10.07.2015 Views

Fc-Fusion Proteins: A Growing Class of Therapeutics - Austropa ...

Fc-Fusion Proteins: A Growing Class of Therapeutics - Austropa ...

Fc-Fusion Proteins: A Growing Class of Therapeutics - Austropa ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Design <strong>of</strong> CD4IgG• Assembles into ahomodimer• Retains fidelity <strong>of</strong>cleavage site by papainin hinge• Binds C1q• Binds Protein A• Is transported acrossplacenta Chamow et al., Biochemistry 29, 9885-9891 (1990)6


Structural variety <strong>of</strong> <strong>Fc</strong>-fusion proteins2008--At least 40 <strong>Fc</strong>-fusion cytokines describedJazayeri and Carroll, Biodrugs 22, 11-26 (2008)7


34 Therapeutic monoclonal antibody/<strong>Fc</strong>-fusion protein approvals—USATechnologyYearApproval2011 Benlysta Yervoy2010 Prolia/XgevaActemra2009 Arzerra StelaraIlaris Simponi2008 Nplate Arcalyst2007 Soliris2006 Vectibix Lucentis*2005 Orencia2004 ErbituxAvastinTysabri2003XolairBexxar**RaptivaAmevive<strong>Fc</strong>- <strong>Fusion</strong> Protein2002Zevalin**HumiraHuman20012000CampathMylotarg***Humanized1998Simulect Synagis Remicade HerceptinEnbrelChimeric1997RituxanZenapaxMouse19941984ReoPro*Orthoclone OKT38*Fab or (Fab) 2 antibody fragment**Immunoconjugate


USA-approved <strong>Fc</strong>-fusion proteinsBrandnameGenericnameSponsorYearapprovedConstructTargetbindingdomain IgdomainMW (kDa)Expression systemTargetClinicalindicationEnbrel etanercept Immunex/Amgen1998 TNFR2 ϒ1 <strong>Fc</strong> 150 CHO TNF Rheumatoidarthritis;juvenileidiopathicarthritis;psoriasisAmevive alefacept Biogen-Idec2003 LFA3 ϒ1 <strong>Fc</strong> 92 CHO CD2 PsoriasisOrencia abatacept BMS 2005 CTLA4 ϒ1 <strong>Fc</strong> 92 CHO CD28(indirect)Arcalyst rilonacept Regeneron 2008 IL1-RIIL1RAcPNplate romiplostim Amgen 2008 Peptidemimetic <strong>of</strong>TPO9Rheumatoidarthritis;juvenileidiopathicarthritisϒ1 <strong>Fc</strong> 251 CHO IL1 Cryopyrinassociatedperiodicsyndromesϒ1<strong>Fc</strong>,fusionat Cterm59 E. coli TPOR Chronicidiopathicthrombocytopenic purpura


Potential production issues with <strong>Fc</strong>-fusion proteins • Upstream– Folding and secretion– Disulfide bond formation– Glycosylation• Non-Ig domains bring addition glycosylation• Downstream– Acid lability• Use <strong>of</strong> Protein A---High pH for elution– Rea et al., BioPharm Int’l, Mar supplement (2008)• Virus inactivation– Solvent/detergent– Reduced Protein A chromatographic capacity• Ghose et al., Biotechnol. Bioeng. 96, 768-779 (2006)– Increased proteolysis– Aggregation• Hydrophobic interaction chromatography– Glyc<strong>of</strong>orm heterogeneity• Highly sialylated forms <strong>of</strong>ten desirable10


<strong>Fc</strong>-fusion proteins in development• Receptor <strong>Fc</strong>-fusion– VEGF Trap• VEGFR:<strong>Fc</strong>, binds to VEGF-A, VEGF-B and PIGF,aflibercept, Ph 3, Regeneron/San<strong>of</strong>i-Aventis• Economides et al., Nat. Med. 9, 47-52 (2003)– Atacicept• Receptor for BLyS and APRIL, Merck-Serono– Belatacept• CTLA4 binds to B7, Bristol Myers Squibb• Differs from abatacept by 2 amino acids• Peptide <strong>Fc</strong>-fusion (peptibody)– AMG 386• peptide inhibitor <strong>of</strong> TIE2/ANG2:<strong>Fc</strong>, I-SPY 2TRIAL adaptive design in breast cancer, Amgen• Enzyme <strong>Fc</strong>-fusion– Factor VIII-<strong>Fc</strong>• Biogen-Idec– Factor IX-<strong>Fc</strong>• Biogen-IdecSee JM Reichert, Mabs 3, 76-99 (2011)11


Presentations• Engineering a CHO cell line for enhanced production <strong>of</strong> <strong>Fc</strong> fusionproteins and blood clotting factors– Pierre-Alain Girod, CSO, Selexis SA, Geneva, Switzerland• Assessment <strong>of</strong> Regeneron’s cytokine trap technology– Kevin Bailey, VP, Regeneron, Tarrytown, NY, USA• Product quality challenges during process improvements for an<strong>Fc</strong> fusion protein– Barbara Woppmann, Sr. Engineer, Biogen-Idec, Cambridge, MA, USA• Challenges in upstream and downstream processing for <strong>Fc</strong>fusion proteins– Michiel Ultee, CSO, Laureate Bioservices, Princeton, NJ, USA12


Engineering CHO Cell LineFor Enhanced Production<strong>of</strong> mAbs and <strong>Fc</strong>:<strong>Fusion</strong><strong>Proteins</strong>Pierre-Alain Girod22nd ESACT Meeting 2011 in ViennaCONFIDENTIAL


Cell Line Development Process Desirables• Productivity• Stability• Speed• RobustnessCONFIDENTIAL


Cell Line Development Process Components• Expression vector• Transfection method• Host cell line• Selection method• Media• Culture conditionsCONFIDENTIAL


How Components Impact on Yield• Expression vector è expression level• Transfection method è copy number• Host cell line è secretion, p-t modifications• Selection method è strength <strong>of</strong> expression• Media è yield, structure• Culture conditions è yield, structureGENETICSPROCESSCONFIDENTIAL


Difficult to Express Protein <strong>Class</strong>esGPCRskinasesion channelsblood plasma proteinsvaccinesAntibodies…CONFIDENTIAL


CONFIDENTIAL10VHc250 AntibodyCombinationsPool ScreeningTiterVH01VH02VH03VH04VH05VH06VH07VH08VH09VH10VL01VL02VL03VL04VL05VL06VL07VL08VL09VL10VL11VL12VL13VL14VL15VL16VL17VL18VL19VL20VL21VL22VL23VL24VL2525VLcXSLXV01G1SSLXV02G1SSLXV03G1SSLXV04G1SSLXV05G1SSLXV06G1SSLXV07G1SSLXV08G1SSLXV09G1SSLXV10G1SSLXV11G1SSLXV12G1SSLXV13G1SSLXV14G1SSLXV15G1SSLXV16G1SSLXV17G1SSLXV18G1SSLXV19G1SSLXV20G1SSLXV21G1SSLXV22G1SSLXV23G1SSLXV24 1SSLXV25G1SSLXV01G1SSLXV02G1SSLXV03G1SSLXV04G1SSLXV05G1SSLXV06G1SSLXV07G1SSLXV08G1SSLXV09G1SSLXV10G1SSLXV11G1SSLXV12G1SSLXV13G1SSLXV14G1SSLXV15G1SSLXV16G1SSLXV17G1SSLXV18G1SSLXV19G1SSLXV20G1SSLXV21G1SSLXV22G1SSLXV23G1SSLXV24 1SSLXV25G1SSLXV01G1SSLXV02G1SSLXV03G1SSLXV04G1SSLXV05G1SSLXV06G1SSLXV07G1SSLXV08G1SSLXV09G1SSLXV10G1SSLXV11G1SSLXV12G1SSLXV13G1SSLXV14G1SSLXV15G1SSLXV16G1SSLXV17G1SSLXV18G1SSLXV19G1SSLXV20G1SSLXV21G1SSLXV22G1SSLXV23G1SSLXV24 1SSLXV25G1SSLXV01G1SSLXV02G1SSLXV03G1SSLXV04G1SSLXV05G1SSLXV06G1SSLXV07G1SSLXV08G1SSLXV09G1SSLXV10G1SSLXV11G1SSLXV12G1SSLXV13G1SSLXV14G1SSLXV15G1SSLXV16G1SSLXV17G1SSLXV18G1SSLXV19G1SSLXV20G1SSLXV21G1SSLXV22G1SSLXV23G1SSLXV24 1SSLXV25G1SSLXV01G1SSLXV02G1SSLXV03G1SSLXV04G1SSLXV05G1SSLXV06G1SSLXV07G1SSLXV08G1SSLXV09G1SSLXV10G1SSLXV11G1SSLXV12G1SSLXV13G1SSLXV14G1SSLXV15G1SSLXV16G1SSLXV17G1SSLXV18G1SSLXV19G1SSLXV20G1SSLXV21G1SSLXV22G1SSLXV23G1SSLXV24 1SSLXV25G1SSLXV01G1SSLXV02G1SSLXV03G1SSLXV04G1SSLXV05G1SSLXV06G1SSLXV07G1SSLXV08G1SSLXV09G1SSLXV10G1SSLXV11G1SSLXV12G1SSLXV13G1SSLXV14G1SSLXV15G1SSLXV16G1SSLXV17G1SSLXV18G1SSLXV19G1SSLXV20G1SSLXV21G1SSLXV22G1SSLXV23G1SSLXV24 1SSLXV25G1SSLXV01G1SSLXV02G1SSLXV03G1SSLXV04G1SSLXV05G1SSLXV06G1SSLXV07G1SSLXV08G1SSLXV09G1SSLXV10G1SSLXV11G1SSLXV12G1SSLXV13G1SSLXV14G1SSLXV15G1SSLXV16G1SSLXV17G1SSLXV18G1SSLXV19G1SSLXV20G1SSLXV21G1SSLXV22G1SSLXV23G1SSLXV24 1SSLXV25G1SSLXV01G1SSLXV02G1SSLXV03G1SSLXV04G1SSLXV05G1SSLXV06G1SSLXV07G1SSLXV08G1SSLXV09G1SSLXV10G1SSLXV11G1SSLXV12G1SSLXV13G1SSLXV14G1SSLXV15G1SSLXV16G1SSLXV17G1SSLXV18G1SSLXV19G1SSLXV20G1SSLXV21G1SSLXV22G1SSLXV23G1SSLXV24 1SSLXV25G1SSLXV01G1SSLXV02G1SSLXV03G1SSLXV04G1SSLXV05G1SSLXV06G1SSLXV07G1SSLXV08G1SSLXV09G1SSLXV10G1SSLXV11G1SSLXV12G1SSLXV13G1SSLXV14G1SSLXV15G1SSLXV16G1SSLXV17G1SSLXV18G1SSLXV19G1SSLXV20G1SSLXV21G1SSLXV22G1SSLXV23G1SSLXV24 1SSLXV25G1SSLXV01G1SSLXV02G1SSLXV03G1SSLXV04G1SSLXV05G1SSLXV06G1SSLXV07G1SSLXV08G1SSLXV09G1SSLXV10G1SSLXV11G1SSLXV12G1SSLXV13G1SSLXV14G1SSLXV15G1SSLXV16G1SSLXV17G1SSLXV18G1SSLXV19G1SSLXV20G1SSLXV21G1SSLXV22G1SSLXV23G1SSLXV24 1SSLXV25G1SMab VariantsmAbs Expression


Bottlenecks <strong>of</strong> rProtein ProductionGene copy Nb*(Hc + Lc)mRNA/gene*(Hc + Lc)IgG amount(batch culture; d3)mAb1 1.525 166 0.1mAb2 1.472 5707 22.7mAb3 7.740 35740 85.4Other1 0.493 6344 20Other2 4.21 29 7* Data normalized to GAPDH used as endogenous controlLimited integration è sequence-dependent ?Limited transcription è mRNA instability ?Limited translation è saturation <strong>of</strong> secretion pathway?CONFIDENTIAL


Approaches to Debottleneck Protein ProductionLimited integration è expression vector designLimited transcription è codon optimization, toxic motifsLimited translation è culture conditions, mediaoptimization, cell engineeringCONFIDENTIAL


Effect <strong>of</strong> Media and Culture Conditions on BCFBlood clotting factorTiter (mg/L)350300250200150100500BatchFed-BatchFed-Batch switch to 32°C at day 50 1 2 3 4 5 6 7 8 9 10 11 12Run time [days]Clone-dependent è more effort incell line selectionCONFIDENTIAL


Inefficient Processing and Secretion <strong>of</strong> mAbHigh producerLow producerChase (hrs) : 0 1 2 4 6 0 1 2 4 6IgG(HC) 2HC-LCTX-100solubleFree-HC(LC) 2Free-LCTX-100insolubleAggregated -LCCodon optimization è no increase in productivitySignal peptide è +10% using IL-SP with Low-ProducerEngineer cells to increase folding and processingCONFIDENTIAL


ER-protein folding machineries…Source: Khan, S. U. and M. Schroder (2008), Cytotechnology 57(3): 207-31.CONFIDENTIAL


Chaperones operating in the ER…Source: Khan, S. U. and M. Schroder (2008), Cytotechnology 57(3): 207-31.CONFIDENTIAL


Will use <strong>of</strong> HT chaperone systems allowus to enhance the secretion process ?Activity <strong>of</strong> Factors Tested:Vesicle traffickingRetro-translocationER calcium homeostasisGeneral metabolismPost-translational modificationsCONFIDENTIAL


Metabolically Engineered CellsLow-PHigh-P3025qP (pcd)20151050A B G H Control A G H ControlLakkaraju, A. K., C. Mary, et al. (2008). Cell 133(3): 440-51SRP14 slows elongation <strong>of</strong> the nascent chain tomaximize the efficiency <strong>of</strong> protein translocation into theER through the transloconCONFIDENTIAL


More efficient targeting to the ER by SRPHigh-P Low-PHigh-P Low-PChaperone -- A G H -- A G HTX-100solubleTX-100insolubleIgG(HC) 2HC-LCFree-HCFree-LCSpecific productivity (pcd)50403020100-- G -- GCo-expression <strong>of</strong> SRP14:+ 400% on « Difficult-to-express mAb »+ 40% on « Easy-to-express mAb »CONFIDENTIAL


Volumetric Productivity in Fed Batch CultureHigh-PLow-P3.02.52.52.0IgG titer (g/L)2.01.51.0IgG titer (g/L)1.51.00.50.500 5 10 15Run time (days)00 5 10 15Run time (days)1.2E+071.2E+07Cell density (c/ml)1.0E+078.0E+066.0E+064.0E+062.0E+06Cell density (c/ml)1.0E+078.0E+066.0E+064.0E+062.0E+060.0E+000 5 10 15Run time (days)0.0E+000 5 10 15Run time (days)CONFIDENTIAL


Factors Impacting on Production <strong>of</strong> TNFR:<strong>Fc</strong>Volume adjusted titer (g/L)2.01.81.61.41.21.00.80.60.40.205 3 2 1+30% Qpin total cellpool0 5.00E+07 1.00E+08 1.50E+08IVCFive chaperones show an increase in productivity(1 in general metabolism, 2 in trafficking, 2 in p-t modifications)ABCDEFGHIJKLMNOCtrlCONFIDENTIAL


ConclusionsBottlenecks are specific to each proteinAppropriate chaperones can augment the secretion<strong>of</strong> recombinant proteinDevelopment <strong>of</strong> a SuperCHO host cell line by coexpression<strong>of</strong> chaperones has limitationCHO genome sequence will enable geneticengineering deactivation/activation <strong>of</strong> chaperonesystemsCONFIDENTIAL


Thankyou!pierre-alain.girod@selexis .comCONFIDENTIAL


Bioprocessing Challenges <strong>of</strong><strong>Fusion</strong> <strong>Proteins</strong>Workshop on <strong>Fusion</strong> <strong>Proteins</strong>ESACT Conference, 15 May 2011, ViennaMichiel E. Ultee, Ph.D., CSOLaureate Biopharmaceutical Services


<strong>Fusion</strong> <strong>Proteins</strong> are Created byMolecular Biologists, Not Nature• Not selected by eons<strong>of</strong> evolution fordesirable propertiessuch as– Expression rate– Stable structure– Different portions <strong>of</strong>the molecule notinterfering with othersCoagulation Factor VIIConfidentialSlide 2


First Example: <strong>Fc</strong>-<strong>Fusion</strong> + mFactor VIIfrom Iconic <strong>Therapeutics</strong>• Mutated Factor VII attached tohuman IgG 1 <strong>Fc</strong>• Designed such that the FactorVII would bind tissue factor(TF) and the <strong>Fc</strong> would provideeffector function• Made in BHK cell line forefficient post-translationalmodification (γ-CarboxyglutamicAcid)mFVIIhingeIgG 1 <strong>Fc</strong>ConfidentialSlide 3


Second Example: 3-Part <strong>Fusion</strong> Proteinfrom Enobia Pharma• A proprietary, bioengineeredcombination <strong>of</strong> human IgG 1 <strong>Fc</strong>,human Alkaline Phosphatase,and a bone-targeting acidicpeptide (D 10 or Asp 10 )• Native structure is a dimer <strong>of</strong> anIgG-like structure.• Alkaline Phosphatase inactivatesbelow pH 5• The D10 peptide produces astrongly negatively chargedregionRef: DW Rea, ME Ultee, SX Chen, TL Loisel,Biopharm Intl, Mar 2008 Supp, p20-25Confidential Slide 4


Temper Expectations on Expression Rates• Examples <strong>of</strong> <strong>Fc</strong> <strong>Fusion</strong> <strong>Proteins</strong> vs. IgG atLaureate:<strong>Fusion</strong> Partner Cell Line Titers in mg/LMembrane Protein CHO 200-550Enzyme 1 + Asp10 CHO 250-300Enzyme 2 + Asp10 CHO 125-150Mutated Factor VII BHK 6-8N/A : IgG Mab CHO 1000-3000ConfidentialSlide 5


Increasing Titers <strong>of</strong> <strong>Fusion</strong> <strong>Proteins</strong>• Same as for OtherRecombinant <strong>Proteins</strong>• Basal media and feedingstrategies• Use <strong>of</strong> growth factorssuch as LR3-IGF-1 &Hydrolysates• Bioreactor parameters –CO 2 levels, pH, agitatorspeeds, sparging and airoverlayrates, temperature• Seeding DensityConfidential Slide 6Titer (mg/L)6005004003002001000Slide 6Evaluation <strong>of</strong> Initial Seeding Density- Titer518488450477SF1 SF9 SF10 SF11


<strong>Fusion</strong> <strong>Proteins</strong> Tend to AggregateCompared to IgG Antibodies• Sometimes a fusionprotein is aggregated 10-30% in harvest media• Standard low-pHconditions used to elutean antibody <strong>of</strong>f <strong>of</strong> aProtein A capture caninduce majoraggregation <strong>of</strong> a fusionproteinSEC-HPLC from Protein A Elution<strong>of</strong> mFVII-<strong>Fc</strong> ProteinConfidentialSlide 7


Reducing Aggregation from Protein-AChromatography• Mid-pH Wash: pH 4.7-5.5– Helps reduce Host-Cell<strong>Proteins</strong> that may coaggregatewith <strong>Fc</strong>-Protein• Immediate neutralization <strong>of</strong>eluate:– Necessitates alternative viralinactivation step such assolvent-detergent• Elution: Use highest pHthat will still effect elutionUse <strong>of</strong> pH 4.9 Wash to Reduce HCP on mFVII-<strong>Fc</strong>IC1 013108 Column5 Continuous001:10_UV1_280nm IC1 013108 Column5 Continuous001:10_Cond IC1 013108 Column5 Continuous001:10_pHIC1 013108 Column5 Continuous001:10_Fractions IC1 013108 Column5 Continuous001:10_InjectIC1 013108 Column5 Continuous001:10_LogbookmAU15010050InjectionpH 4.9 WashpH 3.7 ElutionWa Elutishin nggwithwith 1.01M MArgi Arginine nine,,Stri0.2 0.2ppinMMgCitr Citrwithate, ate,0.1pH pHM4.9 4.0Citrate,WapHshin2.5gwithPBS0X1 X2 X3 X4 A1 A2 A4 A6 A8 A11 B11 B9 B7 B5 B3 B1 C20 50 100 150 200 250 mlConfidentialSlide 8


Other Strategies for Protein A Elution• Different acidic buffers:Acetate, Glycine,Citrate, Succinate• Anti-aggregatingExcipients– Polysorbate-80 (Tween-80) at 0.02-0.20%)– Arginine (0.1-1.0M)• Use Alkaline pHpH 11 Elution Conditions Found Effective forAP-<strong>Fc</strong>-D10 <strong>Fusion</strong> ProteinRef: DW Rea, ME Ultee, SX Chen, TL Loisel,Biopharm Intl, Mar 2008 Supp, p20-25ConfidentialSlide 9


Removal <strong>of</strong> Aggregates• Ceramic Hydroxylapaptite (CHT) <strong>of</strong>ten effective.CHT <strong>of</strong> Protein A Eluate MP-<strong>Fc</strong>SEC-HPLC <strong>of</strong> Monomeric FractionMonomerAggregateDimer10MNaPhos+0.25MNaCl pH7.2ElutionMainPeakTail 1Tail 350mMNaPhosphateStrip0.1MNaOHF4 F64000 5000 6000Confidential Slide 10


Removal <strong>of</strong> Aggregates -- SEC• When bind-elute techniques are not effective, Size-Exclusion Chromatography can bemAUIC1SPDXPRODUCT001:10_UV1_280nm IC1SPDXPRODUCT002:10_UV1_280nm IC1SPDXPRODUCT003:10_UV1_280nmPURIC1 080508 Superdex200 Product001:10_UV1_280nm IC1 200L Superdex PRODUCT001:10_UV1_280nm400Black 200L Pilot #1Orange 200L Pilot #2Blue 200L cGMP #1Red 200L cGMP #2Green 200L cGMP #3Superdex 200pgChromatography <strong>of</strong> FVII-<strong>Fc</strong>300DimerMonomer200Aggregate1000Confidential0 50 100 150 minSlide 11


Typical IgG Separation Techniques MaybePrevented by the <strong>Fc</strong> <strong>Fusion</strong> Partner• Ex: Anion-Exchange– Used in F/T Mode for IgG’s to remove HCP & DNA– AP-<strong>Fc</strong>-D 10 <strong>Fusion</strong> protein bound irreversibly to AEXdue to D 10 region• Ex: Hydroxylapatite (CHT)– Used to remove aggregates and HCP– AP-<strong>Fc</strong>-D 10 <strong>Fusion</strong> protein bound to CHT but recoverywas only 40%ConfidentialSlide 12


Even Nan<strong>of</strong>iltration Can be Problematic• Standard process formost IgG’s and otherrecombinant proteinsto instill a robust viralremoval step• mFVII-<strong>Fc</strong> fusionprotein showed poorrecovery or slow flowrate on some filters%ConfidentialSlide 13


Conclusions• <strong>Fc</strong>-<strong>Fusion</strong> proteins are hybrid, multi-functional,“designer proteins” intended to combine thefeatures or two or more proteins• In spite <strong>of</strong> having an IgG-<strong>Fc</strong> portion, they aregenerally not like IgG’s, from as seen by either theproduction cells or the biopharmaceuticalscientist!• <strong>Fc</strong>-<strong>Fusion</strong> proteins can be “tamed” by acombination <strong>of</strong> persistence, innovation, and goodluck.ConfidentialSlide 14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!