20.11.2012 Views

Effect of soil type and moisture content on ground heat pump ...

Effect of soil type and moisture content on ground heat pump ...

Effect of soil type and moisture content on ground heat pump ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>type</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> <strong>on</strong> <strong>ground</strong><br />

<strong>heat</strong> <strong>pump</strong> performance<br />

W. H. Le<strong>on</strong>g a , V. R. Tarnawski b <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Aittomäki c<br />

a Hatch Associates Ltd, N<strong>on</strong>-Ferrous Business Unit, Energy <str<strong>on</strong>g>and</str<strong>on</strong>g> Fluid<br />

Mechanics Group, 2800 Speakman Drive, Mississauga,<br />

Ontario L5K 2R7, Canada<br />

b Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, Saint Mary’s University, Halifax,<br />

Nova Scotia B3H 3C3, Canada<br />

c Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy <str<strong>on</strong>g>and</str<strong>on</strong>g> Process Engineering, Tampere University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Technology, Tampere, S-F 33101 Finl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Three different <str<strong>on</strong>g>soil</str<strong>on</strong>g>s (s<str<strong>on</strong>g>and</str<strong>on</strong>g>, silty loam <str<strong>on</strong>g>and</str<strong>on</strong>g> silty clay) with five different degrees <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

saturati<strong>on</strong> (0, 12.5, 25, 50 <str<strong>on</strong>g>and</str<strong>on</strong>g> 100%) were used in computer simulati<strong>on</strong>s. The performance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> system was found to depend str<strong>on</strong>gly <strong>on</strong> the <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

<str<strong>on</strong>g>type</str<strong>on</strong>g> (mineralogical compositi<strong>on</strong>). Alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> from complete dryness<br />

to 12.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> str<strong>on</strong>gly influences the <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> performance, <str<strong>on</strong>g>and</str<strong>on</strong>g> any<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> in this range has a devastating effect <strong>on</strong> the coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

performance (COP). Therefore, it is beneficial to keep the <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> value as high as<br />

possible above dry <str<strong>on</strong>g>soil</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. Soil <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> above the quarter saturati<strong>on</strong> state<br />

leads to a much better <strong>heat</strong> <strong>pump</strong> performance. It was found, however, that the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> variati<strong>on</strong> above 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> <strong>on</strong> <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> performance is<br />

relatively insignificant. � 1998 Elsevier Science Ltd <str<strong>on</strong>g>and</str<strong>on</strong>g> IIR. All rights reserved.<br />

(Keywords: thermal properties; <strong>ground</strong> <strong>heat</strong> <strong>pump</strong>s; <strong>heat</strong> exchangers)<br />

Effet du <str<strong>on</strong>g>type</str<strong>on</strong>g> et de l’humidité du sol sur la performance des<br />

pompes à chaleur à capteurs enterrés<br />

Introducti<strong>on</strong><br />

On a utilisé trois <str<strong>on</strong>g>type</str<strong>on</strong>g>s de sol différents (sable, glaise lim<strong>on</strong>euse et argile lim<strong>on</strong>euse) avec<br />

cinq degrés de saturati<strong>on</strong> (0, 12,5, 25, 50 et 100%) pour des simulati<strong>on</strong>s par ordinateur. Les<br />

auteurs <strong>on</strong>t m<strong>on</strong>tré que la performance d’un système utilisant une pompe à chaleur dépendait<br />

fortement de l’humidité et du <str<strong>on</strong>g>type</str<strong>on</strong>g> du sol (c’est à dire sa compositi<strong>on</strong> minéralogique).<br />

L’augmentati<strong>on</strong> de l’humidité du sol (d’un taux d’humidité de zéro à taux de 12,5%) influence<br />

fortement la performance de la pompe à chaleur et toute diminuti<strong>on</strong> de l’humidité du sol dans<br />

cette z<strong>on</strong>e exerce des effets extrêmement néfastes sur le COP. D<strong>on</strong>c, le maintien de l’humidité<br />

du sol au niveau le plus élevé au dessus des c<strong>on</strong>diti<strong>on</strong>s de sol sec influence favorablement la<br />

performance. Un taux d’humidité au-dessus du seuil d’un sol 25% saturé d<strong>on</strong>ne lieu à une<br />

performance nettement améliorée de la pompe à chaleur. Cependant, <strong>on</strong> a m<strong>on</strong>tré que les<br />

variati<strong>on</strong>s dans le taux d’humidité au dessus du seuil d’un sol 50% saturé <strong>on</strong>t exercé des effets<br />

relativement insignificants sur la performance. � 1998 Elsevier Science Ltd <str<strong>on</strong>g>and</str<strong>on</strong>g> IIR. All<br />

rights reserved..<br />

(Mots clés: propriété thermique; pompes à chaleur sol; échangeur de chaleur)<br />

In <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> applicati<strong>on</strong>s, depositi<strong>on</strong> or extracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> thermal energy from the <strong>ground</strong> is accomplished<br />

by using a <strong>ground</strong> <strong>heat</strong> exchanger (GHE), whose<br />

operati<strong>on</strong> induces a simultaneous <strong>heat</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g><br />

PII:S0140-7007(98)00041-3<br />

595<br />

Int J. Refrig. Vol. 21, No. 8, pp. 595–606, 1998<br />

� 1998 Elsevier Science <str<strong>on</strong>g>and</str<strong>on</strong>g> IIR<br />

All rights reserved. Printed in Great Britain<br />

0140–7007/98/$19.00+00<br />

flow in the surrounding <str<strong>on</strong>g>soil</str<strong>on</strong>g>. The transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong> between<br />

the GHE <str<strong>on</strong>g>and</str<strong>on</strong>g> adjoining <str<strong>on</strong>g>soil</str<strong>on</strong>g> is primarily by <strong>heat</strong><br />

c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> to a certain degree by <str<strong>on</strong>g>moisture</str<strong>on</strong>g><br />

migrati<strong>on</strong>. Therefore, it depends str<strong>on</strong>gly <strong>on</strong> the <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

<str<strong>on</strong>g>type</str<strong>on</strong>g>, temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> gradients. The entire<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong> extracti<strong>on</strong>/depositi<strong>on</strong> is a transient <strong>on</strong>e,


596 W. H. Le<strong>on</strong>g et al.<br />

Nomenclature<br />

T f freezing temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> circulating fluid<br />

m qz mass fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quartz <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g><br />

f <str<strong>on</strong>g>soil</str<strong>on</strong>g> porosity (f ¼ 1 ¹ r db/r s)<br />

due to the weather-dependent <strong>ground</strong> surface boundary<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>heat</strong>ing/cooling load. The <str<strong>on</strong>g>soil</str<strong>on</strong>g> thermal<br />

c<strong>on</strong>ductivity varies greatly with the <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>type</str<strong>on</strong>g> (texture,<br />

mineralogical compositi<strong>on</strong>), <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g>, dry bulk<br />

density, temperature, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> air humidity. The <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

<str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> in close vicinity to the GHE can be<br />

influenced by numerous factors, such as: <str<strong>on</strong>g>soil</str<strong>on</strong>g> structure,<br />

temperature gradient, <str<strong>on</strong>g>moisture</str<strong>on</strong>g> gradient, irrigati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gravity effects. In particular, the temperature gradient in<br />

the <str<strong>on</strong>g>soil</str<strong>on</strong>g> surrounding the GHE plays an important role in<br />

the combined <strong>heat</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> flow. When the <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

temperature near the GHE is well above 40�C, the effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>moisture</str<strong>on</strong>g> gradient is limited as compared to the<br />

temperature gradient, which may lead to a dry <str<strong>on</strong>g>soil</str<strong>on</strong>g> belt<br />

around the GHE behaving like an annular z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

insulati<strong>on</strong> 1 . Moreover, structural <str<strong>on</strong>g>and</str<strong>on</strong>g> textural properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the same <str<strong>on</strong>g>soil</str<strong>on</strong>g> sample can vary c<strong>on</strong>siderably with<br />

seas<strong>on</strong>al climatic c<strong>on</strong>diti<strong>on</strong>s. Therefore, thorough<br />

knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the intricate nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> transport<br />

phenomena related to coupled <strong>heat</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> flow in<br />

the <strong>ground</strong> is essential to both the design <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> systems. Due to the very<br />

complex character <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>ground</strong>, the actual design <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

GHE should be based <strong>on</strong> a detailed mathematical model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> simultaneous <strong>heat</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> flow in <str<strong>on</strong>g>soil</str<strong>on</strong>g>s, an<br />

integrated <strong>heat</strong> <strong>pump</strong> model <str<strong>on</strong>g>and</str<strong>on</strong>g> reliable <strong>ground</strong><br />

hydro-geological data. The parameters influencing the<br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> thermal properties are essential for testing the GHE<br />

r db<br />

r s<br />

v sat<br />

dry bulk density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> solids<br />

saturated volumetric water <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g><br />

length <str<strong>on</strong>g>and</str<strong>on</strong>g> carrying out a parametric analysis, which is<br />

very useful for estimating the l<strong>on</strong>g-term effects <str<strong>on</strong>g>of</str<strong>on</strong>g> GHE<br />

operati<strong>on</strong> <strong>on</strong> the surrounding <strong>ground</strong>. The results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

laboratory testing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> samples (grain size, <str<strong>on</strong>g>soil</str<strong>on</strong>g> dry<br />

bulk density, water <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g>, mineralogical compositi<strong>on</strong>)<br />

should also be available prior to the evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

thermal properties.<br />

A few papers dealing with the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>type</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> performance<br />

have been published in the last decade. Hailey et<br />

al. 2 analyzed the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermal c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g>s adjacent to the GHE. It was found that <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g><br />

<str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> was a dominant factor resp<strong>on</strong>sible for seas<strong>on</strong>al<br />

thermal c<strong>on</strong>ductivity variati<strong>on</strong>s. High <strong>heat</strong> rejecti<strong>on</strong> rates<br />

to the <strong>ground</strong> (cooling mode) had a detrimental impact<br />

<strong>on</strong> the <str<strong>on</strong>g>soil</str<strong>on</strong>g> thermal c<strong>on</strong>ductivity, leading to reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>heat</strong> transfer. Drown <str<strong>on</strong>g>and</str<strong>on</strong>g> Den Braven 3 m<strong>on</strong>itored for<br />

several seas<strong>on</strong>s the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal<br />

c<strong>on</strong>ductivity <strong>on</strong> <strong>heat</strong> transfer in <strong>ground</strong> <strong>heat</strong> storage.<br />

Augmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>soil</str<strong>on</strong>g> thermal c<strong>on</strong>ductivity by<br />

0.17 W (m K) ¹1 led to reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong> <strong>pump</strong> operating<br />

time by 1.3%. Heat transfer in multi-layered <strong>ground</strong><br />

(coarse s<str<strong>on</strong>g>and</str<strong>on</strong>g>, clay, fine s<str<strong>on</strong>g>and</str<strong>on</strong>g>) with a vertical GHE was<br />

examined by Deng <str<strong>on</strong>g>and</str<strong>on</strong>g> Fedler 4 . A two-dimensi<strong>on</strong>al<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> unsteady <strong>heat</strong> c<strong>on</strong>ducti<strong>on</strong> in <str<strong>on</strong>g>soil</str<strong>on</strong>g>s was used to<br />

simulate the <strong>ground</strong> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. The model<br />

disregarded <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> migrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> assumed the<br />

average thermal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneous <str<strong>on</strong>g>and</str<strong>on</strong>g> isotropic<br />

Figure 1 Ambient temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> snow depth (Ottawa 1987–88) vs time<br />

Figure 1 Température ambiante et pr<str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong>deur de la neige (Ottawa 1987–88) en f<strong>on</strong>cti<strong>on</strong> de la durée


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>type</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> <strong>on</strong> GHE performance 597<br />

Figure 2 Heating load <str<strong>on</strong>g>of</str<strong>on</strong>g> the building vs time<br />

Figure 2 Charge thermique bu bâtiment en f<strong>on</strong>cti<strong>on</strong> de la durée<br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g>s. The <strong>heat</strong> transfer rates were found to be disc<strong>on</strong>tinuous<br />

between <str<strong>on</strong>g>soil</str<strong>on</strong>g> layers. The effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong><br />

distributi<strong>on</strong> in coarse <str<strong>on</strong>g>and</str<strong>on</strong>g> fine s<str<strong>on</strong>g>and</str<strong>on</strong>g>y <str<strong>on</strong>g>soil</str<strong>on</strong>g>s was higher by<br />

62% <str<strong>on</strong>g>and</str<strong>on</strong>g> 27%, respectively, than in clayey <str<strong>on</strong>g>soil</str<strong>on</strong>g>s.<br />

The above literature review shows, however, a lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a general analysis <strong>on</strong> the applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong><br />

textural classes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> their thermal properties for<br />

use in <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> systems. Experimental assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the above task would be very time c<strong>on</strong>suming,<br />

expensive, error pr<strong>on</strong>e, <str<strong>on</strong>g>and</str<strong>on</strong>g> limited to c<strong>on</strong>diti<strong>on</strong>s at a<br />

particular site. Therefore, a computer package for<br />

horiz<strong>on</strong>tal <strong>ground</strong> <strong>heat</strong> exchanger analysis, design <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

simulati<strong>on</strong> (HG-HEADS 5,6 ) has been used to examine<br />

the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> three different st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>soil</str<strong>on</strong>g>s <strong>on</strong> <strong>ground</strong><br />

<strong>heat</strong> <strong>pump</strong> performance. Five different c<strong>on</strong>stant values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> corresp<strong>on</strong>ding to 0, 12.5, 25, 50<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 100% <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> have been used in computer<br />

simulati<strong>on</strong>s. The above values have been kept c<strong>on</strong>stant<br />

throughout the <str<strong>on</strong>g>soil</str<strong>on</strong>g> domain <str<strong>on</strong>g>and</str<strong>on</strong>g> the simulati<strong>on</strong> period.<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g>s<br />

The thermal <str<strong>on</strong>g>and</str<strong>on</strong>g> hydraulic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g>s are<br />

evaluated by a special subroutine developed for use in<br />

the HG-HEADS package. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> thermal<br />

c<strong>on</strong>ductivity is based <strong>on</strong> the enhanced model originally<br />

developed by de Vries 7 . The subroutine used has been<br />

extracted from the computer package TheHyProS 8,9 , <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

was modified to meet the isothermal phase change (<str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

freezing/thawing) requirements. An isothermal phase<br />

change process, used in HG-HEADS, allows the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

larger simulati<strong>on</strong> time steps 10 . Numerous changes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

enhancements to the original de Vries model have been<br />

made, <str<strong>on</strong>g>and</str<strong>on</strong>g> the most important additi<strong>on</strong>s are listed<br />

below.<br />

• The <str<strong>on</strong>g>soil</str<strong>on</strong>g> system can be made <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 26 mineralogical<br />

comp<strong>on</strong>ents whose individual characteristics,<br />

such as mass fracti<strong>on</strong>, thermal c<strong>on</strong>ductivity, density,<br />

shape <str<strong>on</strong>g>and</str<strong>on</strong>g> specific <strong>heat</strong>, must be known. The default<br />

opti<strong>on</strong> c<strong>on</strong>siders five principal <str<strong>on</strong>g>soil</str<strong>on</strong>g> minerals (quartz,<br />

feldspar, calcite, clay-minerals, mica).<br />

• A general relati<strong>on</strong>ship for mineralogical compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> any natural <str<strong>on</strong>g>soil</str<strong>on</strong>g> has been introduced.<br />

• Soil water is assumed to be a c<strong>on</strong>tinuous medium<br />

over a full <str<strong>on</strong>g>moisture</str<strong>on</strong>g> range (dryness to saturati<strong>on</strong>).<br />

• The hydraulic <str<strong>on</strong>g>soil</str<strong>on</strong>g> water model <str<strong>on</strong>g>of</str<strong>on</strong>g> Campbell 11 is used<br />

for evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water vapor migrati<strong>on</strong> in <str<strong>on</strong>g>soil</str<strong>on</strong>g> air<br />

pockets.<br />

• Unfrozen water <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> in freezing <str<strong>on</strong>g>soil</str<strong>on</strong>g>s follows relati<strong>on</strong>s<br />

published by Williams 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> Anders<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Tice 13 .


598 W. H. Le<strong>on</strong>g et al.<br />

Figure 3 Thermal c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g>, silty loam <str<strong>on</strong>g>and</str<strong>on</strong>g> silty clay vs temperature (dry, half- <str<strong>on</strong>g>and</str<strong>on</strong>g> fully saturated <str<strong>on</strong>g>soil</str<strong>on</strong>g>s)<br />

Figure 3 C<strong>on</strong>ductivité thermique de sable, glaise lim<strong>on</strong>euse et argile lim<strong>on</strong>euse sel<strong>on</strong> la température (sols sec, à moitié saturé et<br />

complètement saturé)<br />

• The air shape factor follows a logarithmic functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g>.<br />

• Equati<strong>on</strong>s by Carslaw <str<strong>on</strong>g>and</str<strong>on</strong>g> Jeager 14 are used for shape<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> c<strong>on</strong>stituents.<br />

The TheHyProS package evaluates the thermal<br />

c<strong>on</strong>ductivity, specific <strong>heat</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hydraulic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

practically any <str<strong>on</strong>g>soil</str<strong>on</strong>g> for a full range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g><br />

(dryness to saturati<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures from ¹30 to<br />

95�C. The required input data is as follows:<br />

• selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> twelve st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>soil</str<strong>on</strong>g>s (according to<br />

USDA) or user-defined <str<strong>on</strong>g>soil</str<strong>on</strong>g> with known compositi<strong>on</strong><br />

(i.e., a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clay, silt, s<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> gravel);<br />

• dry bulk density or porosity;<br />

• temperature; <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

• <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> (in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> volumetric or mass<br />

based).<br />

The remaining data (e.g., mineral characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

shape values) are default values which may be overridden<br />

by the user. The predicted thermal c<strong>on</strong>ductivities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g>s were compared with the experimental data by<br />

Kersten 15 , using <strong>on</strong>ly default data. In general, agreeable<br />

results 8,9 were obtained.<br />

Computer simulati<strong>on</strong><br />

The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>type</str<strong>on</strong>g>s <strong>on</strong> the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

<strong>ground</strong> <strong>heat</strong> <strong>pump</strong> system has been studied using the HG-<br />

HEADS program. The s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware has a number <str<strong>on</strong>g>of</str<strong>on</strong>g> built-in<br />

design features, such as:<br />

• twelve st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>soil</str<strong>on</strong>g>s;<br />

• nine c<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the GHE, namely:<br />

• single layer in series <str<strong>on</strong>g>and</str<strong>on</strong>g> parallel,<br />

• double layer: series counterflow, parallel counterflow,<br />

parallel parallelflow,<br />

• triple layer: parallel parallelflow,<br />

• quadruple layer: series counterflow, parallel counterflow,<br />

parallel parallelflow;<br />

• sixteen st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard pipes for GHE (inner <str<strong>on</strong>g>and</str<strong>on</strong>g> outer diameters,<br />

wall thermal c<strong>on</strong>ductivity);


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>type</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> <strong>on</strong> GHE performance 599<br />

Figure 4 Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g> temperature at GHE inlet vs time (dry, half- <str<strong>on</strong>g>and</str<strong>on</strong>g> fully saturated c<strong>on</strong>diti<strong>on</strong>s)<br />

Figure 4 Variati<strong>on</strong> de la température du sable à l’entrée de l’échangeur de chaleur à capteurs enterrés en f<strong>on</strong>cti<strong>on</strong> de la durée<br />

• thirteen working fluids (brine <str<strong>on</strong>g>and</str<strong>on</strong>g> antifreeze soluti<strong>on</strong>s<br />

with various c<strong>on</strong>centrati<strong>on</strong>s);<br />

• manufacturer’s data for twelve <strong>heat</strong> <strong>pump</strong> models.<br />

The following parameters have been c<strong>on</strong>sidered in<br />

computer simulati<strong>on</strong>s:<br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g>s: s<str<strong>on</strong>g>and</str<strong>on</strong>g> (r db ¼ 1480 kg m ¹3 , f ¼ 0.441,<br />

m qz ¼ 82.8%),<br />

silty loam (r db ¼ 1230 kg m ¹3 , f ¼<br />

0.536, m qz ¼ 44.4%),<br />

silty clay (r db ¼ 1200 kg m ¹3 , f ¼<br />

0.547, m qz ¼ 23.1%);<br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g>: 0; 0.125v sat, 0.25v sat, 0.50v sat, 1.0v sat,<br />

where v sat ¼ 1 ¹ r db/r s;<br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> domain: depth � width ¼ 5m� 0.25 m; 75<br />

triangular finite elements; 61 nodes;<br />

small finite elements are used in the<br />

upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> the domain (2 m), the<br />

rest <str<strong>on</strong>g>of</str<strong>on</strong>g> domain is discretized with<br />

larger elements;<br />

GHE data: single layer (serpentine arrangement),<br />

depth ¼ 1.0 m, horiz<strong>on</strong>tal spacing ¼<br />

1.0 m, length ¼ 500 m, polyethylene<br />

PE 3408 (31.75 mm nominal pipe<br />

diameter);<br />

<strong>heat</strong> <strong>pump</strong> data: WX041 by WaterFurnace Internati<strong>on</strong>al<br />

Inc., 12 kW nominal <strong>heat</strong>ing<br />

capacity, summer entering air temperature<br />

24�C, winter entering air<br />

temperature 16�C;


600 W. H. Le<strong>on</strong>g et al.<br />

Figure 5 Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the brine temperature (GHE entrance/exit) vs time, for saturated s<str<strong>on</strong>g>and</str<strong>on</strong>g>, silty clay <str<strong>on</strong>g>and</str<strong>on</strong>g> silty loam<br />

Figure 5 Variati<strong>on</strong> de la température de la saumure (entrée/sortie de l’échangeur de chaleur à capteurs enterrés) en f<strong>on</strong>cti<strong>on</strong> de la durée<br />

circulating fluid: sodium chloride in water (20% by<br />

weight), freezing point ¹17�C (when<br />

the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the circulating fluid<br />

falls below the fluid freezing point, the<br />

program issues a warning <str<strong>on</strong>g>and</str<strong>on</strong>g> the fluid<br />

properties are evaluated using<br />

T f þ 1�C), flow rate ¼ 11 gpm;<br />

meteorological data: Ottawa (1987–88);<br />

simulati<strong>on</strong> period: 15 August 1987 (0 h)–14 August 1988<br />

(8760 h);<br />

<strong>heat</strong>ing seas<strong>on</strong>: 26 September (1008 h)–8 April<br />

(5688 h).<br />

The ambient temperature, the snow depth at the<br />

<strong>ground</strong> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>heat</strong>ing load for the <strong>heat</strong>ing<br />

seas<strong>on</strong> corresp<strong>on</strong>ding to the winter <str<strong>on</strong>g>of</str<strong>on</strong>g> 1987–88 are<br />

displayed in Figures 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.<br />

Results <str<strong>on</strong>g>and</str<strong>on</strong>g> discussi<strong>on</strong><br />

Dry <str<strong>on</strong>g>soil</str<strong>on</strong>g>s generally do not exhibit thermal c<strong>on</strong>ductivity<br />

variati<strong>on</strong> with temperature (Figure 3). The thermal<br />

c<strong>on</strong>ductivity evaluati<strong>on</strong> is based <strong>on</strong> the mineralogical<br />

compositi<strong>on</strong>, dry bulk density <str<strong>on</strong>g>and</str<strong>on</strong>g> air <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> which is<br />

equal to <str<strong>on</strong>g>soil</str<strong>on</strong>g> porosity. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal c<strong>on</strong>ductivity<br />

for moist <str<strong>on</strong>g>soil</str<strong>on</strong>g>s is c<strong>on</strong>siderably higher than for dry <str<strong>on</strong>g>soil</str<strong>on</strong>g>s.<br />

This is a str<strong>on</strong>g argument for maintaining the <str<strong>on</strong>g>soil</str<strong>on</strong>g> water<br />

<str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> as high as possible above the dry state. Saturated<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> half-saturated <str<strong>on</strong>g>soil</str<strong>on</strong>g>s display a noticeable change in<br />

the thermal c<strong>on</strong>ductivity, particularly below the freezing<br />

point (0�C). The superior thermal c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g> is<br />

mainly due to its high quartz <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g>.<br />

In the first 1000 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong>ing seas<strong>on</strong>, s<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

temperature at the GHE inlet (Figure 4) drops rapidly.<br />

This is because the sensible <strong>heat</strong> is a main mode <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong><br />

transfer <str<strong>on</strong>g>and</str<strong>on</strong>g> the rates <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature decrease depend <strong>on</strong>


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>type</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> <strong>on</strong> GHE performance 601<br />

Figure 6 Heat extracti<strong>on</strong> at the GHE vs time (dry, half- <str<strong>on</strong>g>and</str<strong>on</strong>g> fully saturated s<str<strong>on</strong>g>and</str<strong>on</strong>g>, silty loam <str<strong>on</strong>g>and</str<strong>on</strong>g> silty clay)<br />

Figure 6 Extracti<strong>on</strong> de la chaleur de l’échangeur de chaleur à capteurs enterrés en f<strong>on</strong>cti<strong>on</strong> de la durée pour des sols (sable, glaise<br />

lim<strong>on</strong>euse et argile lim<strong>on</strong>euse) saturés en f<strong>on</strong>cti<strong>on</strong> de la durée<br />

the s<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g>. An erratic temperature<br />

variati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> a high rate <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature change are<br />

observed for completely dry s<str<strong>on</strong>g>and</str<strong>on</strong>g>. During a <strong>heat</strong> <strong>pump</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f-operati<strong>on</strong> period, dry s<str<strong>on</strong>g>and</str<strong>on</strong>g> around the GHE recovers<br />

<strong>heat</strong> from a peripheral z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>ground</strong>; hence, its<br />

temperature rises rapidly due to a very low specific <strong>heat</strong><br />

as compared with moist s<str<strong>on</strong>g>and</str<strong>on</strong>g>. Once the freezing point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water is reached, a release <str<strong>on</strong>g>of</str<strong>on</strong>g> latent <strong>heat</strong> from the moist<br />

s<str<strong>on</strong>g>and</str<strong>on</strong>g> is utilized by the GHE until the freezing process is<br />

over. Therefore, there is no sign <str<strong>on</strong>g>of</str<strong>on</strong>g> a temperature drop<br />

below the freezing point until the total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> latent<br />

<strong>heat</strong> is removed from the s<str<strong>on</strong>g>and</str<strong>on</strong>g> undergoing freezing. For<br />

dry s<str<strong>on</strong>g>and</str<strong>on</strong>g>, there is obviously no latent <strong>heat</strong> to be removed,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> its temperature c<strong>on</strong>tinues to decline sharply down to<br />

about ¹17.5�C, which nearly corresp<strong>on</strong>ds to the end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>heat</strong>ing seas<strong>on</strong>. A similar trend has also been<br />

observed for two other <str<strong>on</strong>g>soil</str<strong>on</strong>g>s, except that the rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature decrease for the two <str<strong>on</strong>g>soil</str<strong>on</strong>g>s are slightly higher<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the lowest temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>soil</str<strong>on</strong>g>s is about ¹19�C.<br />

Figure 5 displays variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the brine temperature at<br />

the entrance <str<strong>on</strong>g>and</str<strong>on</strong>g> exit <str<strong>on</strong>g>of</str<strong>on</strong>g> the GHE for the saturated <str<strong>on</strong>g>soil</str<strong>on</strong>g>s<br />

under investigati<strong>on</strong>. The <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> in the<br />

immediate vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the GHE has a str<strong>on</strong>g effect <strong>on</strong> the<br />

brine temperature. In the first 1500 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong>ing<br />

seas<strong>on</strong>, brine temperature drops rapidly at a similar rate<br />

for all saturated <str<strong>on</strong>g>soil</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> then remains c<strong>on</strong>stant (e.g., at<br />

the GHE exit: ¹1.5, ¹1.8 <str<strong>on</strong>g>and</str<strong>on</strong>g> ¹2.0�C for s<str<strong>on</strong>g>and</str<strong>on</strong>g>, silty<br />

loam <str<strong>on</strong>g>and</str<strong>on</strong>g> silty clay, respectively). During this time,<br />

extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sensible <strong>heat</strong> from the moist <str<strong>on</strong>g>soil</str<strong>on</strong>g> causes a<br />

high <str<strong>on</strong>g>soil</str<strong>on</strong>g> temperature drop. In the remaining part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>heat</strong>ing seas<strong>on</strong> all moist <str<strong>on</strong>g>soil</str<strong>on</strong>g>s in the vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the GHE<br />

experience freezing <str<strong>on</strong>g>and</str<strong>on</strong>g> their temperature remains<br />

c<strong>on</strong>stant. Moreover, the brine temperatures at the<br />

entrance <str<strong>on</strong>g>and</str<strong>on</strong>g> exit <str<strong>on</strong>g>of</str<strong>on</strong>g> the GHE buried in s<str<strong>on</strong>g>and</str<strong>on</strong>g> are always<br />

higher than those for silty loam <str<strong>on</strong>g>and</str<strong>on</strong>g> silty clay. This is due<br />

to a larger amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong> being extracted from the s<str<strong>on</strong>g>and</str<strong>on</strong>g>.<br />

As far as the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong> extracti<strong>on</strong> is c<strong>on</strong>cerned<br />

(Figure 6), its largest value is observed for saturated<br />

s<str<strong>on</strong>g>and</str<strong>on</strong>g>, particularly in the initial part <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong>ing seas<strong>on</strong>,<br />

followed by silty loam <str<strong>on</strong>g>and</str<strong>on</strong>g> silty clay. A rapid decrease <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>heat</strong> extracti<strong>on</strong> in the first 1500 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong>ing<br />

seas<strong>on</strong> followed by an almost steady <strong>heat</strong> removal is then


602 W. H. Le<strong>on</strong>g et al.<br />

Figure 7 Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong>ing load to <strong>heat</strong> <strong>pump</strong> capacity vs time, for s<str<strong>on</strong>g>and</str<strong>on</strong>g>, silty loam <str<strong>on</strong>g>and</str<strong>on</strong>g> silty clay at dry, half- <str<strong>on</strong>g>and</str<strong>on</strong>g> fully saturated<br />

c<strong>on</strong>diti<strong>on</strong>s<br />

Figure 7 Relati<strong>on</strong> entre la charge thermique et le rendement de lma pompe à chaleur en f<strong>on</strong>cti<strong>on</strong> de la durée pour des <str<strong>on</strong>g>type</str<strong>on</strong>g>s de sol<br />

différents (sable, glaise lim<strong>on</strong>euse et argile lim<strong>on</strong>euse) avec des degrés de saturati<strong>on</strong> différentes (moitié ou complètement saturé)<br />

observed. This behavior is due to the freezing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g>s, as<br />

previously described. Half-saturated <str<strong>on</strong>g>soil</str<strong>on</strong>g>s show a very<br />

similar change <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong> extracti<strong>on</strong> with time to that<br />

observed for saturated <str<strong>on</strong>g>soil</str<strong>on</strong>g>s. For the steady state period,<br />

the <strong>heat</strong> extracti<strong>on</strong> for the half-saturated s<str<strong>on</strong>g>and</str<strong>on</strong>g> is about<br />

2% lower than for the saturated s<str<strong>on</strong>g>and</str<strong>on</strong>g>. Dry <str<strong>on</strong>g>soil</str<strong>on</strong>g>s<br />

experience a much more rapid decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong><br />

extracti<strong>on</strong> than moist <str<strong>on</strong>g>soil</str<strong>on</strong>g>s. This is caused by a very<br />

low <strong>heat</strong> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> an absence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

freezing process.<br />

For moist <str<strong>on</strong>g>soil</str<strong>on</strong>g>s at 50 <str<strong>on</strong>g>and</str<strong>on</strong>g> 100% <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong>, the ratios<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong>ing load dem<str<strong>on</strong>g>and</str<strong>on</strong>g> to <strong>heat</strong> <strong>pump</strong> capacity are<br />

approximately the same, with <strong>on</strong>ly a few days when<br />

supplemental <strong>heat</strong>ing is required (Figure 7), i.e., when<br />

the ratio is greater than <strong>on</strong>e. Any decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

<str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> below half saturati<strong>on</strong> leads to an<br />

increase in the number <str<strong>on</strong>g>of</str<strong>on</strong>g> days required for supplemental<br />

<strong>heat</strong>ing. For example, dry <str<strong>on</strong>g>soil</str<strong>on</strong>g>s exhibit a sharp increase<br />

in that ratio up to a value <str<strong>on</strong>g>of</str<strong>on</strong>g> about 5.5. This indicates that<br />

dry <str<strong>on</strong>g>soil</str<strong>on</strong>g>s must not be used for <strong>ground</strong> <strong>heat</strong> <strong>pump</strong><br />

applicati<strong>on</strong>s. Furthermore, <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> is<br />

indeed <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most c<strong>on</strong>trolling factors influencing<br />

<strong>ground</strong> <strong>heat</strong> <strong>pump</strong> performance. Its value should be<br />

between full saturati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> half saturati<strong>on</strong>.<br />

Moist s<str<strong>on</strong>g>and</str<strong>on</strong>g> at half <str<strong>on</strong>g>and</str<strong>on</strong>g> full saturati<strong>on</strong> shows a slightly<br />

better <strong>heat</strong> <strong>pump</strong> COP than moist silty loam or silty clay<br />

(Figure 8); the COPs for the last two <str<strong>on</strong>g>soil</str<strong>on</strong>g>s are almost<br />

identical. The relative difference in the COP for s<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g>s corresp<strong>on</strong>ding to the saturated <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

half-saturated state is about 1.5%. Further decrease <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> (i.e. 0.25v sat <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.125v sat) results<br />

in more significant drops in the COP. For dry s<str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

sharp decline <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> <strong>pump</strong> COP is observed; it drops<br />

as much as 35% with respect to the COP for saturated<br />

s<str<strong>on</strong>g>and</str<strong>on</strong>g>. Dry silty loam <str<strong>on</strong>g>and</str<strong>on</strong>g> silty clay show a much lower<br />

COP with respect to dry s<str<strong>on</strong>g>and</str<strong>on</strong>g>. The more valuable results


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>type</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> <strong>on</strong> GHE performance 603<br />

Figure 8 Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> performance vs time, for dry <str<strong>on</strong>g>and</str<strong>on</strong>g> half-saturated <str<strong>on</strong>g>soil</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g> are due to its much higher quartz <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

superior thermal c<strong>on</strong>ductivity even in the completely dry<br />

state. These results prove again that dry <str<strong>on</strong>g>soil</str<strong>on</strong>g>s must not be<br />

used for <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> applicati<strong>on</strong>s as their use leads<br />

to a sharp decrease <str<strong>on</strong>g>and</str<strong>on</strong>g> low values <str<strong>on</strong>g>of</str<strong>on</strong>g> the COP.<br />

Almost steady values <str<strong>on</strong>g>of</str<strong>on</strong>g> brine temperature, <strong>heat</strong><br />

extracti<strong>on</strong> rate <str<strong>on</strong>g>and</str<strong>on</strong>g> COP for all <str<strong>on</strong>g>soil</str<strong>on</strong>g>s at half <str<strong>on</strong>g>and</str<strong>on</strong>g> full<br />

saturati<strong>on</strong> were observed (Figures 5, 6 <str<strong>on</strong>g>and</str<strong>on</strong>g> 8) in the last<br />

two-thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong>ing seas<strong>on</strong> from 2616 to 5688 h.<br />

Therefore, the average values <str<strong>on</strong>g>of</str<strong>on</strong>g> the above quantities<br />

over that durati<strong>on</strong> were compared against the five<br />

different degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> saturati<strong>on</strong>. Figure 9 displays<br />

the variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the average <strong>heat</strong> extracti<strong>on</strong> rate from the<br />

<strong>ground</strong> vs <str<strong>on</strong>g>soil</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong>. A very sharp increase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong> extracti<strong>on</strong> rate was obtained for all <str<strong>on</strong>g>soil</str<strong>on</strong>g>s<br />

between 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 12.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong>, followed by a<br />

moderate increase between 12.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 25% <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong>.<br />

The <strong>heat</strong> extracti<strong>on</strong> rate between 50 <str<strong>on</strong>g>and</str<strong>on</strong>g> 100% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

saturati<strong>on</strong> shows much better results <str<strong>on</strong>g>and</str<strong>on</strong>g> a relatively<br />

small variati<strong>on</strong>. In all cases s<str<strong>on</strong>g>and</str<strong>on</strong>g> shows the best<br />

performance, followed by silty loam <str<strong>on</strong>g>and</str<strong>on</strong>g> silty clay.<br />

The variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the average COP vs the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g><br />

saturati<strong>on</strong> (Figure 10) shows a very similar trend.<br />

The average brine temperature at the exit <str<strong>on</strong>g>of</str<strong>on</strong>g> the GHE<br />

also rises with an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong><br />

(Figure 11). The highest brine return temperatures are<br />

obtained for s<str<strong>on</strong>g>and</str<strong>on</strong>g> at all degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong>, which can<br />

be explained in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the largest amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong><br />

extracted by the <strong>ground</strong> <strong>heat</strong> exchanger.<br />

For all <str<strong>on</strong>g>soil</str<strong>on</strong>g>s under investigati<strong>on</strong>, the average <strong>heat</strong><br />

extracti<strong>on</strong>, the COP <str<strong>on</strong>g>and</str<strong>on</strong>g> the brine temperatures are similar<br />

at fully saturated <str<strong>on</strong>g>soil</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. These results may imply<br />

that at fully saturated c<strong>on</strong>diti<strong>on</strong>s these <str<strong>on</strong>g>soil</str<strong>on</strong>g>s are equally<br />

suitable for <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> applicati<strong>on</strong>s. It is worth<br />

knowing, however, that the use <str<strong>on</strong>g>of</str<strong>on</strong>g> silty loam <str<strong>on</strong>g>and</str<strong>on</strong>g> silty clay<br />

is limited due to their high sensitivity to frost heave.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

(1) The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> system was<br />

found to depend str<strong>on</strong>gly <strong>on</strong> the <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g>


604 W. H. Le<strong>on</strong>g et al.<br />

Figure 9 Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the average <strong>heat</strong> extracti<strong>on</strong> rate (2616–5688 h) from the <strong>ground</strong> vs <str<strong>on</strong>g>soil</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong><br />

Figure 9 Variati<strong>on</strong> de l’extracti<strong>on</strong> de chaleur moyenne (2616–5688 h) du sol en f<strong>on</strong>cti<strong>on</strong> du degré de saturati<strong>on</strong> du sol<br />

Figure 10 Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the average COP (2616–5688 h) vs <str<strong>on</strong>g>soil</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong><br />

Figure 10 Variati<strong>on</strong> du COP moyen (2616–5688 h) en f<strong>on</strong>cti<strong>on</strong> de la saturati<strong>on</strong> du sol


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>type</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> <strong>on</strong> GHE performance 605<br />

Figure 11 Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the average brine temperature (2616–5688 h) at the GHE inlet vs <str<strong>on</strong>g>soil</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong><br />

Figure 11 Variati<strong>on</strong> de la température moyenne de la saumure (2616–5688 h) à l’entrée de la pompe à chaleur à capteurs enterrésen<br />

f<strong>on</strong>cti<strong>on</strong> du degré de saturati<strong>on</strong> du sol<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>type</str<strong>on</strong>g> (mineralogical compositi<strong>on</strong>). Dry<br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g>s show a very sharp decline <str<strong>on</strong>g>of</str<strong>on</strong>g> the COP—it is<br />

lower by up to 35% with respect to saturated c<strong>on</strong>diti<strong>on</strong>s.<br />

Alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> from 12.5%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> to complete dryness str<strong>on</strong>gly decreases<br />

the <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> performance, <str<strong>on</strong>g>and</str<strong>on</strong>g> any reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> within this range has a devastating<br />

effect <strong>on</strong> the COP. Therefore, it is beneficial to<br />

keep the <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> value as high as possible<br />

above dry <str<strong>on</strong>g>soil</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. The best performance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>ground</strong> <strong>heat</strong> <strong>pump</strong> was obtained for s<str<strong>on</strong>g>and</str<strong>on</strong>g> at all<br />

degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong>, as compared to silty loam <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

silty clay.<br />

(2) Soil <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> above 25% <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> leads<br />

to generally better <strong>heat</strong> <strong>pump</strong> performance. It was<br />

found, however, that the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g><br />

variati<strong>on</strong> above the half-saturated state <strong>on</strong> <strong>ground</strong><br />

<strong>heat</strong> <strong>pump</strong> performance is relatively insignificant.<br />

The difference in the COP for s<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g>s<br />

corresp<strong>on</strong>ding to 50 <str<strong>on</strong>g>and</str<strong>on</strong>g> 100% <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> is<br />

<strong>on</strong>ly about 1.5%.<br />

(3) The freezing process <str<strong>on</strong>g>of</str<strong>on</strong>g> saturated <str<strong>on</strong>g>soil</str<strong>on</strong>g>s releases such<br />

a large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> latent <strong>heat</strong> that, for the <strong>heat</strong> <strong>pump</strong><br />

system c<strong>on</strong>sidered, it was not fully completed during<br />

the <strong>heat</strong>ing seas<strong>on</strong>. The freezing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> around the<br />

<strong>ground</strong> <strong>heat</strong> exchanger produces almost c<strong>on</strong>stant<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> the brine temperature, <strong>heat</strong> extracti<strong>on</strong>,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the COP.<br />

(4) The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong> extracted from the <strong>ground</strong> is<br />

highest for s<str<strong>on</strong>g>and</str<strong>on</strong>g>, followed by silty loam <str<strong>on</strong>g>and</str<strong>on</strong>g> silty<br />

clay which both exhibit very similar results. As the<br />

saturati<strong>on</strong> approaches 100%, however, the amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heat</strong> extracted from different <str<strong>on</strong>g>soil</str<strong>on</strong>g>s is approximately<br />

the same.<br />

(5) For saturated <str<strong>on</strong>g>and</str<strong>on</strong>g> half-saturated <str<strong>on</strong>g>soil</str<strong>on</strong>g>s, the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>heat</strong>ing load to the <strong>heat</strong> <strong>pump</strong> capacity is below unity<br />

for nearly all <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>heat</strong>ing seas<strong>on</strong>. Therefore there<br />

is almost no need for supplemental <strong>heat</strong>ing. Reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>soil</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g> from half saturati<strong>on</strong><br />

to dryness leads to an increasing dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for supplemental<br />

<strong>heat</strong>ing.<br />

Acknowledgements<br />

The authors express their appreciati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> thanks to the<br />

Nati<strong>on</strong>al Sciences <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Canada forprovidingfundstocarryout thisstudy,<str<strong>on</strong>g>and</str<strong>on</strong>g>toMr<br />

Sam Mahmoody, an undergraduate student, for assisting in<br />

computer simulati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> figures.


606 W. H. Le<strong>on</strong>g et al.<br />

References<br />

1. Hartley, J. G., Black, W. Z., Transient simultaneous <strong>heat</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>moisture</str<strong>on</strong>g> transfer in moist unsaturated <str<strong>on</strong>g>soil</str<strong>on</strong>g>s. Transacti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ASME. (1981) 103(5), 376–382.<br />

2. Hailey, S. M, Kast, T. P., Drown, D. C., Thermal c<strong>on</strong>ductivity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <strong>heat</strong> transfer effects <strong>on</strong> <strong>ground</strong><br />

source <strong>heat</strong> <strong>pump</strong>s. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the 16th Annual<br />

C<strong>on</strong>ference <str<strong>on</strong>g>of</str<strong>on</strong>g> Solar Energy Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, Halifax,<br />

Nova Scotia, June (1990), pp. 317–322.<br />

3. Drown, D. C., Den Braven, K. R., <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> thermal c<strong>on</strong>ductivity <strong>on</strong> <strong>heat</strong> transfer in <strong>ground</strong> source<br />

<strong>heat</strong> <strong>pump</strong>s. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the ASME JSES KSES Internati<strong>on</strong>al<br />

Solar Energy C<strong>on</strong>ference, Maui, Hawaii, 5–9<br />

April (1992)<br />

4. Deng, Y., Fedler, C. B., Multi-layered <str<strong>on</strong>g>soil</str<strong>on</strong>g> effects <strong>on</strong><br />

vertical <strong>ground</strong>-coupled <strong>heat</strong> <strong>pump</strong> design. Transacti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ASAE. (1992) 35(2), 687–694<br />

5. Tarnawski, V. R., Le<strong>on</strong>g, W. H., Computer Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ground Coupled Heat Pump Systems. Nati<strong>on</strong>al Research<br />

Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, Ottawa, C<strong>on</strong>tract No. CS944–9–4104<br />

(1990)<br />

6. Tarnawski, V. R., Le<strong>on</strong>g, W. H., Computer analysis,<br />

design <str<strong>on</strong>g>and</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>tal <strong>ground</strong> <strong>heat</strong> exchangers.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy Research, 1993 17,<br />

467–477<br />

7. de Vries, D. A., Heat transfer in <str<strong>on</strong>g>soil</str<strong>on</strong>g>s. In Heat <str<strong>on</strong>g>and</str<strong>on</strong>g> Mass<br />

Transfer in the Biosphere, ed. D. A. de Vries <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Afgan.<br />

John Wiley & S<strong>on</strong>s, New York (1975) pp. 5–28<br />

8. Tarnawski, V. R., Wagner, B., A new computerized<br />

approach to estimating the thermal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> unfrozen<br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g>s. Canadian Geotechnical Journal. (1992). 29, 714–720<br />

9. Tarnawski, V. R., Wagner, B., Modeling the thermal<br />

c<strong>on</strong>ductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> frozen <str<strong>on</strong>g>soil</str<strong>on</strong>g>s. Cold Regi<strong>on</strong>s Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Technology. (1993) 22, 19–31<br />

10. Hromadka, T. V. II, Guym<strong>on</strong>, G. L., Berg, R. L., Some<br />

approaches to modeling phase change in freezing<br />

<str<strong>on</strong>g>soil</str<strong>on</strong>g>s. Cold Regi<strong>on</strong>s Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology. (1981) 4,<br />

137–145<br />

11. Campbell, G. S., Soil Physics with Basic: Transport<br />

models for <str<strong>on</strong>g>soil</str<strong>on</strong>g>–plant systems. Elsevier, New York<br />

(1985)<br />

12. Williams, P. J., Properties <str<strong>on</strong>g>and</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> freezing <str<strong>on</strong>g>soil</str<strong>on</strong>g>s.<br />

Norwegian Geotechnical Institute, Paper 72 (1967)<br />

13. Anders<strong>on</strong>, D. M., Tice, A. R., Predicting unfrozen water<br />

<str<strong>on</strong>g>c<strong>on</strong>tent</str<strong>on</strong>g>s in frozen <str<strong>on</strong>g>soil</str<strong>on</strong>g>s from surface area measurements.<br />

Highway Research Record. (1972) 393, 12–18<br />

14. Carslaw, H. S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Jeager, J. C., C<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat in<br />

Solids, 2nd edn. Oxford University Press, L<strong>on</strong>d<strong>on</strong> (1986)<br />

15. Kersten, M. S., Laboratory research for the determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the thermal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soil</str<strong>on</strong>g>. Engineering Experiment<br />

Stati<strong>on</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Minnesota (1949)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!