25.06.2015 Views

“Fuel Cells for the Future”

“Fuel Cells for the Future”

“Fuel Cells for the Future”

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>“Fuel</strong> <strong>Cells</strong> <strong>for</strong> <strong>the</strong> <strong>Future”</strong><br />

Niels Christiansen<br />

Topsoe Fuel Cell A/S<br />

Nymøllevej 55<br />

2800 Lyngby


Topsoe and Risø<br />

500 W stack: 1996<br />

TOPSOE FUEL CELL A/S<br />

• Development, marketing and sales of SOFC technology<br />

• Founded in 2004<br />

• Subsidiary of Haldor Topsøe A/S<br />

• Full time employees:<br />

- March 2007: 40<br />

- October 2008: 100<br />

• Strategic R&D partner: Risø National Laboratory<br />

Topsoe/Risø started<br />

SOFC in 1989


New TOFC Manufacturing Facility<br />

Cell manufacture<br />

Stack assembly<br />

Start up: Q4, 2008<br />

5 MW annually<br />

~ 250.000 cells<br />

4 July 2008


Up-scaled Cell Manufacture in New Facility<br />

Ceramic processing – Cost efficient – Industrial up-scaleable


Power Generation<br />

Why Fuel <strong>Cells</strong>?<br />

Future SOFC<br />

High efficiency<br />

Efficient at part load<br />

Fast response<br />

FuelCellEfficiency:<br />

η = ΔG/ΔH<br />

Carnot limit:<br />

η c<br />

= 1 – T l /T h


Types of Fuel Cels<br />

H 2<br />

, CO<br />

CH 4<br />

, NH 3


SOFC system<br />

• Fuel flexibility (No demand <strong>for</strong> pure hydrogen)<br />

• Cheap materials (no noble metals)<br />

• No liquid electrolytes<br />

• High electrical efficiency<br />

• High value waste heat (high temperature)<br />

• System integrateability (simple system lay out)<br />

Control<br />

DC/AC<br />

converter<br />

El<br />

Air<br />

Fuel<br />

gas<br />

Filter/<br />

blower<br />

Preheat<br />

Preheat<br />

Desulfurization<br />

Prere<strong>for</strong>mer<br />

Fuel<br />

cell<br />

stack<br />

H 2 O<br />

CO 2<br />

Heat


Fuel Cell and Electrolyser<br />

SOFC<br />

SOEC<br />

H 2<br />

H 2<br />

O<br />

H 2<br />

O<br />

H 2<br />

H 2<br />

+ O 2- → H 2<br />

O + 2e -<br />

O 2-<br />

½O 2<br />

+ 2e - → O 2-<br />

H 2<br />

O + 2e - → H 2<br />

+ O 2-<br />

O 2-<br />

O 2- → 2e - +½O 2<br />

½O 2<br />

½O 2


Practical Fuel Cell Voltage<br />

E 0 = - ΔG 0 /nF<br />

ΔG 0 = ΔH 0 –TΔS 0<br />

Cell Voltage (V)<br />

Total loss


Single Cell Per<strong>for</strong>mance<br />

”Standard” TOFC cells<br />

Cell voltage [V]<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7 0.4<br />

0.6<br />

850°C<br />

750°C<br />

650°C<br />

> 1,5<br />

W/cm 2<br />

1.6<br />

1.2<br />

0.8<br />

0.0<br />

Power density [W/cm 2 ]<br />

Thin Planar <strong>Cells</strong><br />

375 μm<br />

0.50<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

Current density [A/cm 2]<br />

Wide temperature operation window<br />

22x50 cm 2


Internal Electrical Loss as Function of Temperature<br />

Resistance R i<br />

( Ω*cm 2 )<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

Total cell loss: R i<br />

0.7<br />

0.6<br />

0.5<br />

Cathode loss<br />

0.4<br />

0.3<br />

Anode loss<br />

0.2<br />

0.1<br />

0<br />

690 710 730 750 770 790 810 830 850<br />

Temperature in o C<br />

Electrical power<br />

P = U I – R i I 2<br />

ASR Rtot_imp Rcathode Ranode Rconc Relec


Perovskite Structure ABO 3<br />

Electrical conductivity of La 1-a<br />

Sr a<br />

MnO 3-d<br />

Conductivity (at 1000 C)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

σ (Ω -1 cm -1 )<br />

0 0,1 0,2 0,3 0,4 0,5 0,6<br />

a


Topsoe Stack Concept<br />

Compact Multilayer design<br />

75-Cell Stack (750-800 o C)<br />

75 mm<br />

• 1 mm per repeatable unit<br />

• 2.4 kW/liter at 0,38 A/cm 2<br />

• 0,25 kW/ kg<br />

• 60 V at 20A<br />

120 mm<br />

120 mm<br />

12x12 cm2


TOFC State of The Art Stacks<br />

● Compact multilayer design<br />

● Cost / per<strong>for</strong>mance<br />

optimization<br />

● Stable per<strong>for</strong>mance<br />

0.5<br />

75 cells<br />

12x12 cm 2 0.0<br />

Temperature 764 – 770 o C; Fuel utilization 70 – 77%; CH4 with s/c = 1.5<br />

Stack power (kW)<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Stack durability<br />

55 62 67 40<br />

Current (A)<br />

60 cells<br />

18x18 cm 2<br />

Co-flow


Development of Metallic Interconnects with Ceramic<br />

Coatings<br />

Poisoning of <strong>the</strong> cathode by Cr-species<br />

Volt<br />

5<br />

4,5<br />

4<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

0 2000 4000 6000 8000 10000 12000 14000<br />

Hours<br />

13000 hours<br />

stack test<br />

5<br />

4,8<br />

New Alloy<br />

New Coating<br />

ASR 0,5 ohmcm2<br />

4,6<br />

Volt<br />

4,4<br />

4,2<br />

4<br />

3,8<br />

Old Alloy (Fe22Cr high Si)<br />

Old Coating<br />

ASR 1,0 ohmcm2<br />

3,6<br />

0 100 200 300 400 500 600<br />

Hours


Cell development – Generations<br />

An engineering focus on:<br />

• Manufacturability<br />

• Reliability<br />

• Cost reduction<br />

1G<br />

2G<br />

3G<br />

LSCF<br />

CGO<br />

YSZ or SSZ<br />

FeCr<br />

metallic support<br />

EU project: “METSOFC”<br />

reduced cost<br />

reliability<br />

LSM<br />

YSZ<br />

Ni/YSZ<br />

LSM<br />

YSZ<br />

Ni/YSZ<br />

LSCF<br />

CGO<br />

YSZ or SSZ<br />

Ni/YSZ<br />

durability<br />

ceramic support<br />

1000 o C<br />

850 o C 750 o C 600 o C


Next Generation <strong>Cells</strong> – Metal Supported<br />

Metal supported cell - Cross section<br />

15μm


Thin Film SOFC<br />

Future generations ?<br />

Atomic Layer Deposition<br />

650 mW/cm 2<br />

at 400 o C<br />

Potential <strong>for</strong> transportation segment


Cathode Infiltration with<br />

Ceria Nano Particles<br />

ceria-infiltrated<br />

LSM/YSZ-electrode<br />

mindre modstand<br />

R p at 600 o C<br />

LSM/YSZ: 1.96<br />

LSM/YSZ/CeO 2 : 0.64<br />

M. Søgård, T. Sholklapper, M. Wandel, M. Mogensen, Infiltration of Cathodes, Europ. SOFC Forum, Lucerne 2008


Improved Sulfur Tolerance of Ni/YSZ Anodes<br />

CeO 2<br />

nano-paticles<br />

coated on Ni particles


Ceramic Composite Anode with Sulfur Tolerance<br />

Anode<br />

material<br />

R p<br />

at 650 o C<br />

(Ωcm 2 )<br />

STN/CGO 0.44<br />

Ni/YSZ 0.81


System devlopment


SOFC System – 250 kW el Base Case with NG Fuel<br />

Re<strong>for</strong>ming: CH 4<br />

+ 2H 2<br />

O → CO 2<br />

+ 4H 2<br />

(-ΔH 0 923<br />

= - 189.2 kJ/mole)<br />

Reverse Shift: H 2<br />

+ CO 2<br />

→ H 2<br />

O + CO (-ΔH 0 923 = - 35.5kJ/mole)<br />

Electrochemical oxidation: H 2<br />

+ ½O 2<br />

→ H 2<br />

O (-ΔH 0 = 247.4 kJ/mole)<br />

Flue Gas<br />

E 5<br />

Natural gas<br />

E1<br />

Desulphurisation<br />

Prere<strong>for</strong>mer<br />

Natural Gas<br />

Water <strong>for</strong> start<br />

up<br />

E 6<br />

E 2<br />

SOFC<br />

Flue Gas<br />

E7<br />

Catalytic<br />

Anode<br />

recycle<br />

Anode<br />

Cathode<br />

Burner<br />

E 3<br />

Air Blower<br />

Air


System Efficiency with different Fuels<br />

Energy Flows (kJ/s)<br />

Fuel<br />

Electric eff.<br />

% LHV, net<br />

Total eff. %<br />

(90° C)<br />

Natural gas 55 84<br />

Biogas with 50 % CO2 54 80<br />

Methanol 53 85<br />

DME 53 83<br />

Ammonia 55 84<br />

Diesel CPO (5 kW) 41 85


Carbon Formation - Graphite Data<br />

900<br />

800<br />

Deg. c<br />

700<br />

600<br />

500<br />

Carbon Formation Region<br />

No Carbon<br />

400<br />

300<br />

200<br />

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00<br />

O/C ratio


Methanation of MeOH <strong>for</strong> SOFC<br />

Electrical net efficiency = 53 %<br />

Co-gen efficiency = 82 %


Carbon Formation - 250 nm Ni Crystals<br />

Haldor Topsøe catalyst<br />

Carbon whisker<br />

900<br />

800<br />

Ni crystal<br />

700<br />

Deg. C<br />

600<br />

500<br />

Carbon Formation Region<br />

No Carbon<br />

400<br />

300<br />

200<br />

0.5 0.75 1 1.25 1.5 1.75 2<br />

O/C ratio


Methanation of Coal Gas<br />

E 5<br />

Flue gas<br />

P 1<br />

E 1<br />

X 1<br />

Methanator<br />

Haldor Topsøe catalyst<br />

R 1<br />

Methanol/DME<br />

SOFC<br />

Carbon whisker<br />

E 7<br />

Catalytic<br />

Burner<br />

E 3<br />

K1<br />

Ni crystal<br />

Depleted Air<br />

Air<br />

Coal gasification


Technology Partners<br />

TOFC / Wärtsilä Collaboration<br />

Wärtsilä 5 kW<br />

test system<br />

with 4 TOFC stacks<br />

Wärtsilä 20 kW α-prototype<br />

with 24 TOFC Stacks<br />

Voltage [V] and Current [A]<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Current Density [mA/cm 2 ]<br />

0<br />

50,0 550,0 1050,0 1550,0 2050,0 2550,0 3050,0<br />

Running Hours<br />

Average Stack Voltage Average Stack Current Average Current Density<br />

0


Demonstration Project – METHAPU<br />

• Demonstrator unit <strong>for</strong> a Marine-APU with a power of 20 kWe<br />

• METHAPU-Project<br />

• On-board <strong>the</strong> Swedish cargo vessel “Wallenius Wilhelmsen”<br />

• Methanol as fuel<br />

• Start of demonstration Q1/2009<br />

Supported by funding under <strong>the</strong><br />

Sixth Research Framework Programme<br />

of <strong>the</strong> European Union


New SOFC Test and Demo Facilities in Denmark<br />

5 kW test unit<br />

with MeOH re<strong>for</strong>mer<br />

10 kW test and demo facility<br />

with NG pre-re<strong>for</strong>mer<br />

Power Core units<br />

H. C. Ørsted Power Plant<br />

Copenhagen


Power and Heat <strong>for</strong> Single/Multi Family Homes<br />

Synergistic Integration of SOFC and Hot BOP components<br />

Integrated μ-CHP Power Core<br />

> 50% Eff el (AC), 0.7kW<br />

demonstrated in Japan<br />

1 – 2 kW el<br />

Electricity<br />

Steam<br />

and CO 2<br />

Air<br />

Natural Gas<br />

Heat<br />

Fuel Cell System


NH 3 as SOFC Fuel<br />

Amminex Ammonia Storage and TOFC SOFC<br />

TOFC 30 Cell Stack fuel with ammonia


Diversity of Energy Sources, Carriers and SOFC<br />

Power Systems CO 2 Conversion by SOEC Electrolysis<br />

Biomass<br />

Liquid Fuel<br />

Coal<br />

Syngas<br />

Natural gas<br />

SOFC<br />

Electricity<br />

Renewables<br />

Electricity<br />

SOEC<br />

Hydrogen<br />

Nuclear<br />

CO 2<br />

Syngas


Thank you <strong>for</strong> your attention

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!