>in</strong>ium foil as a<br />

barrier material <strong>in</strong> packag<strong>in</strong>g gets th<strong>in</strong>ner<br />

and th<strong>in</strong>ner, alum<strong>in</strong>ium parts <strong>in</strong> vehicles,<br />

mach<strong>in</strong>es, electrical and electronic<br />

equipment get smaller and more complex.<br />

From a susta<strong>in</strong>ability standpo<strong>in</strong>t this is<br />

al<strong>to</strong>ge<strong>the</strong>r a positive development, but<br />

requires additional efforts for <strong>the</strong><br />

collection and recovery of alum<strong>in</strong>ium<br />

from end-of-life products.<br />

Legisla<strong>to</strong>rs, politicians and alum<strong>in</strong>ium<br />

users often refer <strong>to</strong> <strong>the</strong> ratio of recycled<br />

material <strong>to</strong> <strong>to</strong>tal material used as an<br />

<strong>in</strong>dica<strong>to</strong>r of recycl<strong>in</strong>g efficiency. From<br />

a technical po<strong>in</strong>t of view, <strong>the</strong>re is no<br />

problem <strong>to</strong> produce a new alum<strong>in</strong>ium<br />

product from <strong>the</strong> same used product.<br />

There are no quality differences between<br />

a product entirely made of primary metal<br />

and a product made of recycled metal.<br />

However, recycled alum<strong>in</strong>ium is used<br />

where it is deemed most efficient <strong>in</strong><br />

economic and ecological terms. Due <strong>to</strong> <strong>the</strong><br />

overall limited availability of alum<strong>in</strong>ium<br />

scrap, any attempt <strong>to</strong> <strong>in</strong>crease <strong>the</strong> recycled<br />

content <strong>in</strong> one particular product would<br />

just result <strong>in</strong> decreas<strong>in</strong>g <strong>the</strong> recycl<strong>in</strong>g<br />

content accord<strong>in</strong>gly <strong>in</strong> ano<strong>the</strong>r. It would<br />

also certa<strong>in</strong>ly result <strong>in</strong> <strong>in</strong>efficiency <strong>in</strong> <strong>the</strong><br />

global optimisation of <strong>the</strong> scrap market, as<br />

well as wast<strong>in</strong>g transportation energy.<br />

Many of <strong>the</strong> alloy<strong>in</strong>g elements do,<br />

however, limit <strong>the</strong> usability of recycled<br />

alum<strong>in</strong>ium <strong>in</strong> <strong>the</strong> production of fabricated<br />

goods, like extrusion billets or roll<strong>in</strong>g<br />

<strong>in</strong>gots. Therefore, alum<strong>in</strong>ium scrap with<br />

an alloy composition correspond<strong>in</strong>g <strong>to</strong> that<br />

of wrought alloys is separated whenever<br />

possible.<br />

1) EAA, 2004. Environmental Profile Report –<br />

reference year 2002.<br />

2) IAI, 2004. Third Bauxite M<strong>in</strong>e Rehabilitation<br />

Survey. http://www.world-alum<strong>in</strong>ium.org<br />

3) Bo<strong>in</strong> U.M.J. and Bertram M., 2005. Melt<strong>in</strong>g<br />

Standardized <strong>Alum<strong>in</strong>ium</strong> Scrap: A Mass Balance<br />

Model for <strong>Europe</strong>. JOM 57 (8), pp. 26–33.


4. Social Aspects:<br />

<strong>the</strong> Small <strong>to</strong> Medium-<br />

Size Bus<strong>in</strong>ess Structure<br />

of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong><br />

<strong>Recycl<strong>in</strong>g</strong> Industry<br />

Although <strong>the</strong> number of <strong>in</strong>tegrated<br />

alum<strong>in</strong>ium companies (i.e. companies<br />

<strong>in</strong>volved <strong>in</strong> all stages of alum<strong>in</strong>ium<br />

production) produc<strong>in</strong>g recycled alum<strong>in</strong>ium<br />

is on <strong>the</strong> rise, most exist<strong>in</strong>g recycl<strong>in</strong>g<br />

companies are non-<strong>in</strong>tegrated, privately<br />

owned and of medium size. In 2004, <strong>the</strong><br />

<strong>Europe</strong>an alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>in</strong>dustry<br />

numbered 160 ref<strong>in</strong><strong>in</strong>g and 126 remelt<strong>in</strong>g<br />

plants. This <strong>in</strong>dustry, compris<strong>in</strong>g all areas<br />

of collection, process<strong>in</strong>g, ref<strong>in</strong><strong>in</strong>g and<br />

remelt<strong>in</strong>g, currently provides more than<br />

10 000 direct and <strong>in</strong>direct jobs over all<br />

<strong>Europe</strong>.<br />

17


18<br />

4. Social Aspects: <strong>the</strong> Small <strong>to</strong> Medium-Size Bus<strong>in</strong>ess Structure of <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Industry<br />

1 2<br />

Portugal<br />

25<br />

10<br />

UK & Ireland<br />

28<br />

Benelux<br />

17<br />

15<br />

EU-25: 152 Ref<strong>in</strong>ers, 111 Remelters<br />

<strong>Europe</strong>: 160 Ref<strong>in</strong>ers, 126 Remelters<br />

7<br />

Spa<strong>in</strong><br />

France<br />

3<br />

10<br />

1<br />

6<br />

Norway<br />

14<br />

Germany<br />

Scand<strong>in</strong>avia<br />

(excl. Norway)<br />

Ref<strong>in</strong>ers<br />

Remelters<br />

Figure 11: Number of Plants <strong>in</strong> <strong>the</strong> <strong>Europe</strong>an <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Industry<br />

21<br />

3 3<br />

Austria<br />

3<br />

38<br />

6<br />

5<br />

Poland<br />

25<br />

Italy<br />

1<br />

4<br />

Czechia<br />

2 2<br />

Hungary<br />

O<strong>the</strong>r EU-25<br />

1<br />

8<br />

4<br />

4<br />

Greece<br />

<strong>Europe</strong>an ref<strong>in</strong>ers and remelters play<br />

vital roles as material suppliers, hav<strong>in</strong>g<br />

produced 4.7 million <strong>to</strong>nnes of alum<strong>in</strong>ium<br />

from scrap <strong>in</strong> 2004. They contribute <strong>in</strong><br />

no small measure <strong>to</strong> safeguard<strong>in</strong>g <strong>the</strong><br />

cont<strong>in</strong>ued existence of <strong>the</strong> alum<strong>in</strong>ium<br />

fabrication and manufactur<strong>in</strong>g <strong>in</strong>dustry<br />

<strong>in</strong> <strong>Europe</strong>.


5. Clos<strong>in</strong>g <strong>the</strong> Cycle:<br />

<strong>the</strong> <strong>Alum<strong>in</strong>ium</strong><br />

<strong>Recycl<strong>in</strong>g</strong> Process<br />

As <strong>the</strong> f<strong>in</strong>al l<strong>in</strong>k <strong>in</strong> <strong>the</strong> recycl<strong>in</strong>g cha<strong>in</strong>,<br />

<strong>the</strong> ref<strong>in</strong>ers and remelters contribute<br />

significantly <strong>to</strong> <strong>the</strong> protection of our<br />

environment. It is <strong>the</strong>y who ensure <strong>the</strong><br />

production of a material that can be<br />

reabsorbed <strong>in</strong><strong>to</strong> <strong>the</strong> alum<strong>in</strong>ium life cycle.<br />

Both ref<strong>in</strong>ers and remelters treat and melt<br />

scrap. The ref<strong>in</strong>ers <strong>the</strong>n supply <strong>the</strong><br />

foundries with cast<strong>in</strong>g alloys, and <strong>the</strong><br />

remelters provide <strong>the</strong> roll<strong>in</strong>g mills and<br />

extruders with wrought alloys. Ref<strong>in</strong>ers<br />

use scrap, almost exclusively, as a raw<br />

material, while remelters use both<br />

alum<strong>in</strong>ium scrap and primary metal.<br />

For this reason, <strong>the</strong> size of <strong>the</strong> remelt<strong>in</strong>g<br />

<strong>in</strong>dustry is measured by <strong>the</strong> extent of its<br />

scrap <strong>in</strong>take ra<strong>the</strong>r than by production<br />

volumes of extrusion billets or roll<strong>in</strong>g<br />

<strong>in</strong>gots.<br />

19


20 5. Clos<strong>in</strong>g <strong>the</strong> Cycle: <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Process<br />

Raw Materials<br />

To obta<strong>in</strong> a f<strong>in</strong>ished alum<strong>in</strong>ium product<br />

from raw materials, <strong>the</strong> alum<strong>in</strong>ium<br />

undergoes a variety of processes from<br />

bauxite m<strong>in</strong><strong>in</strong>g, alum<strong>in</strong>a ref<strong>in</strong><strong>in</strong>g and<br />

alum<strong>in</strong>ium smelt<strong>in</strong>g <strong>to</strong> fabrication and<br />

manufacture. Some of <strong>the</strong>se processes<br />

generate alum<strong>in</strong>ium by-products:<br />

skimm<strong>in</strong>gs dur<strong>in</strong>g melt<strong>in</strong>g and cast<strong>in</strong>g;<br />

edge trimm<strong>in</strong>gs and billet ends dur<strong>in</strong>g<br />

roll<strong>in</strong>g and extrud<strong>in</strong>g; turn<strong>in</strong>gs, mill<strong>in</strong>gs<br />

and bor<strong>in</strong>gs dur<strong>in</strong>g various mach<strong>in</strong><strong>in</strong>g<br />

processes; off-cuts dur<strong>in</strong>g stamp<strong>in</strong>g and<br />

punch<strong>in</strong>g processes, as well as defective<br />

goods at all production stages. This<br />

material is termed “new scrap” because it<br />

is generated dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial process<strong>in</strong>g<br />

and production stages, not hav<strong>in</strong>g yet<br />

reached <strong>the</strong> use phase. A large quantity<br />

of new scrap <strong>in</strong> <strong>Europe</strong> is generated and<br />

recycled <strong>in</strong> <strong>the</strong> same company or company<br />

group. It is <strong>the</strong>n referred <strong>to</strong> as <strong>in</strong>ternal<br />

scrap and is not covered <strong>in</strong> statistics.<br />

Once alum<strong>in</strong>ium is turned <strong>in</strong><strong>to</strong> a f<strong>in</strong>al<br />

product, it is purchased by <strong>the</strong> consumer<br />

and used for a certa<strong>in</strong> lifetime. The<br />

lifetime of alum<strong>in</strong>ium products ranges<br />

from a few weeks for packag<strong>in</strong>g items like<br />

cans, <strong>to</strong> decades for permanent fixtures<br />

like w<strong>in</strong>dow frames and build<strong>in</strong>g façades.<br />

However, lifetime averages can be dis<strong>to</strong>rted<br />

by products go<strong>in</strong>g <strong>in</strong><strong>to</strong> “hibernation”,<br />

that is <strong>to</strong> say, <strong>the</strong>y are not discarded but<br />

ra<strong>the</strong>r s<strong>to</strong>red <strong>in</strong> households. Fur<strong>the</strong>rmore,<br />

a proportion of products that have reached<br />

<strong>the</strong> end of <strong>the</strong>ir <strong>in</strong>tended life may be<br />

reused as replacement parts, a common<br />

practice with vehicles. Sooner or later,<br />

alum<strong>in</strong>ium products are discarded and<br />

f<strong>in</strong>d <strong>the</strong>ir way <strong>in</strong><strong>to</strong> <strong>the</strong> recycl<strong>in</strong>g loop.<br />

After collection, this material is termed<br />

“old scrap” because it has been used.<br />

Both new and old scrap are equally<br />

precious raw materials for recycl<strong>in</strong>g.<br />

35<br />

40<br />

30<br />

45<br />

Transport (O<strong>the</strong>r)<br />

Eng<strong>in</strong>eer<strong>in</strong>g<br />

Transport (Cars and<br />

25<br />

1 Includ<strong>in</strong>g consumer durables<br />

50 Years<br />

Build<strong>in</strong>g<br />

O<strong>the</strong>r 1<br />

Light Trucks)<br />

Packag<strong>in</strong>g<br />

1 2 3 4 5 6 7 8 9 10<br />

Figure 12: Average Lifetime Ranges for <strong>Alum<strong>in</strong>ium</strong> Products<br />

<strong>in</strong> Years<br />

20<br />

15


Deoxidation<br />

<strong>Alum<strong>in</strong>ium</strong><br />

Steel<br />

Industry<br />

Ref<strong>in</strong>ers<br />

Treatment<br />

Alloy-Specific<br />

Compil<strong>in</strong>g<br />

Melt<strong>in</strong>g<br />

Ref<strong>in</strong><strong>in</strong>g<br />

Quality Control<br />

Cast<strong>in</strong>g<br />

Figure 13: General <strong>Alum<strong>in</strong>ium</strong> Flow Chart<br />

Primary Production<br />

Remelters<br />

Treatment<br />

Alloy-Specific<br />

Compil<strong>in</strong>g<br />

Melt<strong>in</strong>g<br />

Ref<strong>in</strong><strong>in</strong>g<br />

Quality Control<br />

Cast<strong>in</strong>g<br />

Foundries Roll<strong>in</strong>g Mills Extruders<br />

Cast<strong>in</strong>g Alloy Scrap<br />

Wrought Alloy Scrap<br />

Skimm<strong>in</strong>gs<br />

Manufacture of<br />

F<strong>in</strong>ished Products<br />

Use<br />

Collection<br />

Treatment<br />

Skimm<strong>in</strong>gs<br />

Primary Alloys<br />

Heat Treatment<br />

Cast<strong>in</strong>g Alloys Wrought Alloys<br />

Cast<strong>in</strong>gs Rolled Semis Extrusions<br />

Reuse<br />

F<strong>in</strong>al Products<br />

End-of-Life Products<br />

<strong>Alum<strong>in</strong>ium</strong> Scrap<br />

Wrought Alloy Scrap<br />

21


22<br />

Collection<br />

5. Clos<strong>in</strong>g <strong>the</strong> Cycle: <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Process<br />

The alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>in</strong>dustry recycles<br />

all <strong>the</strong> alum<strong>in</strong>ium scrap it can obta<strong>in</strong> from<br />

end-of-life products and alum<strong>in</strong>ium byproducts.<br />

New scrap is collected <strong>in</strong> its<br />

entirety, as collection is <strong>in</strong> <strong>the</strong> hands of<br />

<strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry. The collection<br />

of alum<strong>in</strong>ium at end-of-life depends,<br />

however, on consumer <strong>in</strong>itiative <strong>to</strong> collect<br />

alum<strong>in</strong>ium for recycl<strong>in</strong>g, as well as <strong>the</strong><br />

co-operation of <strong>in</strong>dustry, legisla<strong>to</strong>rs and<br />

local communities <strong>to</strong> set up efficient<br />

collection systems.<br />

Treatment<br />

Scrap must be of appropriate quality<br />

before it can be melted down. To obta<strong>in</strong><br />

this level of quality, all adherent materials<br />

must be removed. Depend<strong>in</strong>g on scrap<br />

type, alum<strong>in</strong>ium losses of about 2% <strong>to</strong><br />

10% may be <strong>in</strong>curred dur<strong>in</strong>g separation of<br />

alum<strong>in</strong>ium from o<strong>the</strong>r materials. A certa<strong>in</strong><br />

degree of material loss is <strong>in</strong>evitable with<br />

<strong>in</strong>dustrial processes but, because of<br />

alum<strong>in</strong>ium’s high <strong>in</strong>tr<strong>in</strong>sic value, all efforts<br />

are directed at m<strong>in</strong>imis<strong>in</strong>g losses. For<br />

example end-of-life products are often<br />

not mechanically separable <strong>in</strong><strong>to</strong> s<strong>in</strong>gle<br />

material output fractions. A dilution of<br />

foreign materials with<strong>in</strong> each output is <strong>the</strong><br />

result. The treatment of scrap is a jo<strong>in</strong>t<br />

undertak<strong>in</strong>g by <strong>the</strong> alum<strong>in</strong>ium recycl<strong>in</strong>g<br />

<strong>in</strong>dustry and specialised scrap processors.<br />

Clean scrap may be shredded or baled <strong>to</strong><br />

assist subsequent handl<strong>in</strong>g. Turn<strong>in</strong>gs are<br />

treated <strong>in</strong> special process<strong>in</strong>g facilities,<br />

where <strong>the</strong>y are freed of all adherents,<br />

degreased, dried and separated from any<br />

iron particles us<strong>in</strong>g a magnetic separa<strong>to</strong>r.<br />

Purchase of Scrap<br />

Weigh<strong>in</strong>g at Plant<br />

Entrance / S<strong>to</strong>rage<br />

Purchas<strong>in</strong>g and Sales<br />

Quality Control<br />

Treatment<br />

Melt<strong>in</strong>g, Ref<strong>in</strong><strong>in</strong>g, Cast<strong>in</strong>g<br />

Sampl<strong>in</strong>g<br />

Environmental Protection Measures<br />

Preparation and<br />

Treatment<br />

Cutt<strong>in</strong>g, Bal<strong>in</strong>g,<br />

Crush<strong>in</strong>g, Dry<strong>in</strong>g,<br />

Removal of Iron and<br />

O<strong>the</strong>r Materials,<br />

Sort<strong>in</strong>g, Shredd<strong>in</strong>g,<br />

Screen<strong>in</strong>g


Industry cont<strong>in</strong>ues <strong>to</strong> recycle, without subsidy, all <strong>the</strong> alum<strong>in</strong>ium<br />

collected from used products, as well as fabrication and manufactur<strong>in</strong>g<br />

processes. However, with <strong>the</strong> help of appropriate authorities, local<br />

communities and society as a whole, <strong>the</strong> amount of alum<strong>in</strong>ium collected<br />

could be <strong>in</strong>creased fur<strong>the</strong>r.<br />

Charg<strong>in</strong>g<br />

Compil<strong>in</strong>g of Treated<br />

Scrap Accord<strong>in</strong>g <strong>to</strong><br />

Desired Alloy<br />

Residues,<br />

Ball Mill Dust,<br />

Shredd<strong>in</strong>g Residues<br />

Bus<strong>in</strong>ess<br />

Adm<strong>in</strong>istration<br />

Data Process<strong>in</strong>g Analysis of Alloy<strong>in</strong>g<br />

Elements<br />

Feed<strong>in</strong>g<br />

Salt, Treated Scrap,<br />

Additional Alloy<strong>in</strong>g<br />

Elements<br />

Slag<br />

Process<strong>in</strong>g, Disposal Process<strong>in</strong>g (Salt,<br />

<strong>Alum<strong>in</strong>ium</strong>)<br />

Disposal (Residues)<br />

Melt<strong>in</strong>g<br />

<strong>in</strong> Different Furnace<br />

Types<br />

Flue Gases,<br />

Filter Dust<br />

Process<strong>in</strong>g, Disposal<br />

Figure 14: Information and Material Flow with<strong>in</strong> <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Industry<br />

Ref<strong>in</strong><strong>in</strong>g<br />

Hold<strong>in</strong>g, Purify<strong>in</strong>g,<br />

Alloy<strong>in</strong>g, Modify<strong>in</strong>g,<br />

Gra<strong>in</strong> Ref<strong>in</strong><strong>in</strong>g<br />

Skimm<strong>in</strong>gs (Residues<br />

Conta<strong>in</strong><strong>in</strong>g a <strong>High</strong><br />

Share of <strong>Alum<strong>in</strong>ium</strong>)<br />

Product Sales<br />

Cast<strong>in</strong>g<br />

<strong>in</strong><strong>to</strong> Different Shapes<br />

23


24<br />

5. Clos<strong>in</strong>g <strong>the</strong> Cycle: <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Process<br />

Large scrap pieces (e.g. eng<strong>in</strong>e blocks) are<br />

fragmentised <strong>in</strong> order <strong>to</strong> separate foreign<br />

iron from <strong>the</strong> alum<strong>in</strong>ium. If it is difficult <strong>to</strong><br />

separate unwanted iron mechanically or<br />

manually from alum<strong>in</strong>ium scrap, <strong>the</strong> scrap<br />

is fed <strong>in</strong><strong>to</strong> a special furnace that separates<br />

<strong>the</strong> iron <strong>the</strong>rmally. Usually, it is more<br />

difficult <strong>to</strong> separate o<strong>the</strong>r non-ferrous<br />

metals from alum<strong>in</strong>ium. For this purpose,<br />

heavy media separation is used, where<br />

scrap can be separated from impurities<br />

by density.<br />

For <strong>the</strong> separation of alum<strong>in</strong>ium from<br />

non-metallic pieces eddy current<br />

<strong>in</strong>stallations are used which separate<br />

materials with different electrical<br />

conductivity. For example, eddy current<br />

mach<strong>in</strong>es can be used <strong>to</strong> separate<br />

alum<strong>in</strong>ium from shredded computers.<br />

<strong>Alum<strong>in</strong>ium</strong> cans, lacquered and lam<strong>in</strong>ated<br />

scrap are often cleaned <strong>to</strong> remove coat<strong>in</strong>gs<br />

and residues <strong>to</strong> m<strong>in</strong>imise metal losses<br />

dur<strong>in</strong>g remelt<strong>in</strong>g. The <strong>in</strong>dustry uses three<br />

pr<strong>in</strong>cipal de-coat<strong>in</strong>g technologies: Rotary<br />

kiln, belt and fluidized bed de-coater.<br />

<strong>Alum<strong>in</strong>ium</strong> conta<strong>in</strong>ed <strong>in</strong> multi-material<br />

packag<strong>in</strong>g (e.g. beverage car<strong>to</strong>ns) can be<br />

separated by pyrolysis. In this case, <strong>the</strong><br />

non-metallic components are removed<br />

from <strong>the</strong> alum<strong>in</strong>ium by evaporation.<br />

A newer technology is <strong>the</strong> <strong>the</strong>rmal plasma<br />

process here all three components –<br />

alum<strong>in</strong>ium, plastic and paper – are<br />

separated <strong>in</strong><strong>to</strong> dist<strong>in</strong>ct fractions.<br />

Before enter<strong>in</strong>g <strong>the</strong> furnace, alum<strong>in</strong>ium<br />

skimm<strong>in</strong>gs are usually broken up or milled<br />

and separated by density, while alum<strong>in</strong>ium<br />

oxides are separated by siev<strong>in</strong>g.<br />

The chemical composition of wrought<br />

alloys are generally characterised, among<br />

o<strong>the</strong>rs th<strong>in</strong>gs, by <strong>the</strong>ir low <strong>to</strong>lerance for<br />

certa<strong>in</strong> alloy<strong>in</strong>g elements. Remelters select<br />

<strong>the</strong> appropriate quantity and quality of<br />

scrap <strong>to</strong> correlate with <strong>the</strong> chemical<br />

composition of <strong>the</strong> wrought alloy <strong>to</strong> be<br />

produced. Hence, great care must be taken<br />

<strong>to</strong> choose <strong>the</strong> right scrap. New scrap, for<br />

which <strong>the</strong> alloy composition is known, is<br />

predom<strong>in</strong>antly used by remelters but old<br />

wrought alloy scrap of known chemical<br />

composition is also <strong>in</strong>creas<strong>in</strong>gly employed.<br />

Two good examples are used beverage<br />

cans, which are utilised <strong>to</strong> produce new<br />

can s<strong>to</strong>ck material, and w<strong>in</strong>dow frames<br />

which, after be<strong>in</strong>g <strong>in</strong> use for decades, are<br />

treated and melted down for <strong>the</strong> production<br />

of new wrought alloy products.<br />

In order <strong>to</strong> build lighter vehicles, greater<br />

quantities of alum<strong>in</strong>ium, especially wrought<br />

alloys, will be used <strong>in</strong> <strong>the</strong> future. When<br />

<strong>the</strong>se vehicles return for recycl<strong>in</strong>g it might<br />

be needed <strong>to</strong> separate <strong>the</strong> wrought alloys<br />

from <strong>the</strong> cast<strong>in</strong>g alloys, a technology not<br />

applied nor needed at present, as little<br />

of <strong>the</strong> alum<strong>in</strong>ium conta<strong>in</strong>ed <strong>in</strong> <strong>to</strong>day’s<br />

vehicles is <strong>in</strong> <strong>the</strong> form of wrought alloys.<br />

Thus, <strong>the</strong> implementation of separation<br />

procedures does not make economic sense<br />

at present, but new technology <strong>in</strong> <strong>the</strong><br />

form of laser and x-ray sort<strong>in</strong>g is under<br />

development for future application.


Alloy-Specific Compil<strong>in</strong>g<br />

of Scrap<br />

Before be<strong>in</strong>g loaded <strong>in</strong><strong>to</strong> <strong>the</strong> furnace, it<br />

is standard practice for alloy-specific scrap<br />

batches <strong>to</strong> be comb<strong>in</strong>ed <strong>in</strong> order <strong>to</strong> ensure<br />

a precise alloy composition <strong>in</strong> <strong>the</strong> f<strong>in</strong>al<br />

product. This type of computer-assisted<br />

optimisation of selection and mix<strong>in</strong>g of<br />

scrap types enables <strong>the</strong> alum<strong>in</strong>ium<br />

recycl<strong>in</strong>g <strong>in</strong>dustry <strong>to</strong> work as economically<br />

as possible. It also serves <strong>to</strong> m<strong>in</strong>imise<br />

environmental impact, s<strong>in</strong>ce limited<br />

alloy corrections need <strong>to</strong> be made after<br />

melt<strong>in</strong>g.<br />

Melt<strong>in</strong>g<br />

Ref<strong>in</strong>ers melt mixed cast<strong>in</strong>g and wrought<br />

alloy scrap, while remelters use ma<strong>in</strong>ly<br />

clean and sorted wrought alloy scrap, as<br />

well as some primary metal.<br />

Selection of <strong>the</strong> most appropriate furnace<br />

type is determ<strong>in</strong>ed by <strong>the</strong> oxide content,<br />

type and content of foreign material<br />

(e.g. organic content), geometry of <strong>the</strong><br />

scrap (mass <strong>to</strong> surface ratio), frequency of<br />

change <strong>in</strong> alloy composition and operat<strong>in</strong>g<br />

conditions. Scrap is melted <strong>in</strong> dry hearth,<br />

closed-well, electric <strong>in</strong>duction, rotary<br />

or tilt<strong>in</strong>g rotary furnaces. Ref<strong>in</strong>ers most<br />

commonly use <strong>the</strong> rotary furnace, which<br />

melts alum<strong>in</strong>ium scrap under a salt<br />

layer, while remelters favour <strong>the</strong> hearth<br />

furnace.<br />

As a result of contact with <strong>the</strong> oxygen <strong>in</strong><br />

air, alum<strong>in</strong>ium is covered with a th<strong>in</strong><br />

layer of alum<strong>in</strong>ium oxides. This chemical<br />

reaction occurs particularly at high<br />

temperatures dur<strong>in</strong>g melt<strong>in</strong>g, be it<br />

primary melt<strong>in</strong>g, foundry cast<strong>in</strong>g or<br />

recycl<strong>in</strong>g. This is <strong>the</strong> reason why molten<br />

alum<strong>in</strong>ium is protected from fur<strong>the</strong>r<br />

oxidation <strong>in</strong> <strong>the</strong> furnace. The generated<br />

f<strong>in</strong>e mixture of oxide sk<strong>in</strong>s, metal (<strong>in</strong><br />

equal amounts) and gas on <strong>the</strong> surface<br />

of <strong>the</strong> melt <strong>in</strong> <strong>the</strong> furnace is termed<br />

skimm<strong>in</strong>gs or alum<strong>in</strong>ium dross. These<br />

skimm<strong>in</strong>gs have <strong>to</strong> be removed before <strong>the</strong><br />

metal is cast. This by-product is collected<br />

and recycled <strong>in</strong><strong>to</strong> alum<strong>in</strong>ium alloys and<br />

alum<strong>in</strong>ium oxides (used <strong>in</strong> <strong>the</strong> cement<br />

<strong>in</strong>dustry) <strong>in</strong> special ref<strong>in</strong>eries. Us<strong>in</strong>g salt<br />

dur<strong>in</strong>g <strong>the</strong> melt<strong>in</strong>g process reduces <strong>the</strong><br />

amount of oxides generated and removes<br />

impurities from <strong>the</strong> liquid metal.<br />

25


26<br />

Ref<strong>in</strong><strong>in</strong>g<br />

5. Clos<strong>in</strong>g <strong>the</strong> Cycle: <strong>the</strong> <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Process<br />

Alloy production <strong>in</strong> <strong>the</strong> melt<strong>in</strong>g furnace is<br />

followed by a ref<strong>in</strong><strong>in</strong>g process. The molten<br />

metal is transferred <strong>to</strong> a hold<strong>in</strong>g furnace,<br />

where <strong>the</strong> chemical composition is<br />

adjusted and <strong>the</strong> metal purified by <strong>the</strong><br />

addition of ref<strong>in</strong><strong>in</strong>g agents or with <strong>the</strong> use<br />

of filters. For example, <strong>the</strong> <strong>in</strong>troduction<br />

of f<strong>in</strong>e bubbles of chlor<strong>in</strong>e, argon and<br />

nitrogen removes unwanted elements,<br />

such as calcium and magnesium, and<br />

degasses <strong>the</strong> molten metal. Different gra<strong>in</strong><br />

ref<strong>in</strong>ers and modifiers are added <strong>in</strong> order<br />

<strong>to</strong> guarantee <strong>the</strong> desired metallurgical<br />

structure of <strong>the</strong> result<strong>in</strong>g product.<br />

Quality Control<br />

Cast<strong>in</strong>g and wrought alloys are subject<br />

<strong>to</strong> <strong>the</strong> most str<strong>in</strong>gent controls with regard<br />

<strong>to</strong> chemical composition, cleanl<strong>in</strong>ess<br />

and consistency, <strong>in</strong> l<strong>in</strong>e with <strong>Europe</strong>an<br />

standards. However, special alloys can be<br />

produced accord<strong>in</strong>g <strong>to</strong> specific cus<strong>to</strong>mer<br />

demand. Most cast<strong>in</strong>g alloys are produced<br />

exclusively by <strong>the</strong> alum<strong>in</strong>ium recycl<strong>in</strong>g<br />

<strong>in</strong>dustry, as <strong>the</strong> primary <strong>in</strong>dustry is often<br />

unable <strong>to</strong> produce <strong>the</strong> diversity of alloys<br />

required by <strong>the</strong> foundry <strong>in</strong>dustry.<br />

Dur<strong>in</strong>g melt<strong>in</strong>g, samples are regularly<br />

taken and analysed us<strong>in</strong>g <strong>the</strong> latest<br />

computer-controlled technology, before<br />

it is awarded <strong>the</strong> necessary certification.<br />

Even <strong>the</strong> smallest discrepancy with <strong>the</strong><br />

specified alloy composition, down <strong>to</strong> <strong>the</strong><br />

parts-per-million range, can be detected<br />

and adjusted. Documentation systems<br />

ensure future traceability of every step<br />

of <strong>the</strong> process, from <strong>the</strong> <strong>in</strong>itial scrap load<br />

<strong>to</strong> <strong>the</strong> f<strong>in</strong>al alloy.<br />

Cast<strong>in</strong>g<br />

As a f<strong>in</strong>al step, molten alum<strong>in</strong>ium cast<strong>in</strong>g<br />

alloys are cast <strong>in</strong><strong>to</strong> <strong>in</strong>gots (4 kg <strong>to</strong> 25 kg)<br />

or directly transported <strong>to</strong> <strong>the</strong> foundry as<br />

molten metal. Indeed, ref<strong>in</strong>ers often<br />

deliver alum<strong>in</strong>ium <strong>in</strong> its molten state <strong>to</strong><br />

be turned <strong>in</strong><strong>to</strong> cast<strong>in</strong>gs immediately upon<br />

arrival at <strong>the</strong> foundry. In <strong>the</strong> right<br />

circumstances this saves money and<br />

reduces environmental impact. Sometimes<br />

alum<strong>in</strong>ium oxides trapped with<strong>in</strong> <strong>the</strong><br />

metal are filtered out dur<strong>in</strong>g <strong>the</strong> cast<strong>in</strong>g<br />

process.<br />

Molten alum<strong>in</strong>ium wrought alloys are cast<br />

<strong>in</strong><strong>to</strong> extrusion billets and roll<strong>in</strong>g <strong>in</strong>gots,<br />

which may need <strong>to</strong> undergo heat treatment<br />

for various metallurgical reasons before<br />

hot work<strong>in</strong>g.<br />

<strong>Alum<strong>in</strong>ium</strong> is used <strong>in</strong> <strong>the</strong> steel <strong>in</strong>dustry <strong>to</strong><br />

elim<strong>in</strong>ate unwanted oxygen because of its<br />

high aff<strong>in</strong>ity for oxygen. Special alum<strong>in</strong>ium<br />

alloys are thus cast <strong>in</strong><strong>to</strong> small <strong>in</strong>gots or<br />

o<strong>the</strong>r specific shapes for deoxidation<br />

purposes <strong>to</strong> produce high quality steel.


Product Range<br />

At <strong>the</strong> end of <strong>the</strong> material cycle, <strong>the</strong> f<strong>in</strong>al<br />

alum<strong>in</strong>ium product is obta<strong>in</strong>ed. This may<br />

be <strong>the</strong> same as <strong>the</strong> orig<strong>in</strong>al product (e.g.<br />

w<strong>in</strong>dow frame recycled back <strong>in</strong><strong>to</strong> a w<strong>in</strong>dow<br />

frame) but is more often a completely<br />

different product (cyl<strong>in</strong>der head recycled<br />

<strong>in</strong><strong>to</strong> a gearbox).<br />

Foundries are <strong>the</strong> ma<strong>in</strong> cus<strong>to</strong>mers of<br />

ref<strong>in</strong>ers. They produce a wide variety of<br />

cast<strong>in</strong>gs which are pr<strong>in</strong>cipally used <strong>in</strong> <strong>the</strong><br />

transport sec<strong>to</strong>r. More than 70% of cast<strong>in</strong>gs<br />

are used <strong>in</strong> <strong>the</strong> transport sec<strong>to</strong>r. Examples<br />

of cast<strong>in</strong>gs produced from recycled alloys<br />

<strong>in</strong>clude cyl<strong>in</strong>der heads of eng<strong>in</strong>es, eng<strong>in</strong>e<br />

blocks, pis<strong>to</strong>ns, gearboxes, auxiliary<br />

equipment and seats. O<strong>the</strong>r prom<strong>in</strong>ent<br />

users of alum<strong>in</strong>ium cast<strong>in</strong>g alloys are <strong>the</strong><br />

mechanical and electrical eng<strong>in</strong>eer<strong>in</strong>g<br />

sec<strong>to</strong>rs, producers of consumer durables<br />

and <strong>the</strong> construction <strong>in</strong>dustry.<br />

Commonplace cast<strong>in</strong>gs <strong>in</strong> everyday use<br />

<strong>in</strong>clude parts of wash<strong>in</strong>g mach<strong>in</strong>es,<br />

escala<strong>to</strong>r steps and electronic equipment,<br />

<strong>to</strong> name but a few.<br />

Cast<strong>in</strong>g Alloys Wrought Alloys<br />

Eng<strong>in</strong>eer<strong>in</strong>g 13%<br />

Build<strong>in</strong>g 8%<br />

Transport 73%<br />

O<strong>the</strong>r 6%<br />

Figure 15: End Uses of Cast<strong>in</strong>g Alloys and Wrought Alloys <strong>in</strong> Western <strong>Europe</strong><br />

Wrought alloy products such as sheets, foil<br />

and extrusion profiles can be found <strong>in</strong><br />

roofs and curta<strong>in</strong> walls of build<strong>in</strong>gs, food<br />

and pharmaceutical packag<strong>in</strong>g, beverage<br />

cans, w<strong>in</strong>dows, doors, truck trailers, tra<strong>in</strong>s<br />

and, <strong>in</strong>creas<strong>in</strong>gly, car bodies.<br />

Eng<strong>in</strong>eer<strong>in</strong>g<br />

15%<br />

Packag<strong>in</strong>g 22%<br />

O<strong>the</strong>r 8%<br />

Transport 19%<br />

Build<strong>in</strong>g<br />

36%<br />

27


28<br />

6. End-of-Life Product<br />

<strong>Recycl<strong>in</strong>g</strong>: <strong>the</strong> Route <strong>to</strong><br />

<strong>High</strong> Quality at Low Cost<br />

Estimated end-of-life recycl<strong>in</strong>g rates for<br />

alum<strong>in</strong>ium used <strong>in</strong> <strong>the</strong> transport and<br />

build<strong>in</strong>g sec<strong>to</strong>rs are very high (90 <strong>to</strong> 95%).<br />

These represent 63% of fabricated goods<br />

shipped <strong>to</strong> <strong>the</strong> <strong>Europe</strong>an alum<strong>in</strong>ium<br />

market <strong>in</strong> 2004. Packag<strong>in</strong>g recycl<strong>in</strong>g rates<br />

<strong>in</strong> <strong>Europe</strong> range from 25 <strong>to</strong> 75%,<br />

depend<strong>in</strong>g on <strong>the</strong> country.


Global alum<strong>in</strong>ium recycl<strong>in</strong>g rates are high, approximately 90% for transport<br />

and construction applications and about 60% for beverage cans.<br />

Eng<strong>in</strong>eer<strong>in</strong>g 14%<br />

Packag<strong>in</strong>g 16%<br />

Transport<br />

Transportation is <strong>the</strong> most important field<br />

of application for alum<strong>in</strong>ium <strong>in</strong> <strong>Europe</strong>.<br />

In 2004, approximately 3.6 million <strong>to</strong>nnes<br />

of wrought and cast<strong>in</strong>g alloys were used<br />

for <strong>the</strong> production of cars, commercial<br />

vehicles, aeroplanes, tra<strong>in</strong>s, ships,<br />

O<strong>the</strong>r 7%<br />

Build<strong>in</strong>g 27%<br />

Figure 16: <strong>Alum<strong>in</strong>ium</strong> End-use Markets <strong>in</strong> Western <strong>Europe</strong><br />

etc., and that figure is steadily ris<strong>in</strong>g.<br />

Consequently, <strong>the</strong> transport sec<strong>to</strong>r is also<br />

a major source of alum<strong>in</strong>ium at <strong>the</strong> end<br />

of a vehicle’s lifetime. The precise end of<br />

a vehicle’s lifetime is, however, difficult <strong>to</strong><br />

def<strong>in</strong>e. In Germany, for example, cars are<br />

used for an average period of 12 years,<br />

at <strong>the</strong> end of which <strong>the</strong>y can enter <strong>the</strong><br />

Transport 36%<br />

<strong>Alum<strong>in</strong>ium</strong> <strong>in</strong> kg/vehicle<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1990<br />

1995<br />

2000<br />

2005<br />

2010<br />

Figure 17: <strong>Alum<strong>in</strong>ium</strong> Content <strong>in</strong> <strong>Europe</strong>an Vehicles<br />

2015<br />

29<br />

recycl<strong>in</strong>g loop. But <strong>the</strong>ir lifetime is often<br />

extended by export <strong>to</strong> less developed parts<br />

of <strong>the</strong> world, where <strong>the</strong>ir useful life may<br />

cont<strong>in</strong>ue for many more years <strong>to</strong> come.<br />

Compared <strong>to</strong> o<strong>the</strong>r materials, alum<strong>in</strong>ium<br />

scrap has a very high material value, which<br />

provides sufficient economic <strong>in</strong>centive for<br />

it <strong>to</strong> be recycled. For this reason, 90 <strong>to</strong>


30<br />

5. End-of-life Product <strong>Recycl<strong>in</strong>g</strong>: <strong>the</strong> Route <strong>to</strong> <strong>High</strong> Quality at Low Cost<br />

95% of <strong>the</strong> alum<strong>in</strong>ium used <strong>in</strong> cars is<br />

collected and reused as au<strong>to</strong>motive parts,<br />

or <strong>in</strong>troduced <strong>in</strong><strong>to</strong> <strong>the</strong> recycl<strong>in</strong>g loop. O<strong>the</strong>r<br />

modes of transport have similarly high<br />

recycl<strong>in</strong>g or reuse rates.<br />

A number of efficient processes are used<br />

<strong>to</strong> collect and separate alum<strong>in</strong>ium from<br />

vehicles. Figure 18 shows a modern<br />

process used <strong>in</strong> order <strong>to</strong> recycle a typical<br />

passenger car. Some alum<strong>in</strong>ium parts,<br />

such as wheels and cyl<strong>in</strong>der heads, are<br />

removed dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial dismantl<strong>in</strong>g of<br />

<strong>the</strong> vehicle. The car body, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g alum<strong>in</strong>ium, is fed <strong>to</strong> <strong>the</strong><br />

shredder <strong>in</strong> <strong>the</strong> course of subsequent<br />

recycl<strong>in</strong>g. After separat<strong>in</strong>g <strong>the</strong> ferrous<br />

fraction us<strong>in</strong>g magnets, a mixture of<br />

plastics, rubber, glass, textiles and nonferrous<br />

metals is obta<strong>in</strong>ed. This mixed<br />

fraction constitutes merchandise subject<br />

<strong>to</strong> <strong>the</strong> <strong>Europe</strong>an Standard EN 13290-8 and<br />

is <strong>in</strong>tended for fur<strong>the</strong>r sort<strong>in</strong>g processes<br />

by <strong>the</strong> user.<br />

Car <strong>in</strong> Use End-of-Life Vehicle<br />

Car Manufacturer<br />

Foundry Roller Extruder<br />

Recycled <strong>Alum<strong>in</strong>ium</strong><br />

<strong>Alum<strong>in</strong>ium</strong> Parts<br />

<strong>Alum<strong>in</strong>ium</strong> Parts<br />

Collection of<br />

End-of-Life Vehicle<br />

Extraction of Fluids<br />

Dismantl<strong>in</strong>g<br />

Shredder<br />

Electro-Magnetic<br />

Separation<br />

S<strong>in</strong>k-Float Separation<br />

(2.1 g/m 3 )<br />

S<strong>in</strong>k-Float Separation<br />

(3.1 g/m 3 )<br />

Eddy Current<br />

Separation<br />

<strong>Alum<strong>in</strong>ium</strong><br />

Alloy Separation*<br />

(e.g. laser/x-ray)<br />

Ref<strong>in</strong>er/Remelter<br />

Reuse and<br />

<strong>Recycl<strong>in</strong>g</strong> of Non-<br />

<strong>Alum<strong>in</strong>ium</strong> Parts<br />

Fluff (Non-Metallic<br />

Compound)<br />

Non-Magnetizable Components:<br />

<strong>Alum<strong>in</strong>ium</strong>, Heavy Metals, <strong>High</strong> Grade<br />

Steel, Non-Metallic Components<br />

S<strong>in</strong>k<strong>in</strong>g Fraction:<br />

<strong>Alum<strong>in</strong>ium</strong>, Heavy Metals, <strong>High</strong> Grade<br />

Steel, S<strong>to</strong>nes<br />

Float<strong>in</strong>g Fraction:<br />

<strong>Alum<strong>in</strong>ium</strong>, S<strong>to</strong>nes<br />

Figure 18: Modern End-of-Life Vehicle Dismantl<strong>in</strong>g and <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> Process<br />

Iron<br />

Float<strong>in</strong>g Fraction:<br />

Plastic, Wood,<br />

Rubber, Magnesium,<br />

etc.<br />

S<strong>in</strong>k<strong>in</strong>g Fraction:<br />

Heavy Metals, <strong>High</strong><br />

Grade Steel<br />

S<strong>to</strong>nes<br />

* Future<br />

developments<br />

Various <strong>Alum<strong>in</strong>ium</strong> Alloy Families


These processes <strong>in</strong>clude s<strong>in</strong>k-float and<br />

eddy current separation and result <strong>in</strong> an<br />

alum<strong>in</strong>ium fraction covered by EN 13290-9.<br />

A new process be<strong>in</strong>g developed <strong>to</strong> sort<br />

alum<strong>in</strong>ium scrap metallurgically utilises<br />

laser and spectroscopic technology. This<br />

technology, is now at an advanced stage<br />

of development, looks very promis<strong>in</strong>g.<br />

<strong>Alum<strong>in</strong>ium</strong> scrap collected us<strong>in</strong>g <strong>the</strong><br />

various separation procedures is ma<strong>in</strong>ly<br />

processed <strong>in</strong><strong>to</strong> alum<strong>in</strong>ium cast<strong>in</strong>g alloys,<br />

which serve as pre-material for <strong>the</strong><br />

production of cast<strong>in</strong>gs. Typical applications<br />

<strong>in</strong>clude eng<strong>in</strong>es and gearboxes.<br />

Due <strong>to</strong> <strong>the</strong> <strong>in</strong>creased use of alum<strong>in</strong>ium<br />

wrought alloys <strong>in</strong> car bodies, a grow<strong>in</strong>g<br />

volume of wrought alloy scrap is<br />

anticipated as of 2015/2020. From <strong>the</strong>n on,<br />

<strong>the</strong> separate collection of wrought alloys<br />

from cars will be economically viable.<br />

<strong>Alum<strong>in</strong>ium</strong> used <strong>in</strong> o<strong>the</strong>r modes of<br />

transport is collected separately at endof-life,<br />

when commercial vehicles,<br />

aeroplanes, railway coaches, ships, etc. are<br />

dismantled. As <strong>the</strong> alum<strong>in</strong>ium parts are<br />

often <strong>to</strong>o large <strong>to</strong> be immediately melted<br />

<strong>in</strong> <strong>the</strong> furnace, <strong>the</strong>y must first be reduced<br />

<strong>to</strong> small pieces by processes such as<br />

shear<strong>in</strong>g. <strong>Alum<strong>in</strong>ium</strong>-<strong>in</strong>tensive trailers<br />

often spend <strong>the</strong>ir entire life <strong>in</strong> <strong>the</strong> same<br />

region, where <strong>the</strong>y are eventually<br />

dismantled and subsequently melted by<br />

ref<strong>in</strong>ers or remelters. Most alum<strong>in</strong>iumconta<strong>in</strong><strong>in</strong>g<br />

ships and railway coaches are<br />

still <strong>in</strong> use due <strong>to</strong> alum<strong>in</strong>ium’s relatively<br />

recent his<strong>to</strong>ry <strong>in</strong> <strong>the</strong>se applications and its<br />

long-last<strong>in</strong>g performance.<br />

Build<strong>in</strong>g<br />

In order <strong>to</strong> raise people’s awareness of <strong>the</strong><br />

excellent recycl<strong>in</strong>g properties of alum<strong>in</strong>ium<br />

and <strong>the</strong> extent of its scrap potential <strong>in</strong><br />

<strong>the</strong> build<strong>in</strong>g sec<strong>to</strong>r, <strong>the</strong> EAA commissioned<br />

Delft University of Technology <strong>to</strong> conduct<br />

a scientific study <strong>in</strong>vestigat<strong>in</strong>g alum<strong>in</strong>ium<br />

content and collection rates <strong>in</strong> <strong>Europe</strong>an<br />

build<strong>in</strong>gs. The demolition of a significant<br />

number of build<strong>in</strong>gs <strong>in</strong> six <strong>Europe</strong>an<br />

countries was closely moni<strong>to</strong>red and<br />

comprehensive data were ga<strong>the</strong>red. The<br />

collection rates of alum<strong>in</strong>ium <strong>in</strong> this sec<strong>to</strong>r<br />

were found <strong>to</strong> vary between 92 and 98%,<br />

demonstrat<strong>in</strong>g alum<strong>in</strong>ium’s pivotal role<br />

<strong>in</strong> <strong>the</strong> pursuit of full susta<strong>in</strong>ability.<br />

Although it was revealed that <strong>the</strong> average<br />

alum<strong>in</strong>ium <strong>in</strong>ven<strong>to</strong>ry per build<strong>in</strong>g is<br />

currently less than 1% of <strong>the</strong> overall mass,<br />

<strong>the</strong> quantities of alum<strong>in</strong>ium recovered<br />

from demolition sites often yield a<br />

substantial profit for <strong>the</strong> contrac<strong>to</strong>r.<br />

31


32<br />

5. End-of-life Product <strong>Recycl<strong>in</strong>g</strong>: <strong>the</strong> Route <strong>to</strong> <strong>High</strong> Quality at Low Cost<br />

Today, <strong>the</strong> <strong>Europe</strong>an build<strong>in</strong>g market uses<br />

some 2.7 million <strong>to</strong>nnes of alum<strong>in</strong>ium<br />

semis annually. As alum<strong>in</strong>ium build<strong>in</strong>g<br />

products often have lifetimes runn<strong>in</strong>g <strong>in</strong><strong>to</strong><br />

decades, a vast material (close <strong>to</strong> 50 million<br />

<strong>to</strong>nnes of alum<strong>in</strong>ium) s<strong>to</strong>rage bank is<br />

be<strong>in</strong>g created for future recycl<strong>in</strong>g use.<br />

Packag<strong>in</strong>g<br />

<strong>Alum<strong>in</strong>ium</strong> packag<strong>in</strong>g fits every desired<br />

recycl<strong>in</strong>g and process<strong>in</strong>g route. The<br />

amount of alum<strong>in</strong>ium packag<strong>in</strong>g effectively<br />

recycled greatly depends upon <strong>in</strong>dividual<br />

national requirements and <strong>the</strong> efficiency<br />

of <strong>the</strong> collection schemes, <strong>the</strong>refore rates<br />

vary from 25 <strong>to</strong> 75% across <strong>Europe</strong>.<br />

However, <strong>in</strong> all cases <strong>the</strong> value of <strong>the</strong><br />

collected scrap covers most if not all of<br />

<strong>the</strong> related recycl<strong>in</strong>g costs.<br />

Most <strong>Europe</strong>an countries have nationwide<br />

alum<strong>in</strong>ium packag<strong>in</strong>g recycl<strong>in</strong>g schemes <strong>in</strong><br />

place. These can be grouped <strong>in</strong><strong>to</strong> three<br />

ma<strong>in</strong> routes:<br />

1. Separate collection of used beverage<br />

cans, ei<strong>the</strong>r <strong>in</strong> designated deposit systems<br />

(Scand<strong>in</strong>avian countries and Germany),<br />

voluntary take back systems ( Switzerland<br />

and Poland) or <strong>in</strong>centive based projects<br />

(UK, Ireland, Hungary and Greece) such<br />

as charity events. Moreover alum<strong>in</strong>ium<br />

conta<strong>in</strong>ers are <strong>in</strong>cluded <strong>in</strong> separate<br />

collection schemes <strong>in</strong> <strong>the</strong> UK and<br />

Switzerland; <strong>the</strong> later covers alum<strong>in</strong>ium<br />

packag<strong>in</strong>g tubes as well.<br />

2. Multi-material packag<strong>in</strong>g collection<br />

systems, where alum<strong>in</strong>ium conta<strong>in</strong><strong>in</strong>g<br />

packag<strong>in</strong>g is part of <strong>the</strong> “light packag<strong>in</strong>g<br />

flow” conta<strong>in</strong><strong>in</strong>g plastics, t<strong>in</strong>plate,<br />

beverage car<strong>to</strong>ns and sometimes paper<br />

packag<strong>in</strong>g, newspapers and magaz<strong>in</strong>es.<br />

Here, alum<strong>in</strong>ium is separated dur<strong>in</strong>g <strong>the</strong><br />

f<strong>in</strong>al step of sort<strong>in</strong>g at <strong>the</strong> plant (e.g. Italy,<br />

Spa<strong>in</strong>, Germany, Portugal, France, Belgium,<br />

Austria).<br />

3. Extraction from <strong>the</strong> bot<strong>to</strong>m ashes of<br />

municipal solid waste <strong>in</strong>c<strong>in</strong>era<strong>to</strong>rs as<br />

alum<strong>in</strong>ium nodules (Ne<strong>the</strong>rlands, France,<br />

Belgium and Denmark, <strong>in</strong> particular)<br />

In many <strong>Europe</strong>an countries municipal<br />

solid waste is entirely or partly<br />

<strong>in</strong>c<strong>in</strong>erated, <strong>in</strong> this case <strong>the</strong> conta<strong>in</strong>ed th<strong>in</strong><br />

gauge alum<strong>in</strong>ium foil is oxidised and<br />

delivers energy while thicker gauges can<br />

be extracted from <strong>the</strong> bot<strong>to</strong>m ash.


In l<strong>in</strong>e with national requirements (e.g.<br />

Germany), alum<strong>in</strong>ium can be extracted<br />

from lam<strong>in</strong>ates by pyrolysis and <strong>the</strong>rmal<br />

plasma techniques.<br />

As alum<strong>in</strong>ium from collected packag<strong>in</strong>g<br />

is just as easy <strong>to</strong> melt as o<strong>the</strong>r types of<br />

alum<strong>in</strong>ium scrap, <strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry,<br />

<strong>to</strong>ge<strong>the</strong>r with <strong>the</strong> equipment manufacturers,<br />

has focused its efforts on develop<strong>in</strong>g<br />

various alum<strong>in</strong>ium sort<strong>in</strong>g techniques.<br />

Eddy current mach<strong>in</strong>es and detectionejection<br />

systems are implemented <strong>to</strong><br />

extract alum<strong>in</strong>ium from mixed materials<br />

flows as well as from <strong>in</strong>c<strong>in</strong>era<strong>to</strong>r bot<strong>to</strong>m<br />

ashes where it is highly diluted.<br />

For used beverage cans alone <strong>the</strong><br />

collection rates are as high as 80 <strong>to</strong> 93%<br />

<strong>in</strong> some <strong>Europe</strong>an countries (Benelux,<br />

Scand<strong>in</strong>avian countries and Switzerland).<br />

The mean collection rate of alum<strong>in</strong>ium<br />

beverage cans <strong>in</strong> Western <strong>Europe</strong>, which<br />

has been moni<strong>to</strong>red s<strong>in</strong>ce 1991, has more<br />

than doubled from 21% <strong>in</strong> 1991 <strong>to</strong> 52% <strong>in</strong><br />

2005.<br />

<strong>Alum<strong>in</strong>ium</strong> cans/capita/year<br />

40 50<br />

38 47<br />

36 44<br />

34 41<br />

32 38<br />

30 35<br />

28 32<br />

26 29<br />

24 26<br />

22 23<br />

20<br />

20 Percentage<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1 Term collection used here refers <strong>to</strong> recycl<strong>in</strong>g <strong>in</strong> <strong>the</strong> directive for packag<strong>in</strong>g and packag<strong>in</strong>g waste.<br />

Figure 19: <strong>Alum<strong>in</strong>ium</strong> Beverage Can Usage and Collection Rate 1 <strong>in</strong> Western <strong>Europe</strong><br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

33


34<br />

7. The <strong>Alum<strong>in</strong>ium</strong> Life Cycle:<br />

<strong>the</strong> Never-End<strong>in</strong>g S<strong>to</strong>ry<br />

In <strong>the</strong> past, much was known about<br />

<strong>the</strong> primary alum<strong>in</strong>ium production cha<strong>in</strong><br />

but comparatively little about recycled<br />

alum<strong>in</strong>ium. The EAA and <strong>the</strong> OEA, <strong>in</strong><br />

<strong>the</strong> course of <strong>the</strong>ir ongo<strong>in</strong>g close cooperation,<br />

have thus sought <strong>to</strong> improve<br />

understand<strong>in</strong>g of <strong>the</strong> multitude of<br />

processes needed <strong>to</strong> produce recycled<br />

alum<strong>in</strong>ium.


Bauxite 5 153.7<br />

Primary<br />

<strong>Alum<strong>in</strong>ium</strong> 30.2<br />

Recycled<br />

<strong>Alum<strong>in</strong>ium</strong> 31.6<br />

(Excl. Fabrica<strong>to</strong>r<br />

Scrap 15.1)<br />

Bauxite Residues 56.7<br />

and Water 39.7<br />

Figure 20: Global <strong>Alum<strong>in</strong>ium</strong> Flow, 2004<br />

Material Flow Metal Flow<br />

Alum<strong>in</strong>a 6 57.3<br />

Traded New<br />

Scrap 1 1.3<br />

Metal Losses 1.3<br />

Ingots 61.8<br />

Fabrica<strong>to</strong>r<br />

Scrap 2<br />

16.5<br />

Fabricated and<br />

F<strong>in</strong>ished Products<br />

(<strong>in</strong>put) 60.5<br />

Traded<br />

New<br />

Scrap 7 7.7<br />

F<strong>in</strong>ished<br />

Products<br />

(output) 36.3<br />

O<strong>the</strong>r<br />

Applications 3<br />

1.1<br />

Old Scrap<br />

7.4<br />

O<strong>the</strong>r 11%<br />

Packag<strong>in</strong>g 1%<br />

Net Addition 2004: 21.1<br />

Transport 28%<br />

o.a. Au<strong>to</strong>motive 16%<br />

Total Products S<strong>to</strong>red<br />

<strong>in</strong> Use s<strong>in</strong>ce 1888: 538.5<br />

Build<strong>in</strong>g 31%<br />

Eng<strong>in</strong>eer<strong>in</strong>g<br />

and Cable 29%<br />

Not Recycled <strong>in</strong> 2004 8 3.4 Under Investigation 4 3.3<br />

Values <strong>in</strong> millions of metric <strong>to</strong>nnes. Values might not add up due <strong>to</strong> round<strong>in</strong>g. Production s<strong>to</strong>cks not shown.<br />

1 <strong>Alum<strong>in</strong>ium</strong> <strong>in</strong> skimm<strong>in</strong>gs; 2 Scrap generated by foundries, roll<strong>in</strong>g mills and extruders. Most is <strong>in</strong>ternal scrap and not taken <strong>in</strong><strong>to</strong> accounts <strong>in</strong> statistics;<br />

3 Such as powder, paste and deoxidation alum<strong>in</strong>ium (metal property is lost); 4 Area of current research <strong>to</strong> identify f<strong>in</strong>al alum<strong>in</strong>ium dest<strong>in</strong>ation (reuse, recycl<strong>in</strong>g or landfill<strong>in</strong>g);<br />

5 Calculated. Includes, depend<strong>in</strong>g on <strong>the</strong> ore, between 30% and 50% alum<strong>in</strong>a; 6 Calculated. Includes on a global average 52% alum<strong>in</strong>ium; 7 Scrap generated dur<strong>in</strong>g <strong>the</strong><br />

production of f<strong>in</strong>ished products from semis; 8 Landfilled, dissipated <strong>in</strong><strong>to</strong> o<strong>the</strong>r recycl<strong>in</strong>g streams, <strong>in</strong>c<strong>in</strong>erated or <strong>in</strong>c<strong>in</strong>erated with energy recovery.<br />

35


36 The <strong>Alum<strong>in</strong>ium</strong> Life Cycle: <strong>the</strong> Never-End<strong>in</strong>g S<strong>to</strong>ry<br />

Bauxite 5 <strong>in</strong>cl. imports 19.1<br />

<strong>Europe</strong> M<strong>in</strong><strong>in</strong>g 4.6<br />

Primary<br />

<strong>Alum<strong>in</strong>ium</strong> 5.2<br />

Recycled<br />

<strong>Alum<strong>in</strong>ium</strong> 8.1<br />

(Excl. Internal<br />

Scrap 8 4.7; Excl.<br />

Fabrica<strong>to</strong>r<br />

Scrap 3.5)<br />

Bauxite Residues 5.7<br />

and Water<br />

(<strong>in</strong>cl. free) 5.5<br />

Figure 21: <strong>Europe</strong>an 9 <strong>Alum<strong>in</strong>ium</strong> Flow, 2004<br />

Material Flow Metal Flow<br />

Alum<strong>in</strong>a 6 7.9<br />

Traded New<br />

Scrap 1 0.1<br />

Metal Losses 0.2<br />

Ingots 13.2<br />

Fabrica<strong>to</strong>r<br />

Scrap 2<br />

Internal 3.4<br />

Traded 1.2<br />

Fabricated and<br />

F<strong>in</strong>ished Products<br />

(<strong>in</strong>put) 15.9<br />

Traded<br />

New<br />

Scrap 1.7<br />

F<strong>in</strong>ished<br />

Products<br />

(output) 9.3<br />

O<strong>the</strong>r<br />

Applications 3<br />

0.3<br />

Old Scrap<br />

2.1<br />

Alloy<strong>in</strong>g Elements 7 0.2<br />

Total Products S<strong>to</strong>red<br />

<strong>in</strong> Use s<strong>in</strong>ce 1888:<br />

120-140<br />

Net Addition 2004: 4.0<br />

Fabricated<br />

F<strong>in</strong>ished<br />

End-of-life<br />

Bauxite +14.5 Alum<strong>in</strong>a +3.0 Ingots +2.8<br />

Products -0.4 Products -0.7 Products -0.5<br />

Scrap -0.4<br />

Net Import<br />

Under Investigation 4 1.7<br />

Values <strong>in</strong> millions of metric <strong>to</strong>nnes. Values might not add up due <strong>to</strong> round<strong>in</strong>g. Production s<strong>to</strong>cks not shown.<br />

1 <strong>Alum<strong>in</strong>ium</strong> <strong>in</strong> skimm<strong>in</strong>gs from primary production only; 2 Scrap generated by foundries, roll<strong>in</strong>g mills and extruders. Internal scrap is not taken <strong>in</strong><strong>to</strong> account <strong>in</strong> statistics;<br />

3 Such as powder, paste and deoxidation alum<strong>in</strong>ium (metal property is lost); 4 Area of current research <strong>to</strong> identify f<strong>in</strong>al alum<strong>in</strong>ium dest<strong>in</strong>ation (reuse, recycl<strong>in</strong>g or landfill<strong>in</strong>g);<br />

5 Based on statistics. Includes, depend<strong>in</strong>g on <strong>the</strong> ore, between 30% and 50% alum<strong>in</strong>a; 6 Based on statistics. Includes on a global average 52% alum<strong>in</strong>ium. Includes nonmetallic<br />

uses; 7 alloy<strong>in</strong>g elements are only shown for recycl<strong>in</strong>g; 8 Based on statistics; 9 West and Central <strong>Europe</strong> (Former CIS excluded, except Baltic states)


Bauxite 5 <strong>in</strong>cl. imports 16.1<br />

EU M<strong>in</strong><strong>in</strong>g 3.3<br />

Primary<br />

<strong>Alum<strong>in</strong>ium</strong> 3.0<br />

Recycled<br />

<strong>Alum<strong>in</strong>ium</strong> 7.6<br />

(Excl. Internal<br />

Scrap 8 4.5;<br />

Excl. Fabrica<strong>to</strong>r<br />

Scrap 3.3)<br />

Bauxite Residues 4.7<br />

and Water<br />

(<strong>in</strong>cl. free) 4.8<br />

Figure 22: EU-25 <strong>Alum<strong>in</strong>ium</strong> Flow, 2004<br />

Material Flow Material Flow<br />

Alum<strong>in</strong>a 6 6.6<br />

Traded New<br />

Scrap 1 0.03<br />

Metal Losses 0.2<br />

Ingots 10.6<br />

Fabrica<strong>to</strong>r<br />

Scrap 2<br />

Internal 3.1<br />

Traded 1.1<br />

Fabricated and<br />

F<strong>in</strong>ished Products<br />

(<strong>in</strong>put) 14.6<br />

Traded<br />

New<br />

Scrap 1.6<br />

F<strong>in</strong>ished<br />

Products<br />

(output) 8.8<br />

O<strong>the</strong>r<br />

Applications 3<br />

0.3<br />

Old Scrap<br />

2.0<br />

Alloy<strong>in</strong>g Elements 7 0.2<br />

Net Addition 2004: 3.8<br />

Total Products S<strong>to</strong>red<br />

<strong>in</strong> Use s<strong>in</strong>ce 1888:<br />

120-130<br />

Fabricated<br />

F<strong>in</strong>ished<br />

End-of-life<br />

Bauxite +12.8 Alum<strong>in</strong>a -0.3 Ingots +3.9<br />

Products -0.04 Products -0.7 Products -0.5<br />

Scrap -0.2<br />

Net Import<br />

Under Investigation 4 1.5<br />

Values <strong>in</strong> millions of metric <strong>to</strong>nnes. Values might not add up due <strong>to</strong> round<strong>in</strong>g. Production s<strong>to</strong>cks not shown.<br />

1 <strong>Alum<strong>in</strong>ium</strong> <strong>in</strong> skimm<strong>in</strong>gs from primary production only; 2 Scrap generated by foundries, roll<strong>in</strong>g mills and extruders. Internal scrap is not taken <strong>in</strong><strong>to</strong> account <strong>in</strong> statistics;<br />

3 Such as powder, paste and deoxidation alum<strong>in</strong>ium (metal property is lost); 4 Area of current research <strong>to</strong> identify f<strong>in</strong>al alum<strong>in</strong>ium dest<strong>in</strong>ation (reuse, recycl<strong>in</strong>g or landfill<strong>in</strong>g);<br />

5 Based on statistics. Includes, depend<strong>in</strong>g on <strong>the</strong> ore, between 30% and 50% alum<strong>in</strong>a; 6 Based on statistics. Includes on a global average 52% alum<strong>in</strong>ium. Includes nonmetallic<br />

uses; 7 alloy<strong>in</strong>g elements are only shown for recycl<strong>in</strong>g; 8 Based on statistics<br />

37


38<br />

7. The <strong>Alum<strong>in</strong>ium</strong> Life Cycle: a Never-End<strong>in</strong>g S<strong>to</strong>ry<br />

The alum<strong>in</strong>ium <strong>in</strong>dustry, <strong>in</strong> collaboration<br />

with various universities, is currently<br />

design<strong>in</strong>g a model <strong>to</strong> track alum<strong>in</strong>ium<br />

throughout its life cycle from m<strong>in</strong><strong>in</strong>g <strong>to</strong><br />

use <strong>to</strong> recycl<strong>in</strong>g. More than 90 processes<br />

(<strong>in</strong>clud<strong>in</strong>g sub-processes) and 300<br />

alum<strong>in</strong>ium flows will be <strong>in</strong>vestigated <strong>in</strong><br />

<strong>Europe</strong>. The ma<strong>in</strong> objective of <strong>the</strong> study<br />

is <strong>to</strong> quantify <strong>the</strong> alum<strong>in</strong>ium collection<br />

rate, as well as <strong>the</strong> metal losses <strong>in</strong>curred<br />

dur<strong>in</strong>g <strong>the</strong> treatment and melt<strong>in</strong>g of scrap.<br />

This will help <strong>the</strong> <strong>in</strong>dustry <strong>to</strong> understand<br />

more fully, and cont<strong>in</strong>ue <strong>to</strong> improve,<br />

<strong>the</strong> diversity of processes required for<br />

recycled alum<strong>in</strong>ium production.<br />

The model is not static but is regularly<br />

updated <strong>to</strong> ensure that technological,<br />

market and legislative changes are<br />

<strong>in</strong>corporated as <strong>the</strong>y arise. This represents<br />

yet ano<strong>the</strong>r significant step by <strong>the</strong><br />

alum<strong>in</strong>ium <strong>in</strong>dustry <strong>in</strong> its drive for, and<br />

commitment <strong>to</strong>, cont<strong>in</strong>ued progress.<br />

Figures 20 <strong>to</strong> 22 illustrate <strong>the</strong> model.<br />

Global and <strong>Europe</strong>an, primary and recycled<br />

alum<strong>in</strong>ium flows are shown.


8. Frequently Asked Questions<br />

How is <strong>the</strong> recycl<strong>in</strong>g rate<br />

def<strong>in</strong>ed and calculated?<br />

For alum<strong>in</strong>ium, three recycl<strong>in</strong>g rates apply:<br />

1. The recycl<strong>in</strong>g <strong>in</strong>put rate<br />

(recycled alum<strong>in</strong>ium/<strong>to</strong>tal alum<strong>in</strong>ium<br />

supplied <strong>to</strong> fabrica<strong>to</strong>rs)<br />

2. The end-of-life recycl<strong>in</strong>g efficiency rate<br />

(alum<strong>in</strong>ium recycled from old scrap/<br />

alum<strong>in</strong>ium available for collection after<br />

use)<br />

3. The overall recycl<strong>in</strong>g efficiency rate<br />

(recycled alum<strong>in</strong>ium/alum<strong>in</strong>ium<br />

available for collection at production,<br />

fabrication and manufactur<strong>in</strong>g and<br />

after use)<br />

The recycl<strong>in</strong>g <strong>in</strong>put rate does not reflect<br />

<strong>the</strong> recycl<strong>in</strong>g activity of <strong>the</strong> alum<strong>in</strong>ium<br />

<strong>in</strong>dustry. It purely takes <strong>in</strong><strong>to</strong> account <strong>the</strong><br />

orig<strong>in</strong> of <strong>the</strong> metal, i.e. primary or<br />

recycled. The amount of recycled<br />

alum<strong>in</strong>ium is based on statistics perta<strong>in</strong><strong>in</strong>g<br />

<strong>to</strong> <strong>the</strong> remelters' production from <strong>to</strong>lled<br />

and purchased scrap and <strong>the</strong> ref<strong>in</strong>ers’<br />

production. Fur<strong>the</strong>rmore, <strong>the</strong> recycl<strong>in</strong>g<br />

<strong>in</strong>put rate is significantly <strong>in</strong>fluenced by<br />

import and export activities at all life<br />

cycle stages. Thus a healthy fabrication<br />

<strong>in</strong>dustry which is able <strong>to</strong> export its<br />

products “destroys” <strong>the</strong> recycl<strong>in</strong>g <strong>in</strong>put<br />

rate per def<strong>in</strong>ition.<br />

The end-of-life and <strong>the</strong> overall efficiency<br />

rate is obta<strong>in</strong>ed by multiply<strong>in</strong>g <strong>the</strong><br />

collection rate (alum<strong>in</strong>ium collected/<br />

alum<strong>in</strong>ium available for collection) by <strong>the</strong><br />

treatment efficiency rate (alum<strong>in</strong>ium<br />

treated/alum<strong>in</strong>ium collected) by <strong>the</strong><br />

melt<strong>in</strong>g efficiency rate, also termed net<br />

metal yield (alum<strong>in</strong>ium recycled/<br />

alum<strong>in</strong>ium treated).<br />

The recycled alum<strong>in</strong>ium referred <strong>to</strong> <strong>in</strong><br />

<strong>the</strong> recycl<strong>in</strong>g efficiency rates is <strong>the</strong>refore<br />

not determ<strong>in</strong>ed on <strong>the</strong> basis of statistics,<br />

but calculated by means of a material flow<br />

model. Collection rates differ greatly,<br />

however. New scrap has a collection rate<br />

of almost 100% and alum<strong>in</strong>ium from<br />

build<strong>in</strong>gs approximately 96%. The<br />

collection rate of alum<strong>in</strong>ium beverage cans<br />

has reached 52% <strong>in</strong> 2005 and this figure<br />

cont<strong>in</strong>ues <strong>to</strong> rise. But alum<strong>in</strong>ium utilised<br />

<strong>in</strong> powder, paste and for deoxidation<br />

purposes is def<strong>in</strong>ed as impossible <strong>to</strong><br />

recycle after use, because it loses its<br />

metallic properties. <strong>Alum<strong>in</strong>ium</strong> metal<br />

losses <strong>in</strong>curred dur<strong>in</strong>g separation<br />

treatment range from 0% (no treatment<br />

necessary) <strong>to</strong> 10%.<br />

Melt<strong>in</strong>g losses are def<strong>in</strong>ed as <strong>the</strong><br />

proportion of metal <strong>in</strong> <strong>the</strong> scrap lost<br />

dur<strong>in</strong>g melt<strong>in</strong>g, which <strong>the</strong>refore excludes<br />

all alum<strong>in</strong>ium oxides found on <strong>the</strong> surface<br />

of scrap prior <strong>to</strong> melt<strong>in</strong>g. Delft University<br />

of Technology and <strong>the</strong> OEA determ<strong>in</strong>ed <strong>in</strong><br />

a jo<strong>in</strong>t research project how resourceconservative<br />

<strong>the</strong> <strong>in</strong>dustry is when melt<strong>in</strong>g<br />

alum<strong>in</strong>ium scrap and found that melt<strong>in</strong>g<br />

oxidation losses are on average 2%.<br />

The end-of-life recycl<strong>in</strong>g efficiency rate<br />

can also be used <strong>to</strong> provide productspecific<br />

def<strong>in</strong>itions for life cycle analysis<br />

purposes. Here, <strong>the</strong> recycl<strong>in</strong>g rate of one<br />

specific product, such as end-of-life<br />

vehicles, is calculated.<br />

39


40 8. Frequently Asked Questions<br />

How much energy is saved<br />

by alum<strong>in</strong>ium recycl<strong>in</strong>g<br />

compared <strong>to</strong> primary<br />

alum<strong>in</strong>ium production?<br />

The energy required <strong>to</strong> produce one <strong>to</strong>nne<br />

of recycled alum<strong>in</strong>ium <strong>in</strong>gots from clean<br />

scrap can be as little as 5% of <strong>the</strong> energy<br />

needed <strong>to</strong> produce one <strong>to</strong>nne of primary<br />

alum<strong>in</strong>ium.<br />

However, alum<strong>in</strong>ium scrap is frequently<br />

mixed with o<strong>the</strong>r materials and additional<br />

energy may be required <strong>to</strong> separate <strong>the</strong><br />

alum<strong>in</strong>ium and protect <strong>the</strong> environment<br />

from <strong>the</strong> impact of <strong>the</strong>se materials.<br />

Fur<strong>the</strong>r energy needs relat<strong>in</strong>g <strong>to</strong> both<br />

<strong>the</strong> primary and recycled alum<strong>in</strong>ium<br />

production cha<strong>in</strong> are dependent on <strong>the</strong><br />

technology applied and <strong>the</strong> geographical<br />

location, and <strong>the</strong>refore on local energy mix<br />

and efficiency as well as transportation<br />

distances.<br />

Hence, it is only possible <strong>to</strong> calculate<br />

overall magnitude of a universal value for<br />

energy sav<strong>in</strong>gs.<br />

Is it possible <strong>to</strong> recycle<br />

alum<strong>in</strong>ium without loss of<br />

properties?<br />

Yes, recycled alum<strong>in</strong>ium can have <strong>the</strong><br />

same properties as primary alum<strong>in</strong>ium.<br />

However, <strong>in</strong> <strong>the</strong> course of multiple<br />

recycl<strong>in</strong>g, more and more alloy<strong>in</strong>g<br />

elements are <strong>in</strong>troduced <strong>in</strong><strong>to</strong> <strong>the</strong> metal<br />

cycle. This effect is put <strong>to</strong> good use <strong>in</strong> <strong>the</strong><br />

production of cast<strong>in</strong>g alloys, which<br />

generally need <strong>the</strong>se elements <strong>to</strong> atta<strong>in</strong><br />

<strong>the</strong> desired alloy properties. For <strong>in</strong>stance,<br />

<strong>in</strong> <strong>the</strong> composition of alloy EN-AC 46000<br />

(Al Si9Cu3 (Fe), conta<strong>in</strong><strong>in</strong>g about 9% silicon<br />

and 3% copper), which is widely used for<br />

au<strong>to</strong>motive applications like cyl<strong>in</strong>der<br />

heads and gearboxes, <strong>the</strong> need for alloy<strong>in</strong>g<br />

elements is manifestly clear. Approximately<br />

26% of alum<strong>in</strong>ium <strong>in</strong> <strong>Europe</strong> is used for<br />

cast<strong>in</strong>gs, where alum<strong>in</strong>ium scrap is<br />

especially chosen for its valuable alloy<br />

content. Thus, alum<strong>in</strong>ium recycl<strong>in</strong>g<br />

contributes not only <strong>to</strong> <strong>the</strong> susta<strong>in</strong>able<br />

use of alum<strong>in</strong>ium but also, <strong>to</strong> some extent,<br />

its alloy<strong>in</strong>g elements, mak<strong>in</strong>g it both<br />

economical and ecological!<br />

Many of <strong>the</strong>se alloy<strong>in</strong>g elements do,<br />

however, limit <strong>the</strong> usability of recycled<br />

alum<strong>in</strong>ium <strong>in</strong> <strong>the</strong> production of fabricated<br />

goods, like extrusion billets or roll<strong>in</strong>g<br />

<strong>in</strong>gots. Therefore, alum<strong>in</strong>ium scrap with an<br />

alloy composition correspond<strong>in</strong>g <strong>to</strong> that of<br />

wrought alloys is separated whenever<br />

possible.


Is <strong>the</strong>re an oversupply of<br />

high-alloyed scrap?<br />

Absolutely not! As long as <strong>the</strong>re is a<br />

grow<strong>in</strong>g demand for alum<strong>in</strong>ium cast<strong>in</strong>gs<br />

worldwide, a shortage of high-alloyed<br />

scrap is closer <strong>to</strong> <strong>the</strong> truth. The supply<br />

situation may become even worse, s<strong>in</strong>ce<br />

<strong>the</strong> au<strong>to</strong>motive revolution is just <strong>in</strong> its<br />

start<strong>in</strong>g phase <strong>in</strong> many develop<strong>in</strong>g<br />

countries.<br />

Is <strong>the</strong> recycled alum<strong>in</strong>ium<br />

content of products an<br />

<strong>in</strong>dica<strong>to</strong>r of recycl<strong>in</strong>g<br />

efficiency?<br />

“Recycled content” is a phrase with a<br />

certa<strong>in</strong> ecological appeal. But, what does<br />

it actually mean <strong>in</strong> <strong>the</strong> context of <strong>the</strong><br />

alum<strong>in</strong>ium <strong>in</strong>dustry?<br />

From a technical po<strong>in</strong>t of view, <strong>the</strong>re is<br />

no problem <strong>to</strong> produce a new alum<strong>in</strong>ium<br />

product from <strong>the</strong> same used product. There<br />

are no quality differences between a<br />

product entirely made of primary metal<br />

and a product made of recycled metal.<br />

If all alum<strong>in</strong>ium applications were grouped<br />

<strong>to</strong>ge<strong>the</strong>r, <strong>the</strong> average global recycled<br />

content (exclud<strong>in</strong>g fabrica<strong>to</strong>r scrap) would<br />

stand at around 33% overall. But, <strong>in</strong><br />

reality, recycled content varies substantially<br />

from one product <strong>to</strong> ano<strong>the</strong>r. With <strong>the</strong><br />

cont<strong>in</strong>ued growth of <strong>the</strong> alum<strong>in</strong>ium<br />

market and <strong>the</strong> fact that most alum<strong>in</strong>ium<br />

products have a fairly long lifespan (<strong>in</strong> <strong>the</strong><br />

case of build<strong>in</strong>gs, potentially more than<br />

100 years), it is not possible <strong>to</strong> achieve<br />

high recycled content <strong>in</strong> all new alum<strong>in</strong>ium<br />

products, simply because <strong>the</strong> available<br />

quantity of end-of-life alum<strong>in</strong>ium falls<br />

considerably short of <strong>to</strong>tal demand.<br />

Fur<strong>the</strong>rmore, recycled alum<strong>in</strong>ium is<br />

used where it is deemed most efficient<br />

<strong>in</strong> both economic and ecological terms.<br />

Direct<strong>in</strong>g <strong>the</strong> scrap flow <strong>to</strong>wards<br />

designated products <strong>in</strong> order <strong>to</strong> obta<strong>in</strong><br />

high recycled content <strong>in</strong> those products<br />

would <strong>in</strong>evitably mean lower recycled<br />

content <strong>in</strong> o<strong>the</strong>r products. It would also<br />

certa<strong>in</strong>ly result <strong>in</strong> <strong>in</strong>efficiency <strong>in</strong> <strong>the</strong> global<br />

optimisation of <strong>the</strong> scrap market, as well<br />

as wast<strong>in</strong>g transportation energy. Calls<br />

<strong>to</strong> <strong>in</strong>crease recycled content <strong>in</strong> specific<br />

categories of alum<strong>in</strong>ium products make<br />

no ecological sense at all.<br />

Even though <strong>the</strong> recycled content of a<br />

particular product or product part may<br />

range from 0% <strong>to</strong> 100%, all collected<br />

alum<strong>in</strong>ium is recycled . <strong>Alum<strong>in</strong>ium</strong> that<br />

cannot be collected <strong>in</strong>cludes that used<br />

<strong>in</strong> powder, paste and for deoxidation<br />

purposes as, after use, it loses its metallic<br />

properties.<br />

41


42 8. Frequently Asked Questions<br />

What are <strong>the</strong> <strong>Europe</strong>an sources<br />

of alum<strong>in</strong>ium scrap?<br />

Recycled alum<strong>in</strong>ium is produced from both<br />

new and old scrap. New scrap is surplus<br />

material that arises dur<strong>in</strong>g <strong>the</strong> production,<br />

fabrication and manufacture of alum<strong>in</strong>ium<br />

products up <strong>to</strong> <strong>the</strong> po<strong>in</strong>t where <strong>the</strong>y are<br />

sold <strong>to</strong> <strong>the</strong> f<strong>in</strong>al consumer. The production<br />

route of new scrap from collection <strong>to</strong><br />

recycled metal is thus controlled by<br />

<strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry. Old scrap is<br />

alum<strong>in</strong>ium material that is treated and<br />

melted down after an exist<strong>in</strong>g alum<strong>in</strong>ium<br />

product has been used, discarded and<br />

collected. Based on statistics and exist<strong>in</strong>g<br />

knowledge of <strong>the</strong> <strong>Europe</strong>an alum<strong>in</strong>ium<br />

scrap flow (exclud<strong>in</strong>g <strong>in</strong>ternal scrap),<br />

approximately 40% of recycled alum<strong>in</strong>ium<br />

orig<strong>in</strong>ates from old scrap, and <strong>the</strong> rest is<br />

new scrap.<br />

Why does <strong>the</strong> <strong>in</strong>dustry not<br />

recycle 100% of all available<br />

alum<strong>in</strong>ium?<br />

The <strong>in</strong>dustry cont<strong>in</strong>ues <strong>to</strong> recycle all <strong>the</strong><br />

alum<strong>in</strong>ium collected from end-of-life<br />

goods and by-products. However, <strong>the</strong><br />

collection of alum<strong>in</strong>ium-conta<strong>in</strong><strong>in</strong>g endof-life<br />

products from municipal waste<br />

streams (e.g. household waste) depends<br />

largely on national waste schemes. The<br />

amount collected could be <strong>in</strong>creased with<br />

<strong>the</strong> help of appropriate authorities, local<br />

communities and heightened awareness<br />

by society as a whole. The environmental<br />

feasibility of whe<strong>the</strong>r <strong>to</strong> recycle or<br />

<strong>in</strong>c<strong>in</strong>erate flexible packag<strong>in</strong>g waste, such<br />

as alum<strong>in</strong>ium lam<strong>in</strong>ated <strong>to</strong> paper and/or<br />

plastic layers, which has a very low<br />

alum<strong>in</strong>ium content can only be decided<br />

case-by-case by compar<strong>in</strong>g <strong>the</strong> specific<br />

alternatives by life cycle assessments,<br />

tak<strong>in</strong>g specific local circumstances and<br />

o<strong>the</strong>r aspects of susta<strong>in</strong>ability <strong>in</strong><strong>to</strong><br />

consideration. Generally <strong>the</strong> energy<br />

required for <strong>the</strong> production of packag<strong>in</strong>g is<br />

only a small percentage compared <strong>to</strong> <strong>the</strong><br />

<strong>to</strong>tal energy used <strong>to</strong> produce and supply<br />

<strong>the</strong> f<strong>in</strong>al product.<br />

If <strong>the</strong> f<strong>in</strong>al product is spoilt due <strong>to</strong><br />

<strong>in</strong>adequate packag<strong>in</strong>g material, much<br />

more energy is wasted than needed <strong>to</strong><br />

produce <strong>the</strong> packag<strong>in</strong>g itself.<br />

Dur<strong>in</strong>g all <strong>in</strong>dustrial processes <strong>in</strong>volv<strong>in</strong>g<br />

treatment and melt<strong>in</strong>g, a certa<strong>in</strong> degree of<br />

material loss is <strong>in</strong>evitable. <strong>Alum<strong>in</strong>ium</strong><br />

losses dur<strong>in</strong>g such processes are <strong>the</strong>refore<br />

unavoidable, and this holds true for all<br />

o<strong>the</strong>r materials. But a recycl<strong>in</strong>g rate of<br />

almost 100% can be achieved with new<br />

scrap, such as alum<strong>in</strong>ium sheets, because<br />

<strong>the</strong> route from collection <strong>to</strong> melt<strong>in</strong>g is<br />

entirely <strong>in</strong> <strong>the</strong> hands of <strong>the</strong> alum<strong>in</strong>ium<br />

recycl<strong>in</strong>g <strong>in</strong>dustry.<br />

Certa<strong>in</strong> applications are not available for<br />

recycl<strong>in</strong>g as <strong>the</strong>y loose <strong>the</strong>ir metallic<br />

properties by <strong>the</strong>ir very nature. For example,<br />

<strong>in</strong> order <strong>to</strong> produce one <strong>to</strong>nne of steel <strong>in</strong><br />

a basic oxygen furnace, around 1.8 kg of<br />

alum<strong>in</strong>ium is needed for deoxidation<br />

purposes. O<strong>the</strong>r examples of metal loss<br />

<strong>in</strong>clude use as alum<strong>in</strong>ium powder or as<br />

an additive <strong>to</strong> metallic lacquers.


Due <strong>to</strong> its high aff<strong>in</strong>ity for oxygen,<br />

alum<strong>in</strong>ium always forms an oxide layer,<br />

one of <strong>the</strong> reasons why it has such<br />

excellent corrosion resistance qualities.<br />

This results, however, <strong>in</strong> loss of metal<br />

dur<strong>in</strong>g use and melt<strong>in</strong>g.<br />

In addition f<strong>in</strong>ished or end-of-life<br />

products exported out of a country or<br />

region are no longer available for recycl<strong>in</strong>g<br />

<strong>to</strong> <strong>the</strong> <strong>in</strong>dustry located <strong>in</strong> this area.<br />

Is alum<strong>in</strong>ium metal lost dur<strong>in</strong>g<br />

<strong>the</strong> recycl<strong>in</strong>g process?<br />

<strong>Alum<strong>in</strong>ium</strong> which has been collected at<br />

<strong>the</strong> end of its useful life has <strong>to</strong> undergo<br />

various sort<strong>in</strong>g and treatment processes<br />

before it can be melted down aga<strong>in</strong>. Along<br />

<strong>the</strong> way, some metal is lost. Due <strong>to</strong> <strong>the</strong><br />

complexity of <strong>the</strong>se processes and <strong>the</strong><br />

great variety of scrap types, it is still not<br />

possible <strong>to</strong> quantify <strong>the</strong>se losses exactly,<br />

but <strong>the</strong>y range between 0 and 10%. Metal<br />

loss <strong>in</strong> case of clean, clearly identifiable<br />

alum<strong>in</strong>ium scrap, which can be used<br />

directly for melt<strong>in</strong>g, can be practically<br />

none, while scrap conta<strong>in</strong><strong>in</strong>g foreign<br />

materials that needs <strong>to</strong> undergo several<br />

process<strong>in</strong>g steps may lose some metal<br />

on its way <strong>to</strong> <strong>the</strong> furnace. Dur<strong>in</strong>g melt<strong>in</strong>g,<br />

<strong>the</strong> EU-15 alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>in</strong>dustry<br />

was able <strong>to</strong> achieve a metal recovery rate<br />

of 98%.<br />

Typical metal losses dur<strong>in</strong>g scrap melt<strong>in</strong>g<br />

<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> recycl<strong>in</strong>g of skimm<strong>in</strong>gs and<br />

salt slag range from 1 <strong>to</strong> 5% depend<strong>in</strong>g<br />

on <strong>the</strong> application and <strong>the</strong> furnace<br />

technology.<br />

43


44 8. Frequently Asked Questions<br />

Should a w<strong>in</strong>dow frame be<br />

recycled back <strong>in</strong><strong>to</strong> a w<strong>in</strong>dow<br />

frame?<br />

From a technical and ecological po<strong>in</strong>t of<br />

view, whe<strong>the</strong>r a w<strong>in</strong>dow frame is made of<br />

what was previously a w<strong>in</strong>dow frame or<br />

a door is <strong>to</strong>tally irrelevant. In <strong>the</strong> context<br />

of <strong>the</strong> global alum<strong>in</strong>ium market, it is<br />

po<strong>in</strong>tless <strong>to</strong> track end-of-life alum<strong>in</strong>ium<br />

<strong>to</strong> <strong>the</strong> next alum<strong>in</strong>ium product. <strong>Recycl<strong>in</strong>g</strong><br />

with<strong>in</strong> <strong>the</strong> same product group or not<br />

is simply a question of end-of-life<br />

alum<strong>in</strong>ium availability, collection and<br />

sort<strong>in</strong>g logistics, and <strong>the</strong> economics<br />

of recycl<strong>in</strong>g, as <strong>the</strong> ultimate objective<br />

is <strong>to</strong> obta<strong>in</strong> optimal added value for <strong>the</strong><br />

metal.<br />

What happens <strong>to</strong> <strong>the</strong> emissions<br />

generated dur<strong>in</strong>g <strong>the</strong> melt<strong>in</strong>g<br />

of scrap?<br />

The most significant emissions result<strong>in</strong>g<br />

from <strong>the</strong> alum<strong>in</strong>ium recycl<strong>in</strong>g process<br />

are emissions released <strong>in</strong><strong>to</strong> <strong>the</strong> air.<br />

These <strong>in</strong>clude dust and smoke, metal<br />

compounds, organic materials, nitrogen<br />

oxides, sulphur dioxides and chlorides.<br />

State-of-<strong>the</strong>-art technology is used <strong>to</strong><br />

extract fumes and o<strong>the</strong>r emissions and <strong>to</strong><br />

reduce fugitive emissions. Emission limits,<br />

stipulated <strong>in</strong> <strong>the</strong> reference document on<br />

Best Available Techniques <strong>in</strong> <strong>the</strong> Non-<br />

Ferrous Metal Industries, which forms<br />

part of <strong>the</strong> broader Integrated Pollution<br />

Prevention and Control measures, are<br />

EU-wide benchmarks.<br />

In addition, <strong>the</strong>re are regional regulations,<br />

like <strong>the</strong> new TA Luft <strong>in</strong> Germany, that<br />

provide a standard for o<strong>the</strong>r countries and<br />

are even more str<strong>in</strong>gent. The limits for<br />

diox<strong>in</strong> emissions are very strict, <strong>in</strong> <strong>the</strong><br />

range of


What happens <strong>to</strong> <strong>the</strong> salt slag<br />

and o<strong>the</strong>r residues generated<br />

dur<strong>in</strong>g <strong>the</strong> recycl<strong>in</strong>g process?<br />

<strong>Alum<strong>in</strong>ium</strong> salt slag is a mixture of salts,<br />

alum<strong>in</strong>ium oxide, metallic alum<strong>in</strong>ium and<br />

impurities, extracted from alum<strong>in</strong>ium scrap<br />

dur<strong>in</strong>g melt<strong>in</strong>g. It is <strong>the</strong> typical residue<br />

left beh<strong>in</strong>d when alum<strong>in</strong>ium scrap is<br />

melted <strong>in</strong> a rotary furnace. Rotary furnaces<br />

are commonly employed for alum<strong>in</strong>ium<br />

scrap conta<strong>in</strong><strong>in</strong>g foreign materials.<br />

Depend<strong>in</strong>g on <strong>the</strong> k<strong>in</strong>d of rotary furnace<br />

used and <strong>the</strong> type of scrap be<strong>in</strong>g melted,<br />

anyth<strong>in</strong>g up <strong>to</strong> 500 kg of salt slag can be<br />

generated <strong>in</strong> <strong>the</strong> production of one <strong>to</strong>nne<br />

of alum<strong>in</strong>ium metal. Salt slag, which<br />

used <strong>to</strong> be land filled, is now recycled.<br />

The salt that is applied dur<strong>in</strong>g melt<strong>in</strong>g can<br />

be completely recovered and used aga<strong>in</strong><br />

for <strong>the</strong> same purpose by <strong>the</strong> ref<strong>in</strong>er. The<br />

metallic alum<strong>in</strong>ium is also recovered and<br />

utilised <strong>to</strong> produce alum<strong>in</strong>ium alloys.<br />

The rema<strong>in</strong><strong>in</strong>g residues, ma<strong>in</strong>ly alum<strong>in</strong>ium<br />

oxide and impurities, are rendered <strong>in</strong>ert<br />

and subsequently used by <strong>the</strong> cement<br />

<strong>in</strong>dustry or, if this is not possible, land<br />

filled.<br />

Filter dust, which arises dur<strong>in</strong>g <strong>the</strong><br />

clean<strong>in</strong>g and de-acidification of gaseous<br />

combustion products, is deemed <strong>to</strong> be<br />

hazardous waste and is partly land filled<br />

or recycled. Skimm<strong>in</strong>gs and, <strong>in</strong> some cases,<br />

furnace l<strong>in</strong><strong>in</strong>gs are recycled with<strong>in</strong> <strong>the</strong><br />

alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>in</strong>dustry.<br />

45


46<br />

9. Glossary<br />

Cast<strong>in</strong>g alloys<br />

<strong>Alum<strong>in</strong>ium</strong> alloys primarily used for <strong>the</strong><br />

production of cast<strong>in</strong>gs, i.e. products at<br />

or near <strong>the</strong>ir f<strong>in</strong>ished shape, formed by<br />

solidification of <strong>the</strong> metal <strong>in</strong> a mould<br />

or a die.<br />

Note 1: In general, <strong>the</strong>se alum<strong>in</strong>ium alloys<br />

have an alloy concentration of up <strong>to</strong> 20%,<br />

mostly silicon, magnesium and copper.<br />

Note 2: Typical cast<strong>in</strong>gs are cyl<strong>in</strong>der heads,<br />

eng<strong>in</strong>e blocks and gearboxes <strong>in</strong> cars,<br />

components used <strong>in</strong> <strong>the</strong> mechanical<br />

and electrical eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong>dustries,<br />

components for household equipment<br />

and many o<strong>the</strong>r applications.<br />

Deoxidation alum<strong>in</strong>ium<br />

<strong>Alum<strong>in</strong>ium</strong> consist<strong>in</strong>g of alloys with a<br />

high concentration of metallic alum<strong>in</strong>ium<br />

(usually exceed<strong>in</strong>g 95%) used <strong>to</strong> remove<br />

free oxygen from liquid steel.<br />

EAA<br />

<strong>Europe</strong>an <strong>Alum<strong>in</strong>ium</strong> Association.<br />

Represents <strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry <strong>in</strong><br />

<strong>Europe</strong>.<br />

End-of-life alum<strong>in</strong>ium<br />

<strong>Alum<strong>in</strong>ium</strong> that has been discarded by<br />

its end-user.<br />

<strong>Europe</strong><br />

Includes EU-25, Bosnia-Herzegov<strong>in</strong>a,<br />

Croatia, Iceland, Norway, Romania, Serbia-<br />

Montenegro, Switzerland and Turkey.<br />

Foundry <strong>in</strong>dustry<br />

Ma<strong>in</strong> cus<strong>to</strong>mers of ref<strong>in</strong>ers. They produce<br />

a wide variety of cast<strong>in</strong>gs which are mostly<br />

used <strong>in</strong> <strong>the</strong> transport sec<strong>to</strong>r.<br />

Internal scrap<br />

Scrap that is melted <strong>in</strong> <strong>the</strong> same<br />

company or company group <strong>in</strong> which it<br />

was generated.<br />

Note: Internal scrap is also known as<br />

turnaround, <strong>in</strong>-house or home scrap.<br />

New scrap<br />

Raw material ma<strong>in</strong>ly consist<strong>in</strong>g of<br />

alum<strong>in</strong>ium and/or alum<strong>in</strong>ium alloys,<br />

result<strong>in</strong>g from <strong>the</strong> collection and/or<br />

treatment of metal that arises dur<strong>in</strong>g <strong>the</strong><br />

production, of alum<strong>in</strong>ium products before<br />

<strong>the</strong> alum<strong>in</strong>ium product is sold <strong>to</strong> <strong>the</strong><br />

f<strong>in</strong>al user.<br />

Note: Fabrica<strong>to</strong>r and <strong>in</strong>ternal scrap are<br />

<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> term new scrap.


OEA<br />

Organisation of <strong>Europe</strong>an <strong>Alum<strong>in</strong>ium</strong><br />

Ref<strong>in</strong>ers and Remelters. Represents <strong>the</strong><br />

alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>in</strong>dustry <strong>in</strong> <strong>Europe</strong><br />

and globally.<br />

Old scrap<br />

Raw material ma<strong>in</strong>ly consist<strong>in</strong>g of<br />

alum<strong>in</strong>ium and/or alum<strong>in</strong>ium alloys,<br />

result<strong>in</strong>g from <strong>the</strong> collection and/or<br />

treatment of products after use.<br />

Primary alum<strong>in</strong>ium<br />

Unalloyed alum<strong>in</strong>ium produced from<br />

alum<strong>in</strong>a usually by electrolysis, typically<br />

with an alum<strong>in</strong>ium content of 99.7%.<br />

Recycled alum<strong>in</strong>ium<br />

<strong>Alum<strong>in</strong>ium</strong> <strong>in</strong>got obta<strong>in</strong>ed by recycl<strong>in</strong>g<br />

of scrap.<br />

Note 1: Recycled alum<strong>in</strong>ium has replaced<br />

<strong>the</strong> term secondary alum<strong>in</strong>ium.<br />

Note 2: In this brochure <strong>the</strong> quantity of<br />

recycled alum<strong>in</strong>ium is based on statistics<br />

and <strong>in</strong>cludes alum<strong>in</strong>ium produced from<br />

<strong>to</strong>lled and purchased scrap.<br />

<strong>Recycl<strong>in</strong>g</strong><br />

<strong>Alum<strong>in</strong>ium</strong> collection and subsequent<br />

treatment and melt<strong>in</strong>g of scrap.<br />

Ref<strong>in</strong>er<br />

Producer of cast<strong>in</strong>g alloys and deoxidation<br />

alum<strong>in</strong>ium from scrap of vary<strong>in</strong>g<br />

composition. Ref<strong>in</strong>ers are able <strong>to</strong> add<br />

alloy<strong>in</strong>g elements and remove certa<strong>in</strong><br />

unwanted elements after <strong>the</strong> melt<strong>in</strong>g<br />

process.<br />

Remelter<br />

Producer of wrought alloys, usually <strong>in</strong> <strong>the</strong><br />

form of extrusion billets and roll<strong>in</strong>g <strong>in</strong>gots<br />

from ma<strong>in</strong>ly clean and sorted wrought<br />

alloy scrap.<br />

Skimm<strong>in</strong>gs<br />

Material composed of <strong>in</strong>timately mixed<br />

alum<strong>in</strong>ium, alum<strong>in</strong>ium oxides and gases,<br />

which has been removed from <strong>the</strong> surface<br />

of <strong>the</strong> molten metal or from <strong>the</strong> bot<strong>to</strong>m<br />

and walls of liquid metal conta<strong>in</strong>ers, e.g.<br />

furnaces or transport ladles or transfer<br />

channels.<br />

Note: Skimm<strong>in</strong>gs are also known as dross.<br />

47


48<br />

Salt slag<br />

9. Glossary<br />

Residue generated after remelt<strong>in</strong>g of<br />

alum<strong>in</strong>ium scrap with flux<strong>in</strong>g salt,<br />

consist<strong>in</strong>g of salt <strong>in</strong> which metallic and<br />

non-metallic particles are entrapped <strong>in</strong><br />

amounts that exhaust its flux<strong>in</strong>g properties<br />

Note: Flux<strong>in</strong>g salt is used ma<strong>in</strong>ly for<br />

ref<strong>in</strong><strong>in</strong>g <strong>in</strong> rotat<strong>in</strong>g furnaces <strong>in</strong> order <strong>to</strong>:<br />

1. cover <strong>the</strong> molten metal <strong>to</strong> prevent<br />

oxidation,<br />

2. <strong>in</strong>crease <strong>the</strong> net metal yield,<br />

3. clean <strong>the</strong> metal from non-metallic<br />

<strong>in</strong>clusions and dissolved metallic<br />

impurities (e.g. calcium and<br />

magnesium) and<br />

4. enhance <strong>the</strong>rmal efficiency <strong>in</strong> <strong>the</strong><br />

furnace.<br />

Treatment<br />

Mechanical and <strong>the</strong>rmal process<strong>in</strong>g of<br />

scrap, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> separation of<br />

alum<strong>in</strong>ium scrap from o<strong>the</strong>r materials and<br />

<strong>the</strong> pre-process<strong>in</strong>g of scrap before it enters<br />

<strong>the</strong> furnace.<br />

Western <strong>Europe</strong><br />

EU-25 and EFTA plus Turkey.<br />

Wrought alloys<br />

<strong>Alum<strong>in</strong>ium</strong> alloys primarily used for wrought<br />

products by hot and/or cold work<strong>in</strong>g.<br />

Note 1: In general, <strong>the</strong>se alum<strong>in</strong>ium alloys<br />

have an alloy concentration of up <strong>to</strong> 10%,<br />

mostly manganese, magnesium, silicon,<br />

copper and z<strong>in</strong>c.<br />

Note 2: Typical wrought products are sheet,<br />

foil, extruded profiles or forg<strong>in</strong>gs.


10. Fur<strong>the</strong>r Read<strong>in</strong>g<br />

Bo<strong>in</strong> U.M.J. and Bertram M., 2005.<br />

Melt<strong>in</strong>g Standardized <strong>Alum<strong>in</strong>ium</strong> Scrap: A Mass Balance<br />

Model for <strong>Europe</strong>. JOM 57 (8), pp. 26–33.<br />

EAA, Fact Sheets (permanently updated).<br />

www.alum<strong>in</strong>ium.org<br />

EAA, 2004. Environmental Profile Report and <strong>Alum<strong>in</strong>ium</strong><br />

<strong>Recycl<strong>in</strong>g</strong> <strong>in</strong> LCA. Reference year 2002.<br />

EAA and TU Delft, 2004. Collection of <strong>Alum<strong>in</strong>ium</strong> from<br />

Build<strong>in</strong>gs <strong>in</strong> <strong>Europe</strong>. Brochure and F<strong>in</strong>al Report.<br />

<strong>Europe</strong>an Commission, 2001. Reference Document on Best<br />

Available Techniques <strong>in</strong> <strong>the</strong> Non-Ferrous Metal Industries.<br />

http://eippcb.jrc.es<br />

<strong>Europe</strong>an Committee for Standardization, 2006.<br />

<strong>Alum<strong>in</strong>ium</strong> and <strong>Alum<strong>in</strong>ium</strong> Alloys–Environmental Aspects<br />

of <strong>Alum<strong>in</strong>ium</strong> Products–General Guidel<strong>in</strong>es for <strong>the</strong>ir<br />

Inclusion <strong>in</strong> Standards.<br />

<strong>Europe</strong>an Committee for Standardization, 2003. <strong>Alum<strong>in</strong>ium</strong><br />

and <strong>Alum<strong>in</strong>ium</strong> Alloys-Scrap-Part 1 <strong>to</strong> 16. EN 13920.<br />

Gesamtverband der <strong>Alum<strong>in</strong>ium</strong><strong>in</strong>dustrie e.V.<br />

Fact Sheets (permanently updated). www.alu<strong>in</strong>fo.de<br />

Glimm S., 1989. <strong>Alum<strong>in</strong>ium</strong>: <strong>Recycl<strong>in</strong>g</strong>rate über 70% -<br />

Überlegungen zur Berechnung und Aussagekraft von<br />

<strong>Recycl<strong>in</strong>g</strong>raten am Beispiel von <strong>Alum<strong>in</strong>ium</strong>.<br />

Zeitschrift <strong>Alum<strong>in</strong>ium</strong> 11 (1989).<br />

IAI, OEA and EAA, 2006. <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong>:<br />

A Corners<strong>to</strong>ne of Susta<strong>in</strong>able Development.<br />

www.world-alum<strong>in</strong>ium.org<br />

Kuksh<strong>in</strong>richs W. and Martens P. N., 2003.<br />

Resource-Orientated Analysis of Metallic Raw Materials.<br />

Series: Matter and Materials, Volume 17.<br />

Forschungszentrum Jülich GmbH, Jülich, Germany.<br />

Peck P., 2003. Interest <strong>in</strong> Material Cycle Closure?<br />

Explor<strong>in</strong>g <strong>the</strong> Evolution of <strong>the</strong> Industry’s Responses <strong>to</strong><br />

<strong>High</strong>-Grade <strong>Recycl<strong>in</strong>g</strong> from an Industrial Ecology<br />

Perspective. Doc<strong>to</strong>ral Dissertation, September 2003.<br />

Lund University, Lund, Sweden.<br />

VDS, 2000. <strong>Alum<strong>in</strong>ium</strong> <strong>Recycl<strong>in</strong>g</strong> – Vom Vors<strong>to</strong>ff bis<br />

zur fertigen Legierung.<br />

<strong>Alum<strong>in</strong>ium</strong> Verlag, Düsseldorf, Germany.<br />

Websites:<br />

www.oea-alurecycl<strong>in</strong>g.org<br />

www.alum<strong>in</strong>ium.org<br />

www.world-alum<strong>in</strong>ium.org<br />

49


50<br />

Edi<strong>to</strong>r<br />

EAA/OEA <strong>Recycl<strong>in</strong>g</strong> Division<br />

Text<br />

Marlen Bertram, OEA/EAA<br />

Mira Hryniuk, freelance writer<br />

Günter Kirchner, OEA/EAA<br />

François Pruvost, EAA Packag<strong>in</strong>g<br />

Pho<strong>to</strong>s<br />

EAA <strong>Europe</strong>an <strong>Alum<strong>in</strong>ium</strong> Association<br />

Kommunikation und Design Bernard Langerock<br />

VAR Verband der <strong>Alum<strong>in</strong>ium</strong>recycl<strong>in</strong>g-Industrie e.V.<br />

VAW-IMCO Guss und <strong>Recycl<strong>in</strong>g</strong> GmbH<br />

Holger Ludwig<br />

Jan van Houwel<strong>in</strong>gen, TU Delft<br />

Graphic Design<br />

Kommunikation und Design Bernard Langerock<br />

www.langerockdesign.de<br />

Pr<strong>in</strong>ter<br />

DCM Druckcenter Meckenheim, Germany<br />

Environmentally friendly produced<br />

Burgo Luxo-Card 250 g/m 2<br />

Burgo Dacostern 170 g/m 2<br />

Contacts<br />

EAA/OEA <strong>Recycl<strong>in</strong>g</strong> Division<br />

12, Avenue de Broqueville<br />

B-1150 Brussels<br />

Phone +32 2 775 63 63<br />

Fax +32 2 779 05 31<br />

office@oea-alurecycl<strong>in</strong>g.org<br />

eaa@eaa.be<br />

www.oea-alurecycl<strong>in</strong>g.org<br />

www.eaa.net<br />

Thanks <strong>to</strong><br />

Kurt Buxmann, Alcan<br />

Peter Furrer, Novelis<br />

Jürg Gerber, Alcan<br />

Stefan Glimm, EAFA<br />

Jim Morrison, OEA<br />

Jörg Schäfer, GDA<br />

Pål Vigeland, Hydro<br />

©2006<br />

<strong>Europe</strong>an <strong>Alum<strong>in</strong>ium</strong> Association<br />

and Organisation of <strong>Europe</strong>an <strong>Alum<strong>in</strong>ium</strong><br />

Ref<strong>in</strong>ers and Remelters<br />

Reliability statement:<br />

This <strong>in</strong>formation is given <strong>to</strong> <strong>the</strong> best of<br />

our knowledge, but without warranty.<br />

The application, use and process<strong>in</strong>g of<br />

<strong>the</strong> products is beyond our control and,<br />

<strong>the</strong>refore, entirely your own responsibility.


The Global <strong>Recycl<strong>in</strong>g</strong> Messages<br />

<strong>Alum<strong>in</strong>ium</strong> can be recycled over and over aga<strong>in</strong><br />

without loss of properties. The high value of<br />

alum<strong>in</strong>ium scrap is a key <strong>in</strong>centive and major<br />

economic impetus for recycl<strong>in</strong>g.<br />

Industry cont<strong>in</strong>ues <strong>to</strong> recycle, without subsidy,<br />

all <strong>the</strong> alum<strong>in</strong>ium collected from used<br />

products, as well as fabrication and<br />

manufactur<strong>in</strong>g processes. However, with<br />

<strong>the</strong> help of appropriate authorities, local<br />

communities and society as a whole,<br />

<strong>the</strong> amount of alum<strong>in</strong>ium collected could<br />

be <strong>in</strong>creased fur<strong>the</strong>r.<br />

<strong>Alum<strong>in</strong>ium</strong> recycl<strong>in</strong>g benefits present and<br />

future generations by conserv<strong>in</strong>g energy and<br />

o<strong>the</strong>r natural resources. It saves approximately<br />

95% of <strong>the</strong> energy required for primary<br />

alum<strong>in</strong>ium production, <strong>the</strong>reby avoid<strong>in</strong>g<br />

correspond<strong>in</strong>g emissions, <strong>in</strong>clud<strong>in</strong>g greenhouse<br />

gases.<br />

Global alum<strong>in</strong>ium recycl<strong>in</strong>g rates are high,<br />

approximately 90% for transport and<br />

construction applications and about 60%<br />

for beverage cans.<br />

The grow<strong>in</strong>g markets for alum<strong>in</strong>ium are<br />

supplied by both primary and recycled metal<br />

sources. Increas<strong>in</strong>g demand for alum<strong>in</strong>ium and<br />

<strong>the</strong> long lifetime of many products mean that,<br />

for <strong>the</strong> foreseeable future, <strong>the</strong> overall volume<br />

of primary metal produced from bauxite will<br />

cont<strong>in</strong>ue <strong>to</strong> be substantially greater than <strong>the</strong><br />

volume of available recycled metal.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!