“Fuel Cells for the Future”
“Fuel Cells for the Future”
“Fuel Cells for the Future”
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<strong>“Fuel</strong> <strong>Cells</strong> <strong>for</strong> <strong>the</strong> <strong>Future”</strong><br />
Niels Christiansen<br />
Topsoe Fuel Cell A/S<br />
Nymøllevej 55<br />
2800 Lyngby
Topsoe and Risø<br />
500 W stack: 1996<br />
TOPSOE FUEL CELL A/S<br />
• Development, marketing and sales of SOFC technology<br />
• Founded in 2004<br />
• Subsidiary of Haldor Topsøe A/S<br />
• Full time employees:<br />
- March 2007: 40<br />
- October 2008: 100<br />
• Strategic R&D partner: Risø National Laboratory<br />
Topsoe/Risø started<br />
SOFC in 1989
New TOFC Manufacturing Facility<br />
Cell manufacture<br />
Stack assembly<br />
Start up: Q4, 2008<br />
5 MW annually<br />
~ 250.000 cells<br />
4 July 2008
Up-scaled Cell Manufacture in New Facility<br />
Ceramic processing – Cost efficient – Industrial up-scaleable
Power Generation<br />
Why Fuel <strong>Cells</strong>?<br />
Future SOFC<br />
High efficiency<br />
Efficient at part load<br />
Fast response<br />
FuelCellEfficiency:<br />
η = ΔG/ΔH<br />
Carnot limit:<br />
η c<br />
= 1 – T l /T h
Types of Fuel Cels<br />
H 2<br />
, CO<br />
CH 4<br />
, NH 3
SOFC system<br />
• Fuel flexibility (No demand <strong>for</strong> pure hydrogen)<br />
• Cheap materials (no noble metals)<br />
• No liquid electrolytes<br />
• High electrical efficiency<br />
• High value waste heat (high temperature)<br />
• System integrateability (simple system lay out)<br />
Control<br />
DC/AC<br />
converter<br />
El<br />
Air<br />
Fuel<br />
gas<br />
Filter/<br />
blower<br />
Preheat<br />
Preheat<br />
Desulfurization<br />
Prere<strong>for</strong>mer<br />
Fuel<br />
cell<br />
stack<br />
H 2 O<br />
CO 2<br />
Heat
Fuel Cell and Electrolyser<br />
SOFC<br />
SOEC<br />
H 2<br />
H 2<br />
O<br />
H 2<br />
O<br />
H 2<br />
H 2<br />
+ O 2- → H 2<br />
O + 2e -<br />
O 2-<br />
½O 2<br />
+ 2e - → O 2-<br />
H 2<br />
O + 2e - → H 2<br />
+ O 2-<br />
O 2-<br />
O 2- → 2e - +½O 2<br />
½O 2<br />
½O 2
Practical Fuel Cell Voltage<br />
E 0 = - ΔG 0 /nF<br />
ΔG 0 = ΔH 0 –TΔS 0<br />
Cell Voltage (V)<br />
Total loss
Single Cell Per<strong>for</strong>mance<br />
”Standard” TOFC cells<br />
Cell voltage [V]<br />
1.2<br />
1.1<br />
1.0<br />
0.9<br />
0.8<br />
0.7 0.4<br />
0.6<br />
850°C<br />
750°C<br />
650°C<br />
> 1,5<br />
W/cm 2<br />
1.6<br />
1.2<br />
0.8<br />
0.0<br />
Power density [W/cm 2 ]<br />
Thin Planar <strong>Cells</strong><br />
375 μm<br />
0.50<br />
0.0 0.5 1.0 1.5 2.0 2.5<br />
Current density [A/cm 2]<br />
Wide temperature operation window<br />
22x50 cm 2
Internal Electrical Loss as Function of Temperature<br />
Resistance R i<br />
( Ω*cm 2 )<br />
1.1<br />
1<br />
0.9<br />
0.8<br />
Total cell loss: R i<br />
0.7<br />
0.6<br />
0.5<br />
Cathode loss<br />
0.4<br />
0.3<br />
Anode loss<br />
0.2<br />
0.1<br />
0<br />
690 710 730 750 770 790 810 830 850<br />
Temperature in o C<br />
Electrical power<br />
P = U I – R i I 2<br />
ASR Rtot_imp Rcathode Ranode Rconc Relec
Perovskite Structure ABO 3<br />
Electrical conductivity of La 1-a<br />
Sr a<br />
MnO 3-d<br />
Conductivity (at 1000 C)<br />
350<br />
300<br />
250<br />
200<br />
150<br />
100<br />
50<br />
0<br />
σ (Ω -1 cm -1 )<br />
0 0,1 0,2 0,3 0,4 0,5 0,6<br />
a
Topsoe Stack Concept<br />
Compact Multilayer design<br />
75-Cell Stack (750-800 o C)<br />
75 mm<br />
• 1 mm per repeatable unit<br />
• 2.4 kW/liter at 0,38 A/cm 2<br />
• 0,25 kW/ kg<br />
• 60 V at 20A<br />
120 mm<br />
120 mm<br />
12x12 cm2
TOFC State of The Art Stacks<br />
● Compact multilayer design<br />
● Cost / per<strong>for</strong>mance<br />
optimization<br />
● Stable per<strong>for</strong>mance<br />
0.5<br />
75 cells<br />
12x12 cm 2 0.0<br />
Temperature 764 – 770 o C; Fuel utilization 70 – 77%; CH4 with s/c = 1.5<br />
Stack power (kW)<br />
3.5<br />
3.0<br />
2.5<br />
2.0<br />
1.5<br />
1.0<br />
Stack durability<br />
55 62 67 40<br />
Current (A)<br />
60 cells<br />
18x18 cm 2<br />
Co-flow
Development of Metallic Interconnects with Ceramic<br />
Coatings<br />
Poisoning of <strong>the</strong> cathode by Cr-species<br />
Volt<br />
5<br />
4,5<br />
4<br />
3,5<br />
3<br />
2,5<br />
2<br />
1,5<br />
1<br />
0,5<br />
0<br />
0 2000 4000 6000 8000 10000 12000 14000<br />
Hours<br />
13000 hours<br />
stack test<br />
5<br />
4,8<br />
New Alloy<br />
New Coating<br />
ASR 0,5 ohmcm2<br />
4,6<br />
Volt<br />
4,4<br />
4,2<br />
4<br />
3,8<br />
Old Alloy (Fe22Cr high Si)<br />
Old Coating<br />
ASR 1,0 ohmcm2<br />
3,6<br />
0 100 200 300 400 500 600<br />
Hours
Cell development – Generations<br />
An engineering focus on:<br />
• Manufacturability<br />
• Reliability<br />
• Cost reduction<br />
1G<br />
2G<br />
3G<br />
LSCF<br />
CGO<br />
YSZ or SSZ<br />
FeCr<br />
metallic support<br />
EU project: “METSOFC”<br />
reduced cost<br />
reliability<br />
LSM<br />
YSZ<br />
Ni/YSZ<br />
LSM<br />
YSZ<br />
Ni/YSZ<br />
LSCF<br />
CGO<br />
YSZ or SSZ<br />
Ni/YSZ<br />
durability<br />
ceramic support<br />
1000 o C<br />
850 o C 750 o C 600 o C
Next Generation <strong>Cells</strong> – Metal Supported<br />
Metal supported cell - Cross section<br />
15μm
Thin Film SOFC<br />
Future generations ?<br />
Atomic Layer Deposition<br />
650 mW/cm 2<br />
at 400 o C<br />
Potential <strong>for</strong> transportation segment
Cathode Infiltration with<br />
Ceria Nano Particles<br />
ceria-infiltrated<br />
LSM/YSZ-electrode<br />
mindre modstand<br />
R p at 600 o C<br />
LSM/YSZ: 1.96<br />
LSM/YSZ/CeO 2 : 0.64<br />
M. Søgård, T. Sholklapper, M. Wandel, M. Mogensen, Infiltration of Cathodes, Europ. SOFC Forum, Lucerne 2008
Improved Sulfur Tolerance of Ni/YSZ Anodes<br />
CeO 2<br />
nano-paticles<br />
coated on Ni particles
Ceramic Composite Anode with Sulfur Tolerance<br />
Anode<br />
material<br />
R p<br />
at 650 o C<br />
(Ωcm 2 )<br />
STN/CGO 0.44<br />
Ni/YSZ 0.81
System devlopment
SOFC System – 250 kW el Base Case with NG Fuel<br />
Re<strong>for</strong>ming: CH 4<br />
+ 2H 2<br />
O → CO 2<br />
+ 4H 2<br />
(-ΔH 0 923<br />
= - 189.2 kJ/mole)<br />
Reverse Shift: H 2<br />
+ CO 2<br />
→ H 2<br />
O + CO (-ΔH 0 923 = - 35.5kJ/mole)<br />
Electrochemical oxidation: H 2<br />
+ ½O 2<br />
→ H 2<br />
O (-ΔH 0 = 247.4 kJ/mole)<br />
Flue Gas<br />
E 5<br />
Natural gas<br />
E1<br />
Desulphurisation<br />
Prere<strong>for</strong>mer<br />
Natural Gas<br />
Water <strong>for</strong> start<br />
up<br />
E 6<br />
E 2<br />
SOFC<br />
Flue Gas<br />
E7<br />
Catalytic<br />
Anode<br />
recycle<br />
Anode<br />
Cathode<br />
Burner<br />
E 3<br />
Air Blower<br />
Air
System Efficiency with different Fuels<br />
Energy Flows (kJ/s)<br />
Fuel<br />
Electric eff.<br />
% LHV, net<br />
Total eff. %<br />
(90° C)<br />
Natural gas 55 84<br />
Biogas with 50 % CO2 54 80<br />
Methanol 53 85<br />
DME 53 83<br />
Ammonia 55 84<br />
Diesel CPO (5 kW) 41 85
Carbon Formation - Graphite Data<br />
900<br />
800<br />
Deg. c<br />
700<br />
600<br />
500<br />
Carbon Formation Region<br />
No Carbon<br />
400<br />
300<br />
200<br />
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00<br />
O/C ratio
Methanation of MeOH <strong>for</strong> SOFC<br />
Electrical net efficiency = 53 %<br />
Co-gen efficiency = 82 %
Carbon Formation - 250 nm Ni Crystals<br />
Haldor Topsøe catalyst<br />
Carbon whisker<br />
900<br />
800<br />
Ni crystal<br />
700<br />
Deg. C<br />
600<br />
500<br />
Carbon Formation Region<br />
No Carbon<br />
400<br />
300<br />
200<br />
0.5 0.75 1 1.25 1.5 1.75 2<br />
O/C ratio
Methanation of Coal Gas<br />
E 5<br />
Flue gas<br />
P 1<br />
E 1<br />
X 1<br />
Methanator<br />
Haldor Topsøe catalyst<br />
R 1<br />
Methanol/DME<br />
SOFC<br />
Carbon whisker<br />
E 7<br />
Catalytic<br />
Burner<br />
E 3<br />
K1<br />
Ni crystal<br />
Depleted Air<br />
Air<br />
Coal gasification
Technology Partners<br />
TOFC / Wärtsilä Collaboration<br />
Wärtsilä 5 kW<br />
test system<br />
with 4 TOFC stacks<br />
Wärtsilä 20 kW α-prototype<br />
with 24 TOFC Stacks<br />
Voltage [V] and Current [A]<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
300<br />
250<br />
200<br />
150<br />
100<br />
50<br />
Current Density [mA/cm 2 ]<br />
0<br />
50,0 550,0 1050,0 1550,0 2050,0 2550,0 3050,0<br />
Running Hours<br />
Average Stack Voltage Average Stack Current Average Current Density<br />
0
Demonstration Project – METHAPU<br />
• Demonstrator unit <strong>for</strong> a Marine-APU with a power of 20 kWe<br />
• METHAPU-Project<br />
• On-board <strong>the</strong> Swedish cargo vessel “Wallenius Wilhelmsen”<br />
• Methanol as fuel<br />
• Start of demonstration Q1/2009<br />
Supported by funding under <strong>the</strong><br />
Sixth Research Framework Programme<br />
of <strong>the</strong> European Union
New SOFC Test and Demo Facilities in Denmark<br />
5 kW test unit<br />
with MeOH re<strong>for</strong>mer<br />
10 kW test and demo facility<br />
with NG pre-re<strong>for</strong>mer<br />
Power Core units<br />
H. C. Ørsted Power Plant<br />
Copenhagen
Power and Heat <strong>for</strong> Single/Multi Family Homes<br />
Synergistic Integration of SOFC and Hot BOP components<br />
Integrated μ-CHP Power Core<br />
> 50% Eff el (AC), 0.7kW<br />
demonstrated in Japan<br />
1 – 2 kW el<br />
Electricity<br />
Steam<br />
and CO 2<br />
Air<br />
Natural Gas<br />
Heat<br />
Fuel Cell System
NH 3 as SOFC Fuel<br />
Amminex Ammonia Storage and TOFC SOFC<br />
TOFC 30 Cell Stack fuel with ammonia
Diversity of Energy Sources, Carriers and SOFC<br />
Power Systems CO 2 Conversion by SOEC Electrolysis<br />
Biomass<br />
Liquid Fuel<br />
Coal<br />
Syngas<br />
Natural gas<br />
SOFC<br />
Electricity<br />
Renewables<br />
Electricity<br />
SOEC<br />
Hydrogen<br />
Nuclear<br />
CO 2<br />
Syngas
Thank you <strong>for</strong> your attention