18.11.2012 Views

High Power IGBT Inverter Design - Ansys

High Power IGBT Inverter Design - Ansys

High Power IGBT Inverter Design - Ansys

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>High</strong> <strong>Power</strong> <strong>IGBT</strong> <strong>Inverter</strong> <strong>Design</strong><br />

Marius Rosu PhD, EM Product Manager<br />

Scott Stanton, Technical Director<br />

Leon Voss PhD, Senior AE<br />

Vincent Delafosse, Senior AE<br />

© 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary


Objectives<br />

• ANSYS Multiphysics <strong>Inverter</strong> <strong>Design</strong> Flow<br />

– <strong>High</strong> <strong>Power</strong> System <strong>Design</strong> Concept<br />

• <strong>IGBT</strong> Electro-Thermal Model<br />

– Average<br />

– Dynamic<br />

• <strong>IGBT</strong> Package Thermal Model<br />

– Extracted from CFD<br />

– <strong>IGBT</strong> Package Mechanical Stress Analysis<br />

• Thermal Stress<br />

• Electromagnetic Forces<br />

– EMC/EMI Analysis<br />

• Parameter Extraction: R, L, C, G<br />

• Radiated Emissions – Full Wave Effects<br />

© 2009 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary


Outline<br />

ANSYS Icepack<br />

Ansoft SIMPLORER<br />

Ansoft Q3D<br />

Ansoft ANSYS Simplorer<br />

Mechanical<br />

Ansoft HFSS<br />

ECELink<br />

ECE ECE - - LINK<br />

LINK<br />

© 2009 ANSYS, Inc. All rights reserved. 3 ANSYS, Inc. Proprietary<br />

+<br />

W<br />

IA<br />

A<br />

E<br />

IB<br />

A<br />

IC<br />

A<br />

E<br />

E<br />

EQU<br />

Ixa :=<br />

Ixb := IB.I<br />

Ixc := IC.I<br />

Ix := Ixa +<br />

Iya<br />

Iyb := IB.I<br />

Iyc := IC.I<br />

Iy := Iya +<br />

Im := sqrt(Ix^<br />

delta := at<br />

D<br />

D<br />

D<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

sourceA1<br />

sourceA2<br />

sourceB1<br />

sourceB2<br />

sourceC1<br />

sourceC2<br />

ICA:<br />

GAIN<br />

57.3<br />

CONST<br />

CONST<br />

Magnet01<br />

Magnet02<br />

FEA<br />

ANGRA<br />

+<br />

Φ<br />

-30+PWM_P<br />

-60+PWM_P<br />

CONST -90+PWM_P<br />

CONST -120+PWM_P<br />

CONST -150+PWM_P<br />

+<br />

ω


<strong>High</strong> <strong>Power</strong> <strong>Inverter</strong> System<br />

Multiphysics <strong>Design</strong> Concept<br />

Ansoft SIMPLORER<br />

Ansoft SIMPLORER<br />

ANSYS Mechanical<br />

Model Order Reduction<br />

ANSYS Icepack<br />

Model Order Reduction<br />

Current profile<br />

Ansoft Maxwell/RMxprt<br />

Model Order Reduction<br />

Temperature profile<br />

© 2009 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary


<strong>IGBT</strong> Family<br />

Electro-Thermal Model<br />

Average <strong>IGBT</strong> Model Dynamic <strong>IGBT</strong> Model<br />

A<br />

DC core<br />

B<br />

Energy calculation<br />

Thermal network<br />

Maximum simulation speed:<br />

• Accurate static behaviour<br />

• Accurate thermal response<br />

• No voltage and current transients<br />

• Suitable for system design analysis<br />

F<br />

A C<br />

DC core<br />

Capacities C(V), C(I)<br />

parasitics L, R, C<br />

controlled sources<br />

Full parameter excess<br />

Thermal network<br />

Maximum simulation accuracy:<br />

• Sophisticated semiconductor based model<br />

• Accurate static, dynamic and thermal<br />

behaviour<br />

• Accurate gate voltage and current waveforms<br />

• Suitable for drive optimization, EMI/EMC<br />

© 2009 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary<br />

E<br />

F


<strong>IGBT</strong> Device Generation<br />

Characterization Tool<br />

Transfer characteristic<br />

curve from datasheet<br />

Fitted curve<br />

vs. measured data<br />

Extraction of the <strong>IGBT</strong> Electro-Thermal Parameters<br />

Measured Data<br />

Fitted Curve<br />

Extracted parameter values<br />

© 2009 ANSYS, Inc. All rights reserved. 6 ANSYS, Inc. Proprietary


The Average <strong>IGBT</strong> Model<br />

• Three main parts<br />

– static core<br />

– thermal network<br />

– energy calculation section<br />

• Parameters extracted through characteristic curves<br />

© 2009 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary


The Average <strong>IGBT</strong> Model (2)<br />

• Switching V and I waveforms are square<br />

• Switching losses are calculated at each switching period<br />

• Turn-ON/OFF power pulses are injected into thermal network<br />

• Amplitude of the rectangular power pulses are calculated<br />

• PON/POFF – Switching <strong>Power</strong><br />

• EON/EOFF – Energy losses<br />

• PDC – Conduction power dissipation;<br />

• TON/TOFF – <strong>Power</strong> injection pulse durations<br />

• Vce,sat – Saturation collector-emitter voltage<br />

© 2009 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary


The Dynamic <strong>IGBT</strong> Model<br />

• Dynamic <strong>IGBT</strong> shares the same static the Average model<br />

• The switching energy of the Dynamic <strong>IGBT</strong> model is the direct<br />

integration of the switching voltage and current<br />

© 2009 ANSYS, Inc. All rights reserved. 9 ANSYS, Inc. Proprietary


The Dynamic <strong>IGBT</strong> Model (2)<br />

• Dynamic <strong>IGBT</strong> accurately captures the switching waveforms<br />

• Suitable for EMI/EMC analysis<br />

© 2009 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary


<strong>IGBT</strong> Package<br />

Thermal Model: Technical Background<br />

ANSYS Icepack<br />

• Temperature rise at any point in the system is the sum of the<br />

independently derived temperature increase attributable to each heat<br />

source in the system<br />

• Assumptions:<br />

– Temperature assumed to be a linear function of heat sources<br />

– This requires that the fluid flow is constant (for each study) and density<br />

and all properties are constants<br />

© 2009 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary


<strong>IGBT</strong> Package (2)<br />

Thermal Model: Technical Background<br />

⎡ΔT1<br />

( t)<br />

⎤<br />

⎢ ⎥<br />

⎢<br />

ΔT2<br />

( t)<br />

⎥ =<br />

⎢ M ⎥<br />

⎢ ⎥<br />

⎢⎣<br />

ΔTn<br />

( t)<br />

⎥⎦<br />

⎡θ<br />

⎢<br />

⎢<br />

ϕ<br />

⎢<br />

⎢<br />

⎣ϕ<br />

11<br />

21<br />

M<br />

n1<br />

( t)<br />

( t)<br />

( t)<br />

ϕ<br />

θ<br />

ϕ<br />

12<br />

22<br />

M<br />

n2<br />

( t)<br />

( t)<br />

( t)<br />

L<br />

L<br />

O<br />

L<br />

Foster network<br />

ϕ<br />

ϕ<br />

θ<br />

( t)<br />

⎤<br />

⎥<br />

( t)<br />

⎥<br />

M ⎥<br />

⎥<br />

( t)<br />

⎥⎦<br />

[ ] T<br />

h ( t)<br />

h ( t)<br />

L h ( t)<br />

© 2009 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary<br />

1n<br />

2n<br />

nn<br />

Each matrix element<br />

is a complete thermal<br />

transient response curve<br />

1<br />

2<br />

n


<strong>IGBT</strong> Package Thermal Model<br />

Implementation<br />

T − T<br />

P<br />

© 2009 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary<br />

Z<br />

th<br />

( t)<br />

ΔT<br />

=<br />

P<br />

=<br />

ref


<strong>IGBT</strong> Package Thermal Model<br />

Validation<br />

• Simple 4-node system<br />

• Air at a constant speed of 1 m/s<br />

2<br />

1<br />

© 2009 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary<br />

4<br />

3


<strong>IGBT</strong> Package Thermal Model<br />

Blue-measurement data Red-fitted results<br />

Node 1 – self-heating Node 1 – Due to Source 2<br />

Node 1 – Due to Source 4 Node 1 – Due to Source 3<br />

© 2009 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary


<strong>IGBT</strong> Package Thermal Model<br />

Validation<br />

Temperature at Node 1 with constant heat flux applied at all 4 nodes<br />

Temperature at Node 1 with time-variant heat flux<br />

© 2009 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary


<strong>IGBT</strong> <strong>Inverter</strong> <strong>Design</strong><br />

<strong>High</strong> <strong>Power</strong> System Analysis<br />

Ansoft SIMPLORER V8.1<br />

DC Current Profile<br />

Line Current<br />

Profile<br />

© 2009 ANSYS, Inc. All rights reserved. 17 ANSYS, Inc. Proprietary


<strong>IGBT</strong> <strong>Inverter</strong> <strong>Design</strong><br />

Mechanical Stress Analysis<br />

Ansoft Maxwell V13.0 coupled with ANSYS Mechanical R12.1<br />

Input<br />

DC Current Profile<br />

Input<br />

Line Current<br />

Profile<br />

Mapping <strong>Power</strong> Loss Thermal-Structural<br />

Mapping Electromagnetic Force<br />

© 2009 ANSYS, Inc. All rights reserved. 18 ANSYS, Inc. Proprietary


<strong>IGBT</strong> <strong>Inverter</strong> <strong>Design</strong> (2)<br />

Mechanical Stress Analysis<br />

© 2009 ANSYS, Inc. All rights reserved. 19 ANSYS, Inc. Proprietary


EMI/EMC<br />

Electrical Parasitics Extraction<br />

• Extract the resistance, inductance, capacitance and conductance<br />

(RLCG) parameters of the entire package<br />

Frequency can have a significant impact on the design performance<br />

Ansoft Q3D<br />

Low Frequency <strong>High</strong> Frequency<br />

© 2009 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary


EMI/EMC<br />

Electrical Parasitics Extraction<br />

• Extracting parameters is straightforward as the nets are<br />

automatically assigned<br />

Negative Bar<br />

Phase A<br />

Phase B<br />

Phase C<br />

Positive Bar<br />

© 2009 ANSYS, Inc. All rights reserved. 21 ANSYS, Inc. Proprietary


EMI/EMC<br />

<strong>IGBT</strong> Mesh and Field Result<br />

The structure is meshed<br />

using automatic and<br />

adaptive meshing<br />

Current Distribution<br />

© 2009 ANSYS, Inc. All rights reserved. 22 ANSYS, Inc. Proprietary


EMI/EMC<br />

Parasitics Extraction<br />

• How do we set up the frequency sweep?<br />

– Nyquist sampling: To capture a time step of Ts, obtain frequency domain<br />

information up to:<br />

F<br />

max<br />

1<br />

=<br />

2×<br />

t<br />

– For a time domain waveform with a risetime of 80 ns, in order to capture the<br />

ringing in the time domain, we would want to capture at least 4 samples during<br />

this risetime. This implies a sampling time of 20 ns<br />

• We need to solve up to 50 MHz (= 1/20ns)<br />

© 2009 ANSYS, Inc. All rights reserved. 23 ANSYS, Inc. Proprietary<br />

s


EMI/EMC<br />

Parasitics Extraction<br />

• The simulation outputs consist of the RLC matrices for different frequencies<br />

© 2009 ANSYS, Inc. All rights reserved. 24 ANSYS, Inc. Proprietary


System Integration<br />

Circuit <strong>Design</strong> based on Parametrized <strong>IGBT</strong> and Frequency Dependent<br />

Model<br />

© 2009 ANSYS, Inc. All rights reserved. 25 ANSYS, Inc. Proprietary


60.00<br />

50.00<br />

25.00<br />

-22.50<br />

System Integration (2)<br />

0<br />

ECELink1<br />

ECE ECE - - LINK<br />

LINK<br />

2DGraphSel1 N<strong>IGBT</strong>71.IC<br />

0 100.00m<br />

240.00m<br />

Extract <strong>Power</strong> Loss<br />

+<br />

W<br />

FFT<br />

© 2009 ANSYS, Inc. All rights reserved. 26 ANSYS, Inc. Proprietary<br />

IA<br />

A<br />

EA<br />

IB<br />

A<br />

IC<br />

A<br />

E<br />

EC<br />

474.00m<br />

400.00m<br />

200.00m<br />

0<br />

EQU<br />

Ixa :=<br />

Ixb := IB.I *<br />

Ixc := IC.I *<br />

Ix := Ixa +<br />

Iya :<br />

Iyb := IB.I *<br />

Iyc := IC.I *<br />

Iy := Iya + I<br />

Im := sqrt(Ix^2 +<br />

delta := ata<br />

D<br />

D<br />

D<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

sourceA1<br />

sourceA2<br />

sourceB1<br />

sourceB2<br />

sourceC1<br />

sourceC2<br />

ICA:<br />

2DGraphCon1<br />

GAIN<br />

57.3<br />

CONST<br />

CONST<br />

Magnet01<br />

Magnet02<br />

FEA<br />

ANGRAD<br />

+<br />

Φ<br />

-30+PWM_PER<br />

-60+PWM_PER<br />

CONST -90+PWM_PER<br />

CONST -120+PWM_PER<br />

CONST -150+PWM_PER<br />

+<br />

ω<br />

100.00 1.00k 3.00k 10.00k 100.00k 1.00Meg<br />

GS_I...


474.00m<br />

400.00m<br />

200.00m<br />

Full Wave Effect<br />

0<br />

2DGraphCon1<br />

100.00 1.00k 3.00k 10.00k 100.00k 1.00Meg<br />

Multiplied Multiplied magE magE plots plots<br />

by by Simplorer Simplorer<br />

Emission Test<br />

GS_I...<br />

Ansoft HFSS<br />

MagE@10m by<br />

specified inputs<br />

Freq. res.<br />

Normalized S para.<br />

© 2009 ANSYS, Inc. All rights reserved. 27 ANSYS, Inc. Proprietary


The Virtual Test<br />

The Whole Car Body<br />

© 2009 ANSYS, Inc. All rights reserved. 28 ANSYS, Inc. Proprietary


Conclusion<br />

ANSYS Icepack<br />

Ansoft SIMPLORER<br />

Ansoft Q3D<br />

Ansoft ANSYS Simplorer<br />

Mechanical<br />

Ansoft HFSS<br />

ECELink<br />

ECE ECE - - LINK<br />

LINK<br />

© 2009 ANSYS, Inc. All rights reserved. 29 ANSYS, Inc. Proprietary<br />

+<br />

W<br />

IA<br />

A<br />

E<br />

IB<br />

A<br />

IC<br />

A<br />

E<br />

E<br />

EQU<br />

Ixa :=<br />

Ixb := IB.I<br />

Ixc := IC.I<br />

Ix := Ixa +<br />

Iya<br />

Iyb := IB.I<br />

Iyc := IC.I<br />

Iy := Iya +<br />

Im := sqrt(Ix^<br />

delta := at<br />

D<br />

D<br />

D<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

EQUBL<br />

sourceA1<br />

sourceA2<br />

sourceB1<br />

sourceB2<br />

sourceC1<br />

sourceC2<br />

ICA:<br />

GAIN<br />

57.3<br />

CONST<br />

CONST<br />

Magnet01<br />

Magnet02<br />

FEA<br />

ANGRA<br />

+<br />

Φ<br />

-30+PWM_P<br />

-60+PWM_P<br />

CONST -90+PWM_P<br />

CONST -120+PWM_P<br />

CONST -150+PWM_P<br />

+<br />

ω

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!